
HAL Id: tel-01102401
https://inria.hal.science/tel-01102401

Submitted on 12 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis for Data-Centric Web Programming
Pierre Genevès

To cite this version:
Pierre Genevès. Static Analysis for Data-Centric Web Programming. Computer Science [cs]. Univer-
sité Grenoble Alpes, 2014. �tel-01102401�

https://inria.hal.science/tel-01102401
https://hal.archives-ouvertes.fr

Static Analysis for Data-Centric Web

Programming

Pierre Genevès

November 21st, 2014

Document presented in partial fulfillment of the requirements for the degree of “Habilitation

à Diriger les Recherches (HDR)” from the University of Grenoble Alpes, 2014.

Referees:

Boualem Benatallah

Giuseppe Castagna

Amedeo Napoli

Contents

1 Introduction 1

1.1 Outline . 1

1.2 Societal Stakes and Scientific Challenges 2

1.3 Original Research Approach Developed 3

1.4 Contributions . 5

1.5 Evolution of Schemas . 6

1.6 Functions and Polymorphism . 6

1.7 Automated Analysis of Layouts . 7

1.8 Containment for Graph Queries . 8

1.9 Pointers to Other Related Results . 10

2 Evolution of Types 11

2.1 Introduction . 12

2.2 Analysis Framework . 13

2.3 Logical Setting . 16

2.4 Analysis Predicates . 24

2.5 Impact of Standards’ Evolution on Valid Documents 28

2.6 Impact on Queries . 36

2.7 System Implementation . 38

2.8 Related Work . 38

2.9 Conclusion . 40

3 Functions and Polymorphism 41

3.1 Introduction . 41

3.2 Semantic Subtyping Framework . 46

3.3 Tree Logic Framework . 50

3.4 Logical Encoding . 52

3.5 Polymorphism: Supporting Type Variables 55

3.6 Implementation and Practical Experiments 62

3.7 Related Work . 70

3.8 Conclusion . 71

4 Analysis of Cascading Style Sheets 73

4.1 Introduction . 74

4.2 Current Practice . 75

4.3 CSS: An Overview . 76

4.4 Theoretical Foundations . 79

4.5 A Logical Modeling of CSS . 83

4.6 Prototype Implementation . 86

4.7 Reasoning with Style . 86

iv Contents

4.8 Automated CSS Size Reduction . 92

4.9 Conclusions . 97

5 Containment for a SPARQL Fragment 101

5.1 Introduction . 102

5.2 Preliminaries . 103

5.3 SPARQL Query Containment . 115

5.4 µ-calculus . 115

5.5 RDF Graphs as Transition Systems . 118

5.6 Encoding SPARQL Query Containment 123

5.7 Experimental Investigations . 132

5.8 Query Containment Solvers . 133

5.9 Benchmark Design . 134

5.10 Experimental Results . 139

5.11 Related Work . 142

5.12 Conclusions . 146

6 Conclusion and Perspectives 149

6.1 Summary of Contributions . 149

6.2 Perspectives . 149

Bibliography 155

Chapter 1

Introduction

Contents

1.1 Outline . 1

1.2 Societal Stakes and Scientific Challenges 2

1.3 Original Research Approach Developed 3

1.4 Contributions . 5

1.5 Evolution of Schemas . 6

1.6 Functions and Polymorphism . 6

1.7 Automated Analysis of Layouts 7

1.8 Containment for Graph Queries 8

1.9 Pointers to Other Related Results 10

1.1 Outline

This document presents an excerpt from the research results that I have obtained since

I received a PhD in December 2006. My research addresses one fundamental challenge

of our time: building the necessary theoretical foundations and practical tools for

ensuring guarantees on web applications such as robustness, security, privacy, and ef-

ficiency, towards a web of trust. For this purpose, I build static analysis methods that

analyse the source code of web applications for the purpose of automatically detecting

defects, or certifying guarantees such as the absence of certain kinds of errors, other-

wise. The methods that I develop can also be used for performing semantically-verified

optimisations, in compiler design for instance. One particularity of my approach re-

sides in the introduction of novel reasoning techniques, based on new rich modal logics

and innovative algorithmic techniques. Another particularity of my research is that

it considers theoretical aspects, algorithmic aspects as well as applied aspects such

as implementation techniques, experimental validation, and practical relevance. The

overall goal of my research is to enable people to construct more reliable, secure, and

efficient information systems.

The present Chapter introduces more context about my research, highlights specific

aspects that constitute the originality and uniqueness of my approach, and gives a

summary of four of my main contributions. These four contributions are detailed in

the next Chapters: evolution of types in Chapter 2, functions and polymorphism in

Chapter3, analysis of layouts in Chapter 4 and containment for a SPARQL fragment

in Chapter 5. Chapter 6 discusses perspectives for further research.

2 Chapter 1. Introduction

1.2 Societal Stakes and Scientific Challenges

The need for data-centric guarantees on web applications

Today, our private life, our work, and more generally data correctness are put at risk

by web applications. This is already witnessed by a number of failures with dramatic

consequences. For instance, in June 2011, a breach in Citibank’s web portal exposed

confidential data concerning 200 000 customer accounts. In March 2011, a failure in

the GlobalPayment system exposed 1.5 million of credit card numbers. The frequency

of such failures is increasing rapidly. In February 2013, 250 000 Tweeter accounts were

compromised. In August 2013, global web traffic brutally fell 40% when Google was

down for 11 minutes. In January 2014, the credit card details of 20 million South

Koreans were stolen.

My vision is that critical software is a notion no longer limited to systems tra-

ditionally considered as critical, such as found in airplanes and nuclear power plants

for example. By manipulating unprecedented volumes of data from unprecedentedly

large numbers of users, web applications are reaching a criticality level that was never

attained before. They are on the verge of becoming the critical applications of the

twenty-first century.

The aforementioned failures illustrate that considering web data as merely strings is

insufficient as it exposes to vulnerabilities (e.g. code injection) and, more generally, it

prevents accurate tracking and verification of data manipulations. Existing approaches

for program verification fail to extend to web applications, for a simple but fundamental

reason: web applications manipulate web data that are very richly structured

and heterogeneous (document trees, knowledge graphs, nested key-value records).

This makes a major difference with software traditionally considered as critical, which,

in comparison, manipulate much simpler data. This is also a reason why we cannot

reuse or extend existing methods but must develop novel, radically different, methods

instead.

My research seeks to address this challenge by building novel theoretical foun-

dations and innovative practical software tools for the static analysis of the

source codes of web applications. Their purpose is to automatically detect defects, or

otherwise prove guarantees such as the absence of errors and undesired behaviours.

The overall objective is to open up new horizons for the development of science to-

wards a web of trust, and to obtain concrete tools capable of verifying real-world web

applications.

Challenges in the automated verification of web applications

The static analysis of a web application consists in automatically inferring properties

about all its possible executions, encompassing all possible inputs and outputs, for

all users. It is distinguished from testing (sometimes called dynamic analysis) which

considers a limited number of executions, and thus, except for very small applications,

cannot guarantee the absence of errors.

For a given class of defects, a sound static analysis method detects defects in a

1.3. Original Research Approach Developed 3

exhaustive manner. It never wrongly considers that a program is safe when actually it

is not. Soundness provides the payoff I am looking for: by soundly checking the web

application, one can be certain that certain defects will certainly not happen. Short

of this, we just have a bug-finder; while it may be useful, it does not constitute a

sufficient basis for establishing security, privacy and robustness guarantees. Therefore,

in my research, I look for sound static analysis methods, even though some results may

also apply to bug-finding methods. Complete static analysis methods never raise false

alarms in the sense that all detected defects are actual. Static analysis attempts to

solve a problem that is generally unsolvable, in the sense that sound and complete (and

terminating) static analysis methods are impossible for web applications in general1.

The major consequence is that sound and terminating methods are bound to generate

false alarms. Reducing the number of false alarms by increasing the precision of the

analysis while keeping time and memory costs low constitutes a scientific challenge.

Furthermore, this challenge comes with an inherent antagonism: on one hand the

modelling with precision of real-world web applications motivates the search for more

expressivity of the algebras under consideration, while, on the other hand, practical

feasibility encourages the search for efficient algorithms with reasonable worst-case

behaviour. This stimulates the search for relevant trade-offs between the expressive

power of an algebra, algorithmic complexity, and appropriate algorithmic techniques

that avoid the worst-case behaviour as much as possible.

One crucial particularity of web applications consists in processing rich data struc-

tured in various forms: ordered trees (such as most webpages and XML documents),

unordered nested records (such as JSON records), and graphs (such as social networks

and sets of RDF triples). These structures emerged as flexible – and de facto – ways

of representing data on the web. However, we still miss foundations for their manip-

ulation. The richness, heterogeneity and coexistence of different structures constitute

an important scientific challenge. I do not envision progress in the static analysis of

web applications unless breakthroughs are made. This is the central issue considered

in my research.

1.3 Original Research Approach Developed

Over the years, I have been developing a research approach for advancing the state-

of-the-art, which is original in several respects. Three essential aspects constitute the

scientific originality of my approach:

1. I have been using and developing modal logics for the purpose of modelling web

data structures;

2. I have been using and developing novel exact decision procedures and algorithmic

techniques for the static analysis of applications that process web data;

1In computability theory, this is known as Rice’s theorem: any property which is non-trivial (in the
sense that it is neither always true nor always false) concerning the semantics of a turing-complete
programming language is undecidable. In other terms, there is no algorithm that decides a non-trivial
property on the program source code (as this would amount to solving Turing’s halting problem).

4 Chapter 1. Introduction

3. I have focused on data-centric properties and important facets that constitute

the particularity of web applications, including tree and graph shaped data, rapid

evolution of schemas, and sophisticated layouts.

The scientific rationale for (1) and (2) above is that I want a solid rigorous and

generic ground for developing proper foundations2. To this end, I have chosen to focus

on extending a very specific kind of logics: modal logics. There are three essential

reasons for that, of theoretical and algorithmic nature:

a. Modal logics are more robust by extension than classical logics, while being of

similar or equal expressive power3. My research requires expressive logics for

reasoning with web data constraints. For example, transitive closure is needed

for capturing data constraints (as in e.g. RDFS and regular tree grammars) and

navigation patterns (with e.g. regular expressions) found in queries4.

b. Modal logics provide an interesting basis in the search for a common notation

where the underlying logical data model can be transparently customized in vari-

ous ways. It is possible to define interpretations of a logical formula on particular

data models, without changing the logical language syntax. It is possible to re-

strict the data model at the purely syntactic level5. For a logic that admits the

finite tree model property, it is even possible to use a decision procedure over

finite trees in order to solve a problem over graphs. Modal logics thus provide an

interesting foundation for a unifying formalism for reasoning about data struc-

tures which are ordered/unordered and graph or tree-shaped, which is exactly

what we need to harness the heterogeneity of web data structures.

c. Unlike their tree automata counterparts, modal logics are agnostic to the no-

tion of non-determinism. Determinization is a complex process for most tree

automata. Instead, a formula (of a logic which is closed under negation6) can

simply be put in negation normal form by propagating negation using De Mor-

gan style laws. Furthermore, convenient representations (such as Hintikka sets

2As opposed to ad-hoc and hardly reusable methods sometimes found in, e.g., type theory.
3For instance, the alternation-free fragment of the µ-calculus over finite trees is equally as expressive
than the weak monadic second order logic of two successors. The former is decidable in EXPTIME
whereas the latter is decidable in hyper-exponential (non-elementary) time. This situation arises from
a difference in representation: modal logics are, in general, less succinct than classical logics. This is
why, for instance, monadic second-order logic (MSO) formulas, in their generality, cannot be solved
for satisfiability in simple exponential-time by a decision procedure for µ-calculus: the translation
from MSO to µ-calculus would involve hyper-exponential blow-ups in the syntactic representation.

4This is the reason why, e.g., first-order logic and its variants cannot be used to reason in general with
regular constraints of web data. A fundamental limitation of first-order logic is that it cannot express
transitive closure. I thus usually consider more expressive logics such as monadic-second order logic
or its modal logic variant: the µ-calculus.

5For example, graph models can be restricted to be finite ordered tree models by a syntactic transfor-
mation of the formula and a conjunction that further restricts branches to be finite, as in [Genevès
& Layäıda 2006].

6For a given logic, closure under negation ensures that the negation of any formula is also expressible
in the logic.

1.4. Contributions 5

and Fisher-Ladner closures) can be used for implementing effective decision pro-

cedures with semi-implicit techniques.

One motivation for (3) above originates from the fact that I am concerned with the

applicability of my research and its practical relevance with respect to the aforemen-

tioned challenges. In this spirit, one particularity of my research is that it combines

theoretical and applied aspects: I have been trying to focus on advancing relevant

theories with experimental validation of implementations of these theories.

1.4 Contributions

In this context, this document presents an excerpt from the results that I have obtained

since I received my PhD in December 2006. A few criteria were used for picking a

subset of contributions. Basically, I chose to focus on a balanced set of self-contained

results that are quite representative of my research approach, while illustrating different

facets and particularities of web applications. In this spirit, I retained four major

contributions:

Evolution of Schemas: these results allow to automatically and precisely monitor

the impact of schema evolutions over sets of documents and queries that were

formulated with respect to the initial schema subject to changes.

Functions and Polymorphism: these results allow to effectively decide subtyping

for a rich type algebra equipped with function types and polymorphic types.

Automated Analysis of Layouts: these results allow to automatically detect bugs

and prove properties such as the absence of certain kinds of rendering bugs in

layouts designed using Cascading Style Sheets (CSS). In addition, novel seman-

tical analyses for refactoring CSS style sheets can significantly reduce the size of

style sheet used in the most popular web sites. The impact is significant as this

directly amounts to reducing the resources required for global web traffic.

Containment for Graph Queries these results allow to decide the most essential

static analysis problems such as the containment problem (and hence, the equiv-

alence problem) for queries formulated in a fragment of the SPARQL language,

in the presence of schema constraints.

I briefly review these contributions in the next Sections. Their detailed presentation

constitute the topic of the following Chapters of this document.

The research results presented in this document have been obtained in collaboration

with colleagues and students. For this reason, the “we” pronoun is used throughout

the remaining part of this document. Specifically, the development of static analysis

techniques for monitoring the impact of schema evolutions is a topic that I started

in collaboration with Nabil Layäıda and Vincent Quint. The topic of function types

and polymorphism was brought to my attention by Giuseppe Castagna, and addressed

6 Chapter 1. Introduction

in collaboration with Nils Gesbert that I supervised as a post-doc. The development

of the first static analysis method for cascading style sheets is a topic that I started,

in collaboration with Nabil Layäıda and Vincent Quint. Finally, query containment

for SPARQL was the PhD topic of Melisachew Wudage Chekol, that I supervised in

collaboration with Jérôme Euzenat and Nabil Layäıda.

1.5 Evolution of Schemas

In the ever-evolving context of the web, XML schemas continuously change in order

to cope with the natural evolution of entities they describe. Schema changes have

important consequences. First, existing documents valid with respect to the original

schema are no longer guaranteed to fulfill the constraints described by the evolved

schema. Second, the evolution also impacts programs manipulating documents whose

structure is described by the original schema.

We have proposed a unifying framework for determining the effects of XML Schema

evolution both on the validity of documents and on queries. The system is precious in

analyzing various scenarios in which notions of forward and backward compatibilities

for schemas are broken, and in which the result of a query may not be anymore what

was expected. For example, when a content model is changing, is the change forward

compatible, i.e. do the former documents remain valid? Does the change preserve a

notion of backward compatibility, i.e. may new documents containing only the elements

defined in the original schema be assembled in such a way that compatibility with the

first schema is lost? What is the impact of the evolution of a schema on a given query

or transformation?

The system provides a predicate language which allows one to formulate properties

related to schema evolution. The system then relies on exact reasoning techniques to

perform a fine-grained analysis. This yields either a formal proof of the property or

a counter-example that can be used for debugging purposes. The system has been

fully implemented and tested with real-world use cases, in particular with the main

standard document formats used on the web, as defined by W3C. The system identifies

precisely compatibility relations between document formats. In case these relations do

not hold, the system can identify queries that must be reformulated in order to produce

the expected results across successive schema versions.

These works, presented in Chapter 2, were published in ICFP’09 [Genevès

et al. 2009] and TOIT’11 [Genevès et al. 2011].

1.6 Functions and Polymorphism

An important aspect when analysing web applications is the ability to develop modular

analyses in order to support large applications. The simplest form of modularity

is already present in most programs through the use of functions. A slightly more

sophisticated form of modularity is the use of higher-order functions, i.e. functions

that can be passed as parameters or returned as results like any other value such as

1.7. Automated Analysis of Layouts 7

integers, lists, etc. The support for higher-order functions, although absent from the

current XQuery standard language, appears as a requirement in the forthcoming third

version of the standard [Engovatov & Robie 2010]. Another form of modularity found

in web applications is the use of web services.

The development of rich type algebra that capture higher-order functions and para-

metric polymorphism is a response to the need of modular type systems. Higher-order

functions and parametric polymorphism are two of the most powerful constructs in

functional programming languages such as ML, Caml or Haskell. In the setting of

XML, it is attractive to reach such powerful type systems where types can denote data

types such as schemas and also computations. To that end, function types first need

to be supported in the manner of [Benzaken et al. 2003, Castagna & Xu 2011]. As a

second step, if functions can be made parametric using variables (parametric types),

then they become more generic since they can operate on a large number of specific

types. Such functions are well suited to promote code reuse.

In this setting, this work studies parametric polymorphism for type systems aim-

ing at maintaining full static type-safety of functional programs (such as XQuery pro-

grams) that manipulate linked structures such as trees, potentially with higher-order

functions. We consider a type algebra equipped with recursive, product, function (ar-

row), intersection, union, and complement types. We have showed how the subtyping

relation between such type expressions can be decided through a logical approach. Our

main result solves an open problem: we prove the decidability of the subtyping rela-

tion when this type algebra is extended with type variables. This provides a powerful

polymorphic type system (using ML-style prenex polymorphism, where variables are

implicitly universally quantified at top level), for which defining the subtyping relation

is not obvious, as pointed out in [Castagna & Xu 2011], and for which no candidate

definition of subtyping had been proved decidable before. The novelty, originality and

strength of our solution reside in introducing a logical modeling for the semantic sub-

typing framework. Specifically, we model semantic subtyping in the finite tree logic

presented in [Genevès et al. 2007] and rely on a slightly modified satisfiability solver

in order to decide subtyping in practice. We obtain an EXPTIME (2O(n)) complexity

bound as well as an efficient implementation in practice.

These works, presented in Chapter 3, were published in ICFP’11 [Ges-

bert et al. 2011]. A journal article is under review.

1.7 Automated Analysis of Layouts

Cascading style sheets (CSS) play an increasingly important role on the web. Initially

developed for separating content from presentation, they have been enriched to achieve

more and more sophisticated layouts and renderings over the last few years. With

the latest CSS3 standard, cascading style sheets constitute a crucial component in

the design of web application user interfaces. Developing and maintaining cascading

style sheets is an important issue to web developers as they suffer from the lack of

rigorous methods. Existing techniques for debugging style sheets are empirical. We

8 Chapter 1. Introduction

have proposed a novel approach to fill this lack by introducing static analysis for style

sheets. We have presented an original tool based on recent advances in tree logics.

From a theoretical perspective, CSS selectors could be related to XPath queries,

for which an extensive static analysis has been conducted in [Genevès et al. 2007]. In

this work, we dealt with the particular combinators and pseudo-classes found in CSS

selectors. In particular, we have extended the logical solver from [Genevès et al. 2007],

initially developed for XPath, to be able to reason about attribute values, by introduc-

ing an equality test that compares an attribute value to a constant. This is a worthy

extension since it is sufficient for supporting CSS while preserving decidability for the

extended logic (it is known that extending the logic with equality tests with variables

results in undecidable logics, but this feature is not needed for CSS). In addition, we

dealt with style properties and the propagation of values defined by the inheritance

mechanism of CSS, which do not have any XPath counterpart.

From a practical perspective, there exists a whole class of dynamic analyses. Most

of this technology relies on runtime debuggers that check the behavior of a CSS style

sheet on a particular document instance. However, the aim of CSS is to be applied to

an entire set of documents, usually defined by some schema. The existing runtime de-

bugging tools help reducing the number of bugs. However, compared to our approach,

they do not allow to prove properties over the whole set of documents to which the

style sheet is intended to be applied. Therefore, our new approach and tool can be

used in addition to debuggers to ensure a higher level of quality of CSS style sheets.

The tool is capable of statically detecting certain kinds of errors (such as inap-

propriate renderings), as well as proving properties related to sets of documents (such

as coverage of styling information), in the presence or absence of schema information.

This was the first attempt at statically analyzing CSS style sheets. This new static

analysis tool can be used in addition to existing runtime debuggers to ensure a higher

level of quality of CSS style sheets.

In addition, we presented a first prototype of static CSS semantical optimizer that

is capable of automatically detecting and removing redundant property declarations

and rules. Existing purely syntactic CSS optimizers might be used in conjunction with

our tool, for performing complementary (and orthogonal) size reduction, toward the

common goal of providing cleaner, lighter, and easily debuggable CSS files.

These works, presented in Chapter 4, were published in WWW’12

[Genevès et al. 2012] and [Bosch et al. 2014]. [Genevès et al. 2012] is the first

scientific publication about the analysis of cascading style sheets, yet one of the most

widely used standard on the web.

1.8 Containment for Graph Queries

We investigate the problem of query containment for the SPARQL language. This

problem is defined as determining whether, for any graph, the result of one SPARQL

query is included in the result of another query. Query containment is important

in many areas, including program analysis, information integration, and query opti-

1.8. Containment for Graph Queries 9

mization. For instance, if we can prove that two queries are equivalent for any graph

(which reduces to two query containment checks), then we can safely substitute one

query by another more efficient query version, while preserving the initial semantics of

the program.

We address query containment for a fragment of the SPARQL language, under

expressive description logic constraints. SPARQL is interpreted over graphs, hence we

encode it in a graph logic, specifically the alternation-free fragment of the µ-calculus

[Kozen 1983] with converse and nominals [Tanabe et al. 2008] interpreted over labeled

transition systems.

We show that this logic is powerful enough to deal with query containment for

the fragment of SPARQL made of basic and union graph patterns, in the presence of

ALCH schema axioms.

In this logical encoding, RDF graphs become transition systems and queries and

schema axioms become µ-calculus formulae. Therefore, SPARQL query containment

can be reduced to unsatisfiability in the µ-calculus. This approach has several advan-

tages: it can be used to precisely characterize the expressive power and complexity

for fragments of the SPARQL language. In particular, due to the high expressive

power of the µ-calculus, such an encoding is useful to characterize not only restric-

tions but also extensions of the SPARQL language. For example, a benefit of using

a µ-calculus encoding is to take advantage of fixpoints and modalities for encoding

recursion. These operators allow to deal with natural extensions of SPARQL such as

path queries [Alkhateeb et al. 2009] or queries modulo RDF Schema. Finally, another

advantage of such an approach is that the considered logic admits exponential time

decision procedures that can be implemented in practice [Tanabe et al. 2005,Genevès

et al. 2007,Tanabe et al. 2008]. This study allows to exploit these advantages.

In order to experimentally assess implementation strengths and limitations in this

setting, we provide a first SPARQL containment test benchmark. It has been designed

with respect to both the capabilities of existing solvers and the study of typical queries.

Some solvers support optional constructs and cycles, while other solvers support pro-

jection, union of conjunctive queries and RDF Schemas. No solver currently supports

all these features. The study of query demographics on DBPedia logs shows that the

vast majority of queries are acyclic and a significant part of them uses union or projec-

tion. We thus test available solvers on their domain of applicability on three different

benchmark suites. We report on the experimental results, and discuss to which ex-

tent, in spite of its complexity, SPARQL query containment is practicable for acyclic

queries.

These works, presented in Chapter 5, were published in AAAI’12 [Chekol

et al. 2012b] and ISWC’13 [Chekol et al. 2013]. Closely related results

were published in DBPL’11 [Chekol et al. 2011] and IJCAR’12 [Chekol

et al. 2012a]. A journal article is in preparation.

10 Chapter 1. Introduction

1.9 Pointers to Other Related Results

This document only presents an excerpt from the the results that I have obtained

since December 2006. I have obtained other results, including closely related ones,

that are not detailed in this document, but whose publications can be found online.

In particular, among the most closely related results, I have obtained results on the

extension of tree logics with counting constraints. These results, published at IJCAI’11

[Barcenas et al. 2011], were obtained in collaboration with Everardo Bárcenas Patiño,

that I supervised as a PhD student, in collaboration with Nabil Layäıda and Alan

Schmitt. I also built a prototype of an integrated development environment equipped

with semantic static analyses. These results were obtained in collaboration with Lorena

Gonçalves de Alcântara e Freitas that I supervised as a master intern, with Manh-

Toan Nguyen that I supervised as a research engineer, and with Nabil Layäıda. These

results were published in ICSE’10 [Genevès & Layäıda 2010], ICSE’11 [Genevès &

Layäıda 2011] and TOIT’14 [Genevès & Layäıda 2014a].

Chapter 2

Evolution of Types

Contents

2.1 Introduction . 12

2.2 Analysis Framework . 13

2.3 Logical Setting . 16

2.4 Analysis Predicates . 24

2.5 Impact of Standards’ Evolution on Valid Documents 28

2.6 Impact on Queries . 36

2.7 System Implementation . 38

2.8 Related Work . 38

2.9 Conclusion . 40

Abstract

In this chapter, the problem of XML Schema evolution is considered. In the ever-

changing context of the web, XML schemas continuously change in order to cope

with the natural evolution of entities they describe. Schema changes have important

consequences. First, existing documents valid with respect to the original schema

are no longer guaranteed to fulfill the constraints described by the evolved schema.

Second, the evolution also impacts programs manipulating documents whose structure

is described by the original schema.

We propose a unifying framework for determining the effects of XML Schema evo-

lution both on the validity of documents and on queries. The system is very powerful

in analyzing various scenarios in which forward/backward compatibility of schemas is

broken, and in which the result of a query may not be anymore what was expected.

Specifically, the system offers a predicate language which allows one to formulate prop-

erties related to schema evolution. The system then relies on exact reasoning tech-

niques to perform a fine-grained analysis. This yields either a formal proof of the

property or a counter-example that can be used for debugging purposes. The system

has been fully implemented and tested with real-world use cases, in particular with the

main standard document formats used on the web, as defined by W3C. The system

identifies precisely compatibility relations between document formats. In case these

relations do not hold, the system can identify queries that must be reformulated in

order to produce the expected results across successive schema versions.

12 Chapter 2. Evolution of Types

2.1 Introduction

XML is now commonplace on the web and in many information systems where it

is used for representing all kinds of information resources, ranging from simple text

documents such as RSS or Atom feeds to highly structured databases. In these dynamic

environments, not only data are changing steadily but their schemas also get modified

to cope with the evolution of the real world entities they describe.

Schema changes raise the issue of data consistency. Existing documents and data

that were valid with a certain version of a schema may become invalid on a new version

of the schema (forward incompatibility). Conversely, new documents created with the

latest version of a schema may be invalid on some previous versions (backward incom-

patibility). In particular, there are two ways commonly used in the design of schemas.

One consists in under constraining the schema in the earlier versions when the design

is not completely stable and then constraining it in future versions progressively. The

other way is more conservative and consists in constraining the schema first and then

relaxing the constraints progressively. If we leave aside new elements and attributes

introduced between two successive versions of a schema, this is particularly true for

new combinations of elements (content models) added or restricted through regular

expressions in W3C Document formats recommendations (see Section 2.5).

In addition, schemas may be written in different languages, such as DTD, XML

Schema, or Relax-NG, to name only the most popular ones. And it is common practice

to describe the same structure, or new versions of a structure, in different schema lan-

guages. Document formats developed by W3C provide a variety of examples: XHTML

1.0 has both DTDs and XML Schemas, while XHTML 2.0 has a Relax-NG definition;

the schema for SVG Tiny 1.1 is a DTD, while version 1.2 is written in Relax-NG;

MathML 1.01 has a DTD, MathML 2.0 has both a DTD and an XML Schema, and

MathML 3.0 is developed with a Relax-NG schema and also published with a DTD

and an XML Schema. An issue then is to make sure that schemas written in different

languages are equivalent, i.e. they describe the same structure, possibly with some

differences due to the expressivity of the language [Murata et al. 2005]. Another issue

is to clearly identify the differences between two versions of the same schema expressed

in different languages. Moreover, the issues of forward and backward compatibility of

instances obviously remain when schema languages change from a version to another.

Validation, and then compatibility, is not the only purpose of a schema. Validation

is usually the first step for safe processing of documents and data. It makes sure that

documents and data are structured as expected and can then be processed safely. The

next step is to actually access and select the various parts to be handled in each phase

of an application. For this, query languages play a key role. As an example, when

transforming a document with XSL, XPath queries are paramount to locate in the

original document the data to be produced in the transformed document.

Queries are affected by schema evolutions. The structures they return may change

depending on the version of the schema used by a document. When changing schema,

a query may return nothing, or something different from what was expected, and

obviously further processing based on this query is at risk.

2.2. Analysis Framework 13

These observations highlight the need for evaluating precisely and safely the impact

of schema evolutions on existing and future instances of documents and data. They

also show that it is important for software engineers to precisely know what parts of a

processing chain have to be updated when schemas change. In this chapter we focus

on the XPath query language which is used in many situations while processing XML

documents and data. The XSL transformation language was already mentioned, but

XPath is also present in XLink and XQuery for instance.

A part of this work concerning the impact of schema changes on XPath queries was

presented at the ACM International Conference on Functional Programming (ICFP),

2009, [Genevès et al. 2009]. The present chapter aims at covering the more general issue

of schema evolution by taking into account the impact on the validity of documents as

well. In particular, we identify criteria for the evolution of standard XML Schemas. We

present a framework for checking these criteria with the schemas specifying the main

standard documents formats used on the web, as defined by W3C (see Section 2.5).

Outline

We first introduce the framework from a high-level perspective in Section 2.2: we

describe how the whole system is assembled, and which XML schemas and queries are

supported. In Section 2.3, we provide a more in-depth understanding of the underlying

logic on which the system is built; in particular we explain how XML constructs are

mapped to this logical representation. Based on this logical encodings, Section 2.4

introduces a predicate language specifically designed for assessing the impact of schema

evolutions. The following sections respectively focus on applying the framework for

studying the impact of schema evolutions on the validity of documents (Section 2.5)

and on queries (Section 2.6). The full implementation of the system is presented

in Section 2.7. Finally, we discuss related work in Section 2.8 before concluding in

Section 2.9.

2.2 Analysis Framework

The main contribution of this chapter is a unifying framework that allows the automatic

verification of properties related to XML schema evolution and its impact on the

validity of documents and on queries. In particular, it offers the possibility of checking

fine-grained properties of the behavior of queries with respect to successive versions of

a given schema. The system can be used for checking relations between schemas and

whether schema evolutions require a particular query to be updated. Whenever schema

evolutions may induce query malfunctions, the system is able to generate annotated

XML documents that exemplify bugs, with the goal of helping the programmer to

understand and properly overcome undesired effects of schema evolutions.

The system relies on a predicate language (presented in Section 2.4) specifically

designed for studying schema and query compatibility issues when schemas evolve.

Specifically, predicates allow characterizing in a precise manner nodes subject to evo-

lution. For instance, predicates allow to distinguish new nodes selected by the query

14 Chapter 2. Evolution of Types

after a schema change from new nodes that appear in the modified schema. Predicates

also allow to describe nodes that appear in new regions of a schema compared to its

original version, or even in a new context described by a particular XPath expression.

Predicates, together with the composition language provided in the system allow to

express and analyze complex settings.

The system has been fully implemented [Genevès & Layäıda 2014b] and is outlined

in Figure 2.1. It is composed of a parser for reading the text file description of the

problem (which in turn uses specific parsers for schemas, queries, logical formulas, and

predicates), compilers for translating schemas and queries into their logical represen-

tations, a solver for checking satisfiability of logical formulas, and a counter example

XML tree generator (described in [Genevès et al. 2014]).

select("a//b[ancestor::e]",
type("XHTML1-strict.dtd",
"html"))

XML Problem Description (Text File)

Parsing and
Compilation

let $X=e & <1>$X..

Logical formula over
binary trees with
attributes

Satisfiability
Test

Unsatisfiable (property proved)

Satisfiable
Synthesis

Satisfying
binary tree
with attributes

binary
to n-ary

Sample XML
document
inducing a bug

Figure 2.1: Framework Overview.

We first introduce the data model we consider for XML documents, schemas and

queries.

2.2.1 XML Trees with Attributes

An XML document is considered as a finite tree of unbounded depth and arity, with

two kinds of nodes respectively named elements and attributes. In such a tree, an

element may have any number of children elements, and may carry zero, one or more

attributes. Attributes are leaves. Elements are ordered whereas attributes are not, as

illustrated on Figure 2.4. In this chapter, we focus on the nested structure of elements

and attributes, and ignore XML data values.

2.2.2 Type Constraints

Our tree type expressions capture most of the schemas in use today either written us-

ing DTD, XML Schema, Relax NG, etc. Users may thus define constraints over XML

documents with the language of their choice, and, more importantly, they may refer to

most existing schemas for use with the system. Instead of having one parser/compiler

per schema language, we rely on a common intermediate language in which all these

languages are compiled. For the intermediate language we consider the standard class

of regular tree grammars, commonly found in the literature [Hosoya et al. 2005], to

which we have added the support of constraints over XML attributes (whose efficiency

2.2. Analysis Framework 15

is further discussed in section 2.3.3). In terms of expressive power, regular tree gram-

mars support constraints over trees which are more expressive than local tree grammars

(DTDs) and single-type tree grammars (XML schemas), capturing exactly the class

of Relax NG schemas, and, more fundamentally finite tree automata (see [Murata

et al. 2005] for a formal characterization of the respective expressive power of these

languages). In practice, we have implemented parsers that produce this intermediate

representation from a given DTD, XML Schema, or Relax NG schema. We have im-

plemented one compiler from this representation into the logic. An advantage of this

approach is that it is extensible: it is easy to know the supported features since (1)

the intermediate language is well-characterized and made explicit, and (2) extending

the system with new schema languages is easy since one does not need to implement

new compilers into the logic (and prove soundness, completeness and polynomial-time

translation), but rather simply express the new considered constraints in the interme-

diate language.

Specifically, our unifying internal representation for tree grammars is made of reg-

ular tree type expressions, extended with constraints over attributes. Assuming a set

of variables ranged over by x, we define a tree type expression as follows:

τ ::= tree type expression

∅ empty set

() empty sequence

τ | τ disjunction

τ, τ concatenation

l(a)[τ] element definition

x variable

let x = τ in τ binder

The let construct allows binding one or more variables to associated formulas.

Since several variables can be bound at a time, the notation x = τ is used for denoting

a vector of variable bindings (possibly with mutual recursion).

We impose a usual restriction on the recursive use of variables: we allow unguarded

(i.e. not enclosed by a label) recursive uses of variables, but restrict them to tail posi-

tions1. With that restriction, tree types expressions define regular tree languages. In

addition, an element definition may involve simple attribute expressions that describe

1For instance, “let x = l(a)[τ], x | () in x” is allowed.

16 Chapter 2. Evolution of Types

which attributes the defined element may (or may not) carry:

a ::= attribute expression

() empty list

list | a disjunction

list ::= attribute list

list , list commutative concatenation

l? optional attribute

l required attribute

¬l prohibited attribute

We use the usual semantics of regular tree types found in [Hosoya et al. 2005]

and [Genevès et al. 2007].

2.2.3 Queries

The set of XPath expressions we consider is given by the syntax shown on Figure 2.2.

The semantics of XPath expressions is described in [Clark & DeRose 1999], and more

formally in [Genevès et al. 2007]. We observed that, in practice, many XPath expres-

sions contain syntactic sugars that can also fit into this fragment. Figure 2.3 presents

how our XPath parser rewrites some commonly found XPath patterns into the frag-

ment of Figure 2.2, where the notation (axis::nt)k stands for the composition of k

successive path steps of the same form: axis::nt/.../axis::nt︸ ︷︷ ︸
k steps

.

The next Section presents the logic underlying the predicate language.

2.3 Logical Setting

It is well-known that there exist bijective encodings between unranked trees (trees of

unbounded arity) and binary trees [Thomas 1990]. Owing to these encodings binary

trees may be used instead of unranked trees without loss of generality. In the sequel,

we rely on a simple “first-child & next-sibling” encoding of unranked trees. In this en-

coding, the first child of an element node is preserved in the binary tree representation,

whereas siblings of this node are appended as right successors in the binary representa-

tion. Attributes are left unchanged by this encoding. For instance, Figure 2.5 presents

how the sample tree of Figure 2.4 is mapped.

The logic we introduce below, used as the core of our framework, operates on such

binary trees with attributes.

2.3.1 Logical Formulas

The concrete syntax of logical formulas is shown on Figure 2.6, where the meta-syntax

〈X〉� means one or more occurences of X separated by commas. The user can directly

encode formulas with this syntax in text files to be used with the system [Genevès &

2.3. Logical Setting 17

query ::=
/path absolute path
path relative path
query | query union
query ∩ query intersection

path ::=
path/path path composition
path[qualifier] qualified path
axis::nt step

qualifier ::=
qualifier and qualifier conjunction
qualifier or qualifier disjunction
not(qualifier) negation
path path
path/@nt attribute path
@nt attribute step

nt ::= node test
σ node label
∗ any node label

axis ::= tree navigation axis
self | child | parent
descendant | ancestor
descendant-or-self
ancestor-or-self
following-sibling
preceding-sibling
following | preceding

Figure 2.2: XPath Expressions.

Layäıda 2014b]. This concrete syntax is used as a single unifying notation throughout

all the chapter.

The semantics of logical formulas corresponds to the classical semantics of a µ-

calculus interpreted over finite tree structures. A formula is satisfiable iff there exists

a finite binary tree with attributes for which the formula holds at some node. This is

formally defined in [Genevès et al. 2007], and we review it informally below through a

series of examples.

There is a difference between an element name and an atomic proposition2: an

element has one and only one element name, whereas it can satisfy multiple atomic

propositions. We use atomic propositions to attach specific information to tree nodes,

not related to their XML labeling. For example, the start context (a reserved atomic

proposition) is used to mark the starting context nodes for evaluating XPath expres-

sions.

2In practice, an atomic proposition must start with a “ ”.

18 Chapter 2. Evolution of Types

nt [position() = 1] nt [not(preceding-sibling::nt)]

nt [position() = last()] nt [not(following-sibling::nt)]

nt [position() = k︸︷︷︸
k>1

] nt [(preceding-sibling::nt)k−1]

count(path) = 0 not(path)

count(path) > 0 path

count(nt) > k︸︷︷︸
k>0

 nt/(following-sibling::nt)k

preceding-sibling::∗[position() = last() and qualifier]

 preceding-sibling::∗[not(preceding-sibling::∗) and qualifier]

Figure 2.3: Syntactic Sugars and their Rewritings.

<r c=" " a=" " b=" ">
<s d=" ">
<v/><w/><x e=" "/>

</s>
<t/>
<u/>

</r>

XML Notation

a
b c

d

e

r

s t u

v w x

Figure 2.4: Sample XML Tree with Attributes.

The logic uses modalities for navigating in binary trees. A modality <p>ϕ can

be read as follows: “there exists a successor node by program p such that ϕ holds at

this successor”. As shown on Figure 2.6, a program p is simply one of the four basic

programs {1,2,-1,-2}. Program 1 allows navigating from a node down to its first

successor, and program 2 allows navigating from a node down to its second successor.

The logic also features converse programs -1 and -2 for navigating upward in binary

trees, respectively from the first successor to its parent and from the second successor to

its previous sibling. Table on Figure 2.7 gives some simple formulas using modalities

for navigating in binary trees, together with sample satisfying trees, in binary and

unranked tree representations.

The logic allows expressing recursion in trees through the recursive binder. For

example the recursive formula:

let $X = b | <2>$X in $X

means that either the current node is named b or there is a sibling of the current node

which is named b. For this purpose, the variable $X is bound to the subformula b

2.3. Logical Setting 19

a
b c

d

e

r

s

t

u

v

w

x

Figure 2.5: Binary Encoding of Tree of Figure 2.4.

| <2>$X which contains an occurence of $X (therefore defining the recursion). The

scope of this binding is the subformula that follows the “in” symbol of the formula,

that is $X. The entire formula can thus be seen as a compact recursive notation for a

infinitely nested formula of the form:

b | <2>(b | <2>(b | <2>(...)))

Recursion allows expressing global properties. For instance, the recursive formula:

˜ let $X = a | <1>$X | <2>$X in $X

expresses the absence of nodes named a in the whole subtree of the current node

(including the current node). Furthermore, the fixpoint operator makes possible to

bind several variables at a time, which is specifically useful for expressing mutual

recursion. For example, the mutually recursive formula:

let
$X = (a & <2>$Y) | <1>$X | <2>$X,
$Y = b | <2>$Y

in $X

asserts that there is a node somewhere in the subtree such that this node is named

a and it has at least one sibling which is named b. Binding several variables at a

time provides a very expressive yet succinct notation for expressing mutually recursive

structural patterns (that are common in XML Schemas, for instance).

From a theoretical perspective, the recursive binder let $X = ϕ in ϕ corresponds

to the fixpoint operators of the µ-calculus. It is shown in [Genevès et al. 2007] that

the least fixpoint and the greatest fixpoint operators of the µ-calculus coincide over

finite tree structures, for a restricted class of formulas called cycle-free formulas.

2.3.2 Queries

The logic is expressive enough to capture the set of XPath expressions presented in

Section 2.2.3. For example, Figure 2.8 illustrates how the sample XPath expression:

20 Chapter 2. Evolution of Types

ϕ ::= formula
T true
F false
l element name
p atomic proposition
start context
ϕ | ϕ disjunction
ϕ & ϕ conjunction
ϕ => ϕ implication
ϕ <=> ϕ equivalence
(ϕ) parenthesized formula
ϕ̃ negation
<p>ϕ existential modality
<l>T attribute named l
$X variable
let 〈$X = ϕ〉� in ϕ binder for recursion
predicate predicate (See Section 2.4)

p ::= program inside modalities
1 first child
2 next sibling
-1 parent
-2 previous sibling

Figure 2.6: Concrete Syntax of Formulas.

child::r[child::w/@att]

is expressed in the logic. From a given context in an XML document, this expression

selects all r child nodes which have at least one w child with an attribute att. Fig-

ure 2.8 shows how it is expressed in the logic, on the binary tree representation. The

formula holds for r nodes which are selected by the expression. The first part of the

formula, ϕ, corresponds to the step child::r which selects candidates r nodes. The

second part, ψ, navigates downward in the subtrees of these candidate nodes to verify

that they have at least one immediate w child with an attribute att.

This example illustrates the need for converse programs inside modalities. The

translated XPath expression only uses forward axes (child and attribute), nevertheless

both forward and backward modalities are required for its logical translation. Without

converse programs we would have been unable to differentiate selected nodes from

nodes whose existence is simply tested. More generally, properties must often be

stated on both the ancestors and the descendants of the selected node. Equipping the

logic with both forward and converse programs is therefore crucial. Logics without

converse programs may only be used for solving XPath emptiness but cannot be used

for solving other decision problems such as containment efficiently.

2.3. Logical Setting 21

Sample Formula Tree XML

a & <1>b

a

b <a>

a & <1>(b & <2>c)

a

b

c <a><c/>

e & <-1>(d & <2>g)

d

e g
<d><e/></d><g/>

f & <-2>(g & ˜<2>T) none none

Figure 2.7: Sample Formulas and Satisfying Trees.

att

#

r ϕ

s

r

v

w

ϕ∧ψ

Translated Query: child::r[child::w/@att]

Translation:
r & (let $X=<-1># | <-2>$X)︸ ︷︷ ︸

ϕ

& <1>let $Y=w & <att>T | <2>$Y︸ ︷︷ ︸
ψ

Figure 2.8: XPath Translation Example.

A systematic translation of XPath expressions into the logic is given in [Genevès

et al. 2007]. In this chapter, we extended it to deal with attributes. We implemented a

compiler that takes any expression of the fragment of Figure 2.2 and computes its logi-

cal translation. With the help of this compiler, we extend the syntax of logical formulas

with a logical predicate select("query", ϕ). This predicate compiles the XPath ex-

pression query given as parameter into the logic, starting from a context that satisfies ϕ.

The XPath expression to be given as parameter must match the syntax of the XPath

fragment shown on Figure 2.2 (or Figure 2.3). In a similar manner, we introduce

the predicate exists("query", ϕ) which tests the existence of query from a context

satisfying ϕ, in a qualifier-like manner (without moving to its result). Additionally,

the predicate select("query") is introduced as a shortcut for select("query",#),

where # simply marks the initial context node of the XPath expression3. The predicate

exists("query") is a shortcut for exists("query",T). These syntactic extensions

3This mark is especially useful for comparing two or more XPath expressions from the same context.

22 Chapter 2. Evolution of Types

of the logic allow the user to easily embed XPath expressions and formulate decision

problems out of them (like e.g. containment or any other boolean combination). In

the next sections we explain how the framework allows combining queries with schema

information for formulating problems.

2.3.3 Tree Types

Tree type expressions are compiled into the logic in two steps: the first stage trans-

lates them into binary tree type expressions, and the second step actually compiles this

intermediate representation into the logic. The translation procedure from tree type ex-

pressions to binary tree type expressions is well-known and detailed in [Genevès 2006].

The syntax of output expressions follows:

τ ::= binary tree type expression

∅ empty set

() empty tree

τ | τ disjunction

l(a)[x, x] element definition

let x = τ in τ binder

Attribute expressions are not concerned by this transformation to binary form: they

are simply attached, unchanged, to new (binary) element definitions. Finally, binary

tree type expressions are compiled into the logic. This translation step was introduced

and proven correct in [Genevès et al. 2007]. Originally, the translation takes a tree

type expression τ and returns the corresponding logical formula. Here, we extend it

slightly but crucially: the logical translation of an expression τ is given by the function

tr(τ)ψϕ defined below, that takes additional arguments ϕ and ψ:

tr(τ)ψϕ
def
= F for τ = ∅,()

tr(τ1 | τ2)ψϕ
def
= tr(τ1)ψϕ | tr(τ2)ψϕ

tr(l(a)[x1, x2])ψϕ
def
= (l & ϕ & tra(a) & s1(x1) & s2(x2)) | ψ

tr(let xi = τi in τ)ψϕ
def
= let $Xi = tr(τi)

ψ
ϕ in tr(τ)ψϕ

The addition of ϕ and ψ (respectively in a new conjunction and a new disjunction)

is a key element for the definition of predicates in Section 2.4. More precisely, this

allows marking type sub-expressions so that they can be distinguished in predicates,

as explained in Section 2.3.4. In addition, ϕ and ψ are either true, false, or simple

atomic propositions. Thus, it is worth noticing that their addition does not affect the

linear complexity of tree type translation. The function s ·(·) describes the type for

each successor:

sp(x) =


˜<p>T if x is bound to ()
˜<p>T | <p>$X if nullable(x)

<p>$X if not nullable(x)

2.3. Logical Setting 23

according to the predicate nullable(x) which indicates whether the type T 6= () bound

to x contains the empty tree.

The function tra(a) compiles attribute expressions associated with element defini-

tions as follows:

tra(())
def
= notothers(())

tra(list | a)
def
= tra(list) & notothers(list)

tra(list , list ′)
def
= tra(list) & tra(list ′)

tra(l?)
def
= l |˜l

tra(l)
def
= l

tra(¬l) def
=˜l

In usual schemas (e.g. DTDs, XML Schemas) when no attribute is specified for a

given element, it simply means no attribute is allowed for the defined element. This

convention must be explicitly stated in the logic. This is the role of the function

“notothers(list)” which returns the negated disjunction of all attributes not present

in list . As a result, taking attributes into account comes at an extra-cost. The above

translation appends a (potentially very large) formula in which all attributes occur,

for each element definition. In practice, a placeholder atomic proposition is inserted

until the full set of attributes involved in the problem formulation is known. When

the whole formula has been parsed, placeholders are replaced by the conjunction of

negated attributes they denote. This extra-cost can be observed in practice, and the

system allows two modes of operations: with or without attributes4. Nevertheless the

system is still capable of handling real world DTDs (such as the DTD of XHTML 1.0

Strict) with attributes. This is due to (1) the limited expressive power of languages

such as DTD that do not allow for disjunction over attribute expressions (like “list | a”

); and, more importantly, (2) the satisfiability-testing algorithm which is implemented

using symbolic techniques [Genevès et al. 2014].

Tree type expressions form the common internal representation for a variety of

XML schema definition languages. In practice, the logical translation of a tree type

expression τ are obtained directly from a variety of formalisms for defining schemas,

including DTD, XML Schema, and Relax NG. For this purpose, the syntax of logical

formulas is extended with a predicate type(" · ", ·). The logical translation of an

existing schema is returned by type("f ", l) where f is a file path to the schema file

and l is the element name to be considered as the entry point (root) of the given schema.

Any occurence of this predicate will parse the given schema, extract its internal tree

type representation τ , compile it into the logic and return the logical formula tr(τ)FT.

4The optional argument “-attributes” must be supplied for attributes to be considered.

24 Chapter 2. Evolution of Types

2.3.4 Type Tagging

A tag (or “color”) is introduced in the compilation of schemas with the purpose of

marking all node types of a specific schema. A tag is simply a fresh atomic propo-

sition passed as a parameter to the translation of a tree type expression. For ex-

ample: tr(τ)Fxhtml is the logical translation of τ where each element definition is an-

notated with the atomic proposition “xhtml”. With the help of tags, it becomes

possible to refer to the element types in any context. For instance, one may formulate

tr(τ)Fxhtml | tr(τ ′)Fsmil for denoting the union of all τ and τ ′ documents, while keeping

a way to distinguish element types; even if some element names are shared by the two

type expressions.

Tagging becomes even more useful for characterizing evolutions between successive

versions of a single schema. In this setting, we need a way to distinguish nodes allowed

by a newer schema version from nodes allowed by an older version. This distinction

must not be based only on element names, but also on content models. Assume for

instance that τ ′ is a newer version of schema τ . If we are interested in the set of trees

allowed by τ ′ but not allowed by τ then we may formulate:

tr(τ ′)FT &˜tr(τ)FT

If we now want to check more fine-grained properties, we may rather be interested in

the following (tagged) formulation:

tr(τ ′)Fall &˜tr(τ)˜ old complement
T

In this manner, we can distinguish elements that were added in τ ′ and whose names

did not occur in τ , from elements whose names already occured in τ but whose content

model changed in τ ′, for instance.

In practice, a type is tagged using the predicate type("f ", l, ϕ, ϕ′) which parses the

specified schema, converts it into its logical representation τ and returns the formula

tr(τ)ϕ
′
ϕ . This kind of type tagging is useful for studying the consequences of schema

updates over queries, as presented in the next sections.

2.4 Analysis Predicates

This section introduces the basic analysis tasks offered to XML application designers

for assessing the impact of schema evolutions. In particular, we propose a means for

identifying the precise reasons for type mismatches or changes in query results under

type constraints.

For this purpose, we build on our query and type expression compilers, and define

additional predicates that facilitate the formulation of decision problems at a higher

level of abstraction. Specifically, these predicates are introduced as logical macros with

the goal of allowing system usage while focusing (only) on the XML-side properties, and

keeping underlying logical issues transparent for the user. Ultimately, we regard the

set of basic logical formulas (such as modalities and recursive binders) as an assembly

2.4. Analysis Predicates 25

language, into which predicates are translated.

We illustrate this principle with two simple predicates designed for checking backward-

compatibility of schemas, and query satisfiability in the presence of a schema.

• The predicate backward incompatible(τ, τ ′) takes two type expressions as

parameters, and assumes τ ′ is an altered version of τ . This predicate is unsatisfi-

able iff all instances of τ ′ are also valid against τ . Any occurrence of this predicate

in the input formula will automatically be compiled as tr(τ ′)FT &˜tr(τ)FT.

• The predicate non empty("query", τ) takes an XPath expression (with the

syntax defined on Figure 2.2) and a type expression as parameters, and is

unsatisfiable iff the query always returns an empty set of nodes when eval-

uated on an XML document valid against τ . This predicate compiles into

select("query", tr(τ)FT & #) where the top-level predicate select("query", ϕ)

compiles the XPath expression query into the logic, starting from a context that

satisfies ϕ, as explained in Section 2.3.2. This can be used to check whether the

modification of the schema does not contradict any part of the query.

Notice that the predicate non empty("query", τ) can be used for checking whether

a query that is valid5 against a schema remains valid with an updated version of a

schema. In other terms, this predicate allows determining whether a query that must

always return a non-empty result (whatever the tree on which it is evaluated) keeps

verifying the same property with a new version of a schema.

A second, more-elaborate, class of predicates allows formulating problems that

combine both a query query and two type expressions τ, τ ′ (where τ ′ is assumed to be

a evolved version of τ):

• new element name("query", τ, τ ′) is satisfied iff the query query selects ele-

ments whose names did not occur at all in τ . This is especially useful for queries

whose last navigation step contains a “*” node test and may thus select unex-

pected elements. This predicate is compiled into:

ẽlement(τ) & select("query", tr(τ ′)FT)

where element(τ) is another predicate that builds the disjunction of all element

names occuring in τ . In a similar manner, the predicate attribute(ϕ) builds

the logical disjunction of all attribute names used in ϕ.

• new region("query", τ, τ ′) is satisfied iff the query query selects elements whose

names already occurred in τ , but such that these nodes now occur in a new

context in τ ′. In this setting, the path from the root of the document to a node

selected by the XPath expression query contains a node whose type is defined in

τ ′ but not in τ as illustrated below:

5We say that a query is valid iff its negation is unsatisfiable.

26 Chapter 2. Evolution of Types

node

selected by

query

path from

root to

selected node

contains

node in τ ′ \ τ

XML document valid against

τ ′ but not against τ

The predicate new region("query", τ, τ ′) is logically defined as follows:

new region("query", τ, τ ′)
def
=

select("query", tr(τ ′)Fall &˜tr(τ)˜ old complement
T)

&˜added element(τ, τ ′)

& ancestor(old complement)

&˜descendant(old complement)

&˜following(old complement)

&˜preceding(old complement)

The previous definition heavily relies on the partition of tree nodes defined by

XPath axes, as illustrated by Figure 2.9. The definition of new region("query", τ, τ ′)
uses an auxiliary predicate added element(τ, τ ′) that builds the disjunction of

all element names defined in τ ′ but not in τ (or in other terms, elements that

were added in τ ′). In a similar manner, the predicate added attribute(ϕ,ϕ′)

builds the disjunction of all attribute names defined in τ ′ but not in τ . The pred-

icate new region("query", τ, τ ′) is useful for checking whether a query selects

a different set of nodes with τ ′ than with τ because selected elements may occur

in new regions of the document due to changes brought by τ ′.

• new content("query", τ, τ ′) is satisfied iff the query query selects elements

whose names were already defined in τ , but whose content model has changed

due to evolutions brought by τ ′, as illustrated below:

node

selected by

query

subtree for

selected node

has changed

(new content

model)

XML document valid against

τ ′ but not against τ

2.4. Analysis Predicates 27

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

Figure 2.9: XPath axes: partition of tree nodes.

The definition of new content("query", τ, τ ′) follows:

new content("query", τ, τ ′)
def
=

select("query", tr(τ ′)Fall &˜tr(τ)˜ old complement
T)

&˜added element(τ, τ ′)

&˜ancestor(added element(τ, τ ′))

& descendant(old complement)

&˜following(old complement)

&˜preceding(old complement)

The predicate new content("query", τ, τ ′) can be used for ensuring that XPath

expressions will not return nodes with a possibly new content model that may

cause problems. For instance, this allows checking whether an XPath expression

whose resulting node set is converted to a string value (as in, e.g. XPath expres-

sions used in XSLT “value-of” instructions) is affected by the changes from τ to

τ ′.

• new sibling("query", τ, τ ′) is satisfied iff the query query selects elements

whose names already occurred in τ , but such that they now occur with new

potential siblings due to τ ′. The notion of context, here, is extended to be not

only the chain of ancestors from the selected node to the root but also the set of

previous and following siblings of the selected node.

The previously defined predicates can be used to help the programmer identify precisely

how type constraint evolutions affect queries. They can even be combined with usual

28 Chapter 2. Evolution of Types

logical connectives to formulate even more sophisticated problems. For example, let us

define the predicate exclude(ϕ) which is satisfiable iff there is no node that satisfies

ϕ in the whole tree. This predicate can be used for excluding specific element names

or even nodes selected by a given XPath expression. It is defined as follows:

exclude(ϕ)
def
=˜ancestor-or-self(descendant-or-self(ϕ))

This predicate can also be used for checking properties in an iterative manner, refining

the property to be tested at each step. It can also be used for verifying fine-grained

properties. For instance, one may check whether τ ′ defines the same set of trees as τ

modulo new element names that were added in τ ′ with the following formulation:

˜(τ <=> τ ′) & exclude(added element(τ, τ ′))

This allows identifying that, during the type evolution from τ to τ ′, the query results

change has not been caused by the type extension but by new compositions of nodes

from the older type.

In practice, instead of taking internal tree type representations (as defined in Sec-

tion 2.2.2) as parameters, most predicates do actually take any logical formula as

parameter, or even schema paths as parameters. We believe this facilitates predicates

usage and, most notably, how they can be composed together. Figure 2.10 gives the

syntax of built-in predicates as they are implemented in the system, where f is a file

path to a DTD (.dtd), XML Schema (.xsd), or Relax NG (.rng). In addition of afore-

mentioned predicates, the predicate descendant(ϕ) forces the existence of a node

satisfying ϕ in the subtree, and predicate-name(〈ϕ〉�) is a call to a custom predicate,

as explained in the next section.

Custom Predicates

Following the same spirit, users may also define their own custom predicates. The

full syntax of XML logical specifications to be used with the system is defined on Fig-

ure 2.11, where the meta-syntax 〈X〉� means one or more occurrence of X separated

by commas. A global problem specification can be any formula (as defined on Fig-

ure 2.6), or a list of custom predicate definitions separated by semicolons and followed

by a formula. A custom predicate may have parameters that are instanciated with

actual formulas when the custom predicate is called (as shown on Figure 2.10). A

formula bound to a custom predicate may include calls to other predicates, but not

to the currently defined predicate (recursive definitions must be made through the let

binder shown on Figure 2.6).

2.5 Impact of Standards’ Evolution on Valid Documents

As depicted on Fig. 2.1, the whole system relies on a satisfiability solver for the un-

derlying logic. The main principe of the satisfiability-solver is an exhaustive search

for a tree that satisfies the formula. The search relies on a least fixpoint computation

2.5. Impact of Standards’ Evolution on Valid Documents 29

predicate ::=
select("query")
select("query", ϕ)
exists("query")
exists("query", ϕ)

type("f ", l)
type("f ", l, ϕ, ϕ′)
forward incompatible(ϕ,ϕ′)
backward incompatible(ϕ,ϕ′)

element(ϕ)
attribute(ϕ)
descendant(ϕ)
exclude(ϕ)
added element(ϕ,ϕ′)
added attribute(ϕ,ϕ′)

non empty("query", ϕ)
new element name("query","f ","f ′", l)
new region("query","f ","f ′", l)
new sibling("query","f ","f ′", l)
new content("query","f ","f ′", l)
predicate-name(〈ϕ〉�)

Figure 2.10: Syntax of Predicates for XML Reasoning.

that starts from all possible leaves and attempt to plug every possible parent node at

each further step. The algorithm terminates once the initial formula has been found

to hold in a given node of the tree. Otherwise, the algorithm terminates when no more

parent nodes can be added. The algorithm, as well as proofs of its soundness and com-

pleteness, optimal complexity, and implementation techniques are detailed in [Genevès

et al. 2007].

We have carried out extensive experiments of the system in real world settings,

e.g. with popular web schemas such as XHTML, MathML, SVG, SMIL (Table on

Figure 2.12 gives details related to their respective sizes). In this section, we show

how the tool can be used to analyze different situations where schemas changes have

important consequences on the validity of existing documents.

One major role of organizations such as W3C is to contribute to the standardiza-

tion effort leading to a unique widely accepted set of constraints for a given class of

documents. Designing a normative specification is a complex process, which is made

even harder by a few important considerations. For example, when a language is de-

signed, one need to take into account how future versions of that language can evolve.

30 Chapter 2. Evolution of Types

spec ::=
ϕ formula (see Fig. 2.6)
def ;ϕ

def ::=
predicate-name(〈l〉�) = ϕ′ custom definition
def ; def list of definitions

Figure 2.11: Global Syntax for Specifying Problems.

Schema Variables Elements Attributes

XHTML 1.0 basic DTD 71 52 57

XHTML 1.1 basic DTD 89 67 83

MathML 1.01 DTD 137 127 72

MathML 2.0 DTD 194 181 97

Figure 2.12: Sizes of Some Considered Schemas.

For a particular version of a language, not only the schema constraints allowed by that

version need to be considered but also how they can be modified in future versions.

This allows to address how an implementation of this version should process document

variants added by future schema versions.

Specifically, we identify three different properties for a specification:

• Forward compatibility : All instances of an older specification should be valid

with respect to newer specifications. This ensures that a document can still be

processed properly with applications implementing newer specifications.

• Backward compatibility without added elements/attributes: New combinations of

old elements are not supposed to be introduced in later specifications. Otherwise,

an application implementing an older specification will not able to process a

document that conforms to some future specification, even if this document does

not contain any element or attribute introduced as extensions.

• Equivalence between schema versions: A given specification can be expressed in

a variety of schema definition languages like DTD, XML Schema, Relax NG.

We expect the different schema versions of the same specification to define the

same set of documents modulo the expressivity of the schema language [Murata

et al. 2005].

An XML schema definition (whether normative or not) often evolves over time,

as new needs often result in new features usually introduced as new elements and

2.5. Impact of Standards’ Evolution on Valid Documents 31

attributes. However we believe that this normal evolution should not break the three

previous properties.

We report below on using the framework for characterizing the evolution of the

main standard document formats used on the web, including W3C XHTML, SMIL,

SVG and MathML, based on the criteria identified above. This kind of analyses yield

important observations on the validity of, potentially, billions of documents.

XHTML Basic

The first test consists in analyzing the relationship (forward and backward compat-

ibility) between XHTML basic 1.0 and XHTML basic 1.1 schemas. In particular,

backward compatibility can be checked by the following command:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

Executing the test yields a counter example as the new schema contains new element

names. The counter example (shown below) contains a style element occurring as a

child of head, which is not permitted in XHTML basic 1.0:

<html>
<head>

<title/>
<style type="_otherV"/>

</head>
<body/>

</html>

The next step consists in focusing on the relationship between both schemas excluding

these new elements. This can be formulated by the following command:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

& exclude(added_element(
type("xhtml-basic10.dtd","html"),
type("xhtml-basic11.dtd", "html")))

The result of the test shows a counter example document that proves that XHTML

basic 1.1 is not backward compatible with XHTML basic 1.0 even if new elements are

not considered. In particular, the content model of the label element cannot have

an a element in XHTML basic 1.0 while it can in XHTML basic 1.1. The counter

example produced by the solver is shown below:

<html>
<head>

<object>

32 Chapter 2. Evolution of Types

<label>

</label>
<param/>

</object>
<meta/>
<title/>
<base/>

</head>
<body/>

</html>

XTML basic 1.0 validity error: element a is not
declared in label list of possible children

SMIL

The second test consists in analyzing the relationship (forward and backward compat-

ibility) between several versions of the SMIL standard6, namely versions 1.0, 2.0, and

3.0. In particular, forward compatibility between 1.0 and 2.0 can be checked by the

following command:

forward_incompatible("SMIL10.dtd", "SMIL20.dtd", "smil")

The result of the test shows a counter example document that proves that there exist

valid SMIL 1.0 documents that are not valid anymore with respect to SMIL 2.0. In

fact that is because the content model of the layout element is defined as any in

SMIL 1.0, whereas it is more restricted in SMIL 2.0. We observe that introducing any
is a choice that has important consequences. Indeed, a document that was playable

with 1.0 implementations may no longer be playable using 2.0 implementations. The

counter example produced by the solver is shown below:

<smil>
<head>

<layout>
<meta content="_otherV" name="_otherV"/>

</layout>
</head>

</smil>

SMIL 2.0 validity error:
Element layout content does not follow the DTD,

6The first author was a member of the W3C SMIL working group and a co-author of SMIL 2.0 and
2.1.

2.5. Impact of Standards’ Evolution on Valid Documents 33

expecting (region|topLayout|root-layout|regPoint)*,
got (meta)

The lesson here is that introducing very permissive content models (like any) has to be

considered very seriously. Indeed, that means that all future versions of the standard

should be at least as permissive. Otherwise, all content produced with earlier (more

permissive) versions becomes at risk. Therefore, the initial content model has to be

carefully designed in order to avoid such situations.

The following example is even worse. We check forward compatibility between

SMIL 2.0 and 3.0:

forward_incompatible("SMIL20.dtd",
"SMIL30Language.dtd", "smil")

We obtain the following counter-example:

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<body>

<switch>
<animateMotion/>

</switch>

</body>
</smil>

This document is valid with respect to SMIL 2.0. However it does not validate with

respect to SMIL 3.0. That is because the content model for the switch element

was set to a more restrictive pattern in version 3.0 compared to 2.0, as the following

validation error message suggests:

SMIL 3.0 validity error :
Element switch content does not follow the DTD,
expecting ((metadata | switch)* , ((((animate | set |
animateMotion | animateColor) , (metadata | switch)*)* ,
(((par | seq | excl | audio | video | animation | text |
... switch)*)+)) | (layout , (metadata | switch)*)*)),
got (animateMotion)

Now we would like to know if the bug is limited to the occurrence of the animateMotion
element or whether it is more general. To this end, we progressively exclude elements

named animateMotion, set, animateColor, and animate, as follows:

forward_incompatible("SMIL20.dtd",
"SMIL30Language.dtd", "smil")

& exclude(animateMotion) & exclude(set)
& exclude(animateColor) & exclude(animate)

34 Chapter 2. Evolution of Types

We still obtain the following counter-example (valid w.r.t SMIL 2.0 but not w.r.t SMIL

3.0), which shows that the forward incompatibility is not limited to the occurence of

the previous elements, but rather, to severe limitations of the switch content model

introduced in 3.0. In other words, switch is an element which undermines SMIL

forward compatibility.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<body>

<switch>
<seq/>
<area/>

</switch>
<switch/>

</body>
</smil>

SVG

The SVG test consists in analyzing the relationship (forward and backward compati-

bility) between SVG 1.0 et 1.1. In particular, we examine the different profiles (tiny,

basic and full) from 1.0 and compare them to 1.1 schemas. Backward compatibility

can be checked by the following command:

forward_incompatible("svg10.dtd",
"svg11-flat-20030114.dtd", "svg")

The test is unsatisfiable meaning that SVG 1.1 is formally proven to be forward com-

patible with SVG 1.0. This is good news as it means that all 1.0 documents will be

supported with 1.1 conforming implementations, without any exception. In the case

where a 1.0 document does not play with a 1.1 implementation, this indicates a bug

in the implementation and not in the SVG specification.

We observe here that the common practice of including a single doctype declaration

within a document is questionable, since a document is not only valid w.r.t a given

schema but also w.r.t to all future forward-compatible versions. Keeping track of

this mapping between a document and several schemas allows the document to be

supported by a larger set of implementations.

Similar tests on the SVG 1.1 tiny, basic and full also exhibit good results. This

corresponds to the definition of these three profiles as strict subsets of each other.

Furthermore, we believe that the use of a modularized version of a schema (as opposed

to a complete redefinition) has helped in avoiding compatibility problems.

We now focus on testing the backward compatibility between the SVG basic 1.1

profile and SVG 1.0 profile. The test fails even if new features are left aside:

backward_incompatible("svg10.dtd",
"svg11-basic.dtd", "svg")

2.5. Impact of Standards’ Evolution on Valid Documents 35

& exclude(added_element(type("svg10.dtd", "svg"),
type("svg11-basic.dtd","svg")))

& exclude(switch)

This test yields the following counter-example which confirms that there is actually a

flaw in the 1.1 specification:

<svg>
<image href="..." width="..." height="...">

<title/>
<title/>

</image>
</svg>

as it allows two title elements to occur inside an image element, which was not

allowed in the 1.0.

MathML

We apply a similar investigation approach to MathML 1.0 and its newer version 2.0. We

formulate a backward compatibility test without elements that were added in version

2.0. Furthermore, we want to exclude immediate trivial counter-examples involving

the use of the declare element as well as of the math element occuring within the

annotation-xml element. For this purpose, we use the following formulation:

backward_incompatible("mathml.dtd","mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd","math")))
& exclude(declare)
& (˜descendant(math))

that bans the declare element from occuring in the whole tree (achieved with the use

of the exclude(declare) predicate), and prevents the math element from ocurring

in the root’s subtree (owing to the use of the (˜descendant(math)) predicate) The

following counter-example is produced:

<math>
<apply>

<annotation-xml>
<mprescripts/>

</annotation-xml>
</apply>

</math>

Such backward incompatibilities suggest that applications cannot simply ignore new

elements from newer schemas, as the combination of older elements may evolve signif-

icantly from one version to another.

36 Chapter 2. Evolution of Types

2.6 Impact on Queries

In this section, we report on using the framework in order to evaluate the consequences

of schema changes on XPath queries such as the ones found in transformations like the

MathML content to presentation conversion [Pietriga 2005].

MathML Content to Presentation Conversion

MathML is an XML format for describing mathematical notations and capturing both

its mathematical structure and graphical rendering, also known as Content MathML

and Presentation MathML respectively. The structure of a given equation is kept sepa-

rate from the presentation and the rendering part can be generated from the structure

description. This operation is usually carried out using an XSLT transformation that

achieves the conversion. In this test series, we focus on the analysis of the queries con-

tained in such a transformation sheet and evaluate the impact of the schema change

from MathML 1.0 to MathML 2.0 on these queries.

Most of the queries contained in the transformation represent only a few patterns

very similar up to element names. The following three patterns are the most frequently

used:

Q1: //apply[*[1][self::eq]]
Q2: //apply[*[1][self::apply]/inverse]
Q3: //sin[preceding-sibling::*[position()=last()

and (self::compose or self::inverse)]]

The first test is formulated by the following command:

new_region("Q1","mathml.dtd","mathml2.dtd","math")

The result of the test shows a counter example document that proves that the query

may select nodes in new contexts in MathML 2.0 compared to MathML 1.0. In partic-

ular, the query Q1 selects apply elements whose ancestors can be declare elements,

as indicated on the document produced by the solver7:

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<declare>
<apply solver:target="true">

<eq/>
</apply>
<condition/>

</declare>
</math>

7Notice that the solver automatically annotates a pair of nodes related by the query: when the
query is evaluated from a node marked with the attribute solver:context, the node marked with
solver:target is selected.

2.6. Impact on Queries 37

To evaluate the effect of this change, the counter example is filled with content and

passed as an input parameter to the transformation. This shows immediately a bug

in the transformation as the resulting document is not a MathML 2.0 presentation

document. Based on this analysis, we know that the XSLT template associated with

the match pattern Q1 must be updated to cope with MathML evolution from version

1.0 to version 2.0.

The next test consists in evaluating the impact of the MathML type evolution for

the query Q2 while excluding all new elements added in MathML 2.0 from the test.

This identifies whether old elements of MathML 1.0 can be composed in MathML 2.0

in a different manner. This can be performed with the following command:

new_content("Q2","mathml.dtd","mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd", "math")))

The test result shows an example document that effectively combines MathML 1.0

elements in a way that was not allowed in MathML 1.0 but permitted in MathML 2.0.

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<apply solver:target="true">
<apply>

<inverse/>
</apply>
<annotation-xml>

<math/>
</annotation-xml>
<condition/>

</apply>
</math>

Similarly, the last test consists in evaluating the impact of the MathML type evolution

for the query Q3, excluding all new elements added in MathML 2.0 and counter example

documents containing declare elements (to avoid trivial counter examples):

new_region("Q3","mathml.dtd","mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd","math")))
& exclude(declare)

The counter example document shown below illustrates a case where the sin element

occurs in a new context.

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<apply>

38 Chapter 2. Evolution of Types

<annotation-xml>
<math>

<apply>
<inverse/>
<sin solver:target="true"/>

</apply>
</math>

</annotation-xml>
</apply>

</math>

Applying the transformation on previous examples yields documents which are

neither MathML 1.0 nor MathML 2.0 valid. As a result, the stylesheet cannot be used

safely over documents of the new type without modifications. In addition, the required

changes to the stylesheet are not limited to the addition of new templates for MathML

2.0 elements. The templates that deal with the composition of MathML 1.0 elements

should be revised as well.

2.7 System Implementation

We have implemented the whole software architecture described in Section 2.2 and

illustrated on Figure 2.1. The tool [Genevès & Layäıda 2014b] is available online from:

http://wam.inrialpes.fr/xml

All the previous tests were processed in less than 30 seconds on an ordinary laptop

computer running Mac OS X. The 30s correspond to the most complex use cases. Most

complex means analyzing recursive forward/backward and qualified queries such as Q3,

under evolution of large and heavily recursive schemas such as XHTML and MathML

(large number of type variables, elements and attributes: see Table on Figure 2.12).

These are the hardest cases measured in practice with the implementation. Most of

other schemas and queries usually found in applications are much simpler than the ones

presented in this chapter and will obviously be solved much faster. Given the variety

of schemas occurring in practice, we focused on the most complex W3C standard

schemas. The full online implementation [Genevès & Layäıda 2014b] allows to run all

the tests described in the chapter as well as user-supplied ones. It shows intermediate

compilation stages, generated formulae (in particular the translation of schemas into

the logic), and reports on the performance of each step of the analysis.

2.8 Related Work

Schema evolution is an important topic and has been extensively explored in the con-

text of relational, object-oriented, and XML databases. Most of the previous work

for XML query reformulation is approached through reductions to relational prob-

lems [Beyer et al. 2005]. This is because schema evolution was considered as a storage

2.8. Related Work 39

problem where the priority consists in ensuring data consistency across multiple rela-

tional schema versions. In such settings, two distinct schemas and an explicit descrip-

tion of the mapping between them are assumed as input. The problem then consists in

reformulating a query expressed in terms of one schema into a semantically equivalent

query in terms of the other schema: see [Yu & Popa 2005] and more recently [Moon

et al. 2008] with references thereof.

In addition to the fundamental differences between XML and the relational data

model, in the more general case of XML processing, schemas constantly evolve in a

distributed, independent, and unpredictable environment. The relations between dif-

ferent schemas are not only unknown but hard to track. In this context, one priority is

to help maintaining query consistency during these evolutions, which is still considered

as a challenging problem [Sedlar 2005, Rose 2004]. The absence of evolution analysis

tools for XML/XPath contrasts with the abundance of tools and methods routinely

used in relational databases.

The work found in [Moro et al. 2007] discusses the impact of evolving XML schemas

on query reformulation. Based on a taxonomy of XML schema changes during their

evolution, the authors provide informal – not exact nor systematic – guidelines for

writing queries which are less sensitive to schema evolution. In fact, studying query

reformulation requires at least the ability to analyze the relationship between queries.

For this reason, a closely related work is the problem of determining query containment

and satisfiability under type constraints [Benedikt et al. 2005, Colazzo et al. 2006,

Genevès et al. 2007]. These static analysis tasks are also notably useful for performing

query optimization [Groppe et al. 2006].

The works found in [Benedikt et al. 2005,Groppe & Groppe 2008] study the com-

plexity of XPath emptiness and containment for various fragments with or without

type constraints (see [Benedikt & Koch 2009] and references thereof for a survey).

In [Colazzo et al. 2004,Colazzo et al. 2006], a technique is presented for statically en-

suring correctness of paths. The approach deals with emptiness of XPath expressions

without reverse axes. The work presented in [Genevès et al. 2007] solves the more

general problem of containment, including reverse axes.

The main distinctive idea pursued in this chapter is to develop a logical approach

for guiding schema and query evolution. In contrast to the previous use of logics for

proving properties such as query emptiness or equivalence, the goal here is different

in that we seek to provide the necessary tools to produce relevant knowledge when

such relations do not hold. From a complexity point-of-view, it is worth noticing that

the addition of predicates does not increase complexity for the underlying logic shown

in [Genevès et al. 2007].

We would also like to emphasize that, to the best of our knowledge, this work is the

first to provide precise analyses of XML evolution, that was tested on real life use cases

(such as XHTML and MathML types) and complex queries (involving recursive and

backward navigation). As a consequence, in this context, analysis tools such as type-

checkers [Hosoya & Pierce 2003, Benzaken et al. 2003, Møller & Schwartzbach 2005,

Gapeyev et al. 2006,Castagna & Nguyen 2008] do no match the expressiveness, typing

precision, and analysis capabilities of the work presented here.

40 Chapter 2. Evolution of Types

2.9 Conclusion

In this chapter, we present an application of a unifying logical framework for verify-

ing forward/backward compatibility issues caused by schemas evolution. We provide

evidence that such a framework can be successfully used to overcome the obstacles of

the analysis of XML schema evolution. This kind of analyses is widely considered as

a challenging problem in XML programming. As mentioned earlier, the difficulty is

twofold: first it requires dealing with large and complex language constructions such as

XML types and XPath queries, and second, it requires modeling and reasoning about

evolution of such constructions.

We presented the logical foundations of the framework. We then applied the frame-

work for analyzing two major issues due to schema evolution: first, the consequence on

the validity of documents and, second, the impact on queries. The presented system

detected several compatibility problems in the main document formats used on the

web. The same tool also allows XML designers to identify queries that need reformu-

lation in order to produce the expected results across successive schema versions. With

this tool designers can examine precisely the impact of schema changes over queries,

therefore facilitating their reformulation.

We gave illustrations of how to use the tool for schema evolution on realistic exam-

ples. In particular, we considered typical situations in applications involving evolution

of W3C schemas used on the web such as XHTML and MathML. We believe that the

tool can be very useful for standard schema writers and maintainers in order to assist

them enforce some level of quality assurance on compatibility between versions.

Chapter 3

Functions and Polymorphism

Contents

3.1 Introduction . 41

3.2 Semantic Subtyping Framework 46

3.3 Tree Logic Framework . 50

3.4 Logical Encoding . 52

3.5 Polymorphism: Supporting Type Variables 55

3.6 Implementation and Practical Experiments 62

3.7 Related Work . 70

3.8 Conclusion . 71

Abstract

We consider a type algebra equipped with recursive, product, function, intersection,

union, and complement types together with type variables and implicit universal quan-

tification over them. We consider the subtyping relation recently defined by Castagna

and Xu over such type expressions and show how this relation can be decided in

EXPTIME, answering an open question. The novelty, originality and strength of our

solution reside in introducing a logical modeling for the semantic subtyping framework.

We model semantic subtyping in a tree logic and use a satisfiability-testing algorithm

in order to decide subtyping. We report on practical experiments made with a full

implementation of the system. This provides a powerful polymorphic type system

aiming at maintaining full static type-safety of functional programs that manipulate

trees, even with higher-order functions, which is particularly useful in the context of

XML.

3.1 Introduction

In programming, subtyping represents a notion of safe substitutability: τ being a

subtype of τ ′ means that wherever in the program something of type τ ′ is used, it

is safe to use something of type τ instead. This property has a natural set-theoretic

interpretation: the set of values which can safely replace something of type τ is included

in the set of values which can safely replace something of type τ ′.

42 Chapter 3. Functions and Polymorphism

The semantic subtyping approach consists of using this set-theoretic property to

define the subtyping relation, rather than for example an axiomatic definition. Types

are given an interpretation as sets and subtyping is defined as inclusion of interpreta-

tions.

The XML-centric functional language XDuce [Hosoya & Pierce 2003] uses this

semantic approach to define the subtyping relation between datatypes. Datatypes in

that language are intended to correspond to XML document types (as described for

example by DTDs), i. e. regular tree grammars, and are built using pair construction,

union, intersection, negation and recursion. The set-theoretic interpretation of a type is

the regular language of trees it describes, so subtyping is inclusion of regular languages.

XDuce however does not have higher-order functions, and the type system does not

include functional types.

The XDuce type system was extended to include arrow types in the language

CDuce [Benzaken et al. 2003]. In that language, boolean combinations of types can

still be used, and intersections of arrow types are interpreted as the type of over-

loaded functions (which give a result of a different type depending on the type of their

argument). Extending the set-theoretic interpretation of types accordingly, so that

subtyping still corresponds to inclusion of interpretations, turns out to be non-trivial

and the recipe for managing it is explained in [Frisch et al. 2008] — we summarise it,

with a slightly different focus than the original paper, in Section 3.2.

More recently, extending the XDuce type algebra with type variables so as to

support prenex parametric polymorphism, while keeping the semantic subtyping ap-

proach, has been studied in [Hosoya et al. 2009]. Again, doing the same in the presence

of arrow types was more difficult, and a solution has only been proposed in 2011 by

Castagna and Xu [Castagna & Xu 2011].

In both [Frisch et al. 2008] and [Castagna & Xu 2011], algorithms used to decide

the subtyping relations rely on arrow elimination. It is well known that in a sensible

subtyping relation, τ1 → τ2 6 τ ′1 → τ ′2 is equivalent to the conjunction of τ ′1 6 τ1

and τ2 6 τ ′2, so that a subtyping decision problem involving arrows can be reduced

to two problems not involving them. It gets more complicated than this example

when things like intersections of arrow types are allowed but can still be done. In

general, very schematically, the way the algorithms work is by splitting complex types

into components and distinguishing cases repeatedly in order to reduce ultimately the

problem to a series of elementary comparisons between base types. Because of that,

adding new constructs to the type algebra mechanically complicates the algorithm:

for example, the algorithm of [Castagna & Xu 2011] behaves like the one of [Frisch

et al. 2008] for monomorphic types, but contains new rules for variable elimination in

various cases depending of where they occur in the type. These additions were not

easy to define and obscure the algorithm enough that proving that it terminated in

all cases was difficult — it was in fact yet unproven when we first implemented the

decision procedure we present here — and that its complexity is still unknown.

An interesting thing to note in these founding works about semantic subtyping is

that, while the set-theoretic interpretation of types is used to give some insight and

some theoretical backing to the subtyping relation, it does not play as fundamental a

3.1. Introduction 43

role as we may think in the practical applications — one does not need the semantic

subtyping theoretical development to use or even to understand the relation τ1 →
τ2 6 τ ′1 → τ ′2 ⇔ τ ′1 6 τ1 ∧ τ2 6 τ ′2, after all, and the algorithm relies mostly on such

transformations. The authors actually present the proof that a model of types can

effectively be constructed as a way to justify that the subtyping relation makes sense

as it is, which is nice to have but would not really be absolutely necessary; something

almost cosmetic.

In the present chapter, we show in some sense how to push the semantic approach

further, all the way into the decision algorithm — we could say we present a semantic

approach to deciding semantic subtyping. We give the set-theoretic model of types a

practical use: types are translated into logical formulas describing precisely the set of

model elements corresponding to the type. A type being a subtype of another then

corresponds to the logical implication of the corresponding formulas being valid. We

show that domain elements can be represented by finite trees and that the formulas

corresponding to types can be written in a µ-calculus of finite trees for which we have an

efficient satisfiability checker. Deciding subtyping between two types can then be done

by feeding to this checker the negation of the implication formula relating the two types

— if this formula is unsatisfiable, the implication is valid and thus subtyping holds;

otherwise, we can exhibit explicitly a domain element which disproves the implication,

that is, which belongs to the first type but not the second.

A benefit of this fully logical approach is made clear in Section 3.5 where we show

that extending the type algebra of [Frisch et al. 2008] with type variables and altering

the subtyping relation accordingly, in the way described by [Castagna & Xu 2011],

can be done in a very simple way and at effectively zero cost in our system. This in

turn immediately proves that subtyping is still decidable in the extended framework

of [Castagna & Xu 2011] (this was chronologically, by a few days, the first satisfiability

proof for that relation), and furthermore gives a precise complexity bound for its

decision, since the translation into logic is linear and the complexity of the solver is

known — this complexity bound is one of our contributions, since no other proof of it

currently exists.

3.1.1 The Need for Polymorphism and Subtyping: a Concrete Ex-
ample

This work is motivated by a growing need for polymorphic type systems for program-

ming languages that manipulate XML data. For instance, XQuery [Boag et al. 2007]

is the standard query and functional language designed for querying collections of

XML data. The support of higher-order functions, currently missing from XQuery,

appears in the requirements for the forthcoming XQuery 3.0 language [Engovatov &

Robie 2010]. This results in an increasing demand in algorithms for proving or disprov-

ing statements with polymorphic types, and with types of higher-order functions (like

the traditional map and fold functions), or more generally, statements involving the

subtyping relation over a type algebra with recursive, product, function, intersection,

union, and complement types together with type variables and universal quantification

44 Chapter 3. Functions and Polymorphism

over them.

For example, let us consider a simple property relating polymorphic types of func-

tions that manipulate lists. We consider a type α, and denote by [α] the type of α-lists

(lists whose elements are of type α). The type τ of functions that process an α-list

and return a boolean is written as follows:

τ = ∀α. [α]→ Bool

where Bool = {true,false} is the type containing only the two values true and

false Now let us consider functions that distinguish α-lists of even length from α-lists

of odd length: such a function returns true for lists with an even number of elements

of type α, and returns false for lists with an odd number of elements of type α. One

may represent the set of these functions by a type τ ′ written as follows:

∀α. even[α]→ {true} ∧ odd[α]→ {false}

where {true} and {false} are singleton types (containing just one value). If we

make explicit the parametric types even[α] and odd[α], τ ′ becomes:

τ ′ = ∀α.
(

µv.(α× (α× v)) ∨ nil → {true}
∧ µv.(α× (α× v)) ∨ (α× nil) → {false}

)
where × denotes the cartesian product, µ binds the variable v for denoting a recursive

type, and nil is a singleton type. Obviously, a particular function of type τ ′ can also

be seen as a less-specific function of type τ . In other terms, from a practical point

of view, a function of type τ can be replaced by a more specific function of type τ ′

while preserving type-safety (however the converse is not true). This is exactly what

captures the notion of subtyping; in that case we write:

τ ′ 6 τ (3.1)

where 6 denotes the subtyping relation which is under scrutiny in this chapter.

3.1.2 Semantic Subtyping with Logical Solvers

During the last few years, a growing interest has been seen in the use of logical solvers

such as satisfiability-testing solvers and satisfiability-modulo solvers in the context of

functional programming and static type checking [Bierman et al. 2010, Benedikt &

Cheney 2010]. In particular, solvers for tree logics [Genevès et al. 2007, de Moura &

Bjørner 2008] are used as basic building blocks for type systems for XQuery.

The main idea in this chapter is a type-checking algorithm for polymorphic types

based on deciding subtyping through a logical solver. To decide whether τ is a subtype

of type τ ′, we first construct equivalent logical formulas ϕτ and ϕτ ′ and then check the

validity of the formula ψ = ϕτ ⇒ ϕτ ′ by testing the unsatisfiability of ¬ψ using the

satisfiability-testing solver. This technique corresponds to semantic subtyping [Frisch

et al. 2008] since the underlying logic is inherently tied to a set-theoretic interpretation.

3.1. Introduction 45

Semantic subtyping has been applied to a wide variety of types including refinement

types [Bierman et al. 2010] and types for XML such as regular tree types [Hosoya

et al. 2005], function types [Benzaken et al. 2003], and XPath [Clark & DeRose 1999]

expressions [Genevès et al. 2007].

This fruitful connection between logics, their decision procedures, and program-

ming languages permitted to equip the latter with rich type systems for sophisticated

programming constructs such as expressive pattern-matching and querying techniques.

The potential benefits of this interconnection crucially depend on the expressivity of

the underlying logics. Therefore, there is an increasing demand for more and more

expressiveness. For example, in the context of XML:

• SMT solvers like [de Moura & Bjørner 2008] offer an expressive power that corre-

sponds to a fragment of first-order logic in order to solve the intersection problem

between two queries [Benedikt & Cheney 2010];

• Full first-order logic solvers over finite trees [Genevès et al. 2007] solve contain-

ment and equivalence of XPath expressions;

• Monadic second-order logic solvers over trees, and – equivalent yet much more

effective – satisfiability-solvers for µ-calculus over trees [Genevès et al. 2007] are

used to solve query containment problems in the presence of type constraints.

3.1.3 Contributions of the Chapter

The novelty of our work is threefold. It is the first work that:

• Proves the decidability of semantic subtyping for polymorphic types with func-

tion, product, intersection, union, and complement types, as defined by Castagna

and Xu [Castagna & Xu 2011], and gives a precise complexity upper-bound: 2(n),

where n is the size of types being checked. Decidability was only conjectured by

Castagna and Xu before our result, although they have now proved it indepen-

dently; our result on complexity is still the only one. In addition, we provide an

effective implementation of the decision procedure.

• Produces counterexamples whenever subtyping does not hold with polymorphic

and arrow types. These counterexamples are valuable for programmers as they

represent evidence that the relation does not hold.

• Pushes the integration between programming languages and logical solvers to

a very high level. The logic in use is not only capable of ranging over higher

order functions, but it is also capable of expressing values from semantic do-

mains that correspond to monadic second-order logic such as XML tree types

[Genevès et al. 2007]. This shows that such solvers can become the core of XML-

centric functional languages type-checkers such as those used in CDuce [Benzaken

et al. 2003] or XDuce [Hosoya & Pierce 2003].

46 Chapter 3. Functions and Polymorphism

3.1.4 Structure of the Chapter

We introduce the semantic subtyping framework in Section 3.2 where we start with the

monomorphic type algebra (without type variables). We present the tree logic in which

we model semantic subtyping in Section 3.3. We detail the logical encoding of types in

Section 3.4. Then, in Section 3.5 we extend the type algebra with type variables, and

state the main result of the chapter: we show how to decide the subtyping relation for

the polymorphic case in exponential time. We report on practical experiments using

the implementation in Section 3.6. Finally, we discuss related work in Section 3.7

before concluding in Section 3.8.

3.2 Semantic Subtyping Framework

In this section, we present the type algebra we consider: we introduce its syntax and

define its semantics using a set-theoretic interpretation. This framework is the one

described at length in [Frisch et al. 2008]; we summarise its main features and give the

intuitions behind it, using a slightly different point of view than the original paper,

but we refer the reader to that paper for technical details.

We will then extend this framework with type variables in Section 3.5.

3.2.1 Types

Type terms are defined using the following grammar:

τ ::=

b basic type

| τ × τ product type

| τ → τ function type

| τ ∨ τ union type

| ¬τ complement type

| 0 empty type

| v recursion variable

| µv.τ recursive type

We consider µ as a binder and define the notions of free and bound variables and closed

terms as standard. A type is a closed type term which is well-formed in the sense that:

• The negation operator only occurs in front of closed types;

• Both operands of an arrow constructor must be closed types as well;

• Every occurrence of a recursion variable is separated from its binder by at least

one occurrence of the product or arrow constructor (guarded recursion).

So, for example, µv.0 ∨ v is not well-formed, nor is µv.0→ ¬v.

3.2. Semantic Subtyping Framework 47

Additionally, the following abbreviations are defined:

τ1 ∧ τ2
def
= ¬(¬τ1 ∨ ¬τ2)

and

1 = ¬0

3.2.2 Set-theoretic interpretation

3.2.2.1 Underlying ideas

Before defining formally how types shall be interpreted, let us summarise the ideas

which lead to that interpretation.

Consider a programming language whose values are constants from a set C , pairs

of values, and functions. We consider the different kinds of values disjoint, i. e. for

example no value can simultaneously be a pair and a function. Let W be the set of

all values in the language. The basic idea of the semantic subtyping framework is to

interpret the types of the above algebra as subsets of W, giving ∨ and ¬ the meaning

of set-theoretic union and complement, and to define subtyping as set inclusion of

interpretations.

Suppose we have an interpretation of base types b as sets of constants. As long

as we don’t use arrows, it is straightforward to define a set-theoretic semantics for ×.

The recursive type µv.τ can be interpreted as a least fixpoint.

The usual interpretation of a function type however is operational rather than set-

theoretic. Indeed, we can consider in the general case that when applying a function

to an argument, a computation is triggered which can, possibly nondeterministically,

either yield a value, yield an error or yield nothing (i. e. not terminate). The intended

meaning of the type τ1 → τ2 is that whenever applied to an argument of type τ1, the

function returns either a value of type τ2 or nothing. An important feature of this

framework is that it allows overloaded functions: a function f can return something

of type τ2 when given an argument of type τ1, and return something of the completely

different type τ3 when given an argument of type τ4. In that case, f has both type

τ1 → τ2 and type τ4 → τ3, and since the type algebra allows boolean combinations of

types, it also has type τ1 → τ2∧ τ4 → τ3, which is more precise than each simple arrow

type.

This operational definition of arrow types makes impractical to interpret them

as sets of actual function values defined in the considered language. Rather, [Frisch

et al. 2008] propose to use the associated abstract functions, i. e. sets of pairs of an

antecedent and a result. Note that because the computational functions are allowed

to be nondeterministic, the abstract ones are not necessarily functions in the mathe-

matical sense but more general relations. Formally, an abstract function is a subset of

W× (W∪{Ω}). Each pair (d, d′) in the set means that, when given d as an argument,

the function may yield d′ as a result. If d does not appear as the first element of

any pair, the operational interpretation is that the function can still accept d as an

argument but will not yield a result: this represents a computation which does not

48 Chapter 3. Functions and Polymorphism

terminate. A pair of the form (d,Ω) is used to represent a function rejecting d as an

argument: when given d, it yields an error.

The set of abstract functions of type τ1 → τ2 can then be defined simply as all sets

of pairs (d, d′) such that whenever d is of type τ1, d′ is of type τ2. This is called the

extensional interpretation of function types in [Frisch et al. 2008]. Formally:

EJτ1 → τ2K
def
= {S ⊂ W × (W ∪ {Ω}) | (d, d′) ∈ S ∧ (d : τ1)⇒ (d : τ2)}

where (d : τ) means the value d has type τ . Boolean combinators can be interpreted

as the corresponding set-theoretic operations on extensional interpretations1, and sub-

typing corresponds to inclusion between sets of abstract functions.

This extensional interpretation has the problem that not all abstract functions

can have concrete implementations in the language, for cardinality reasons: the set of

concrete functions is included in W since they are values themselves, but the set of

all possible abstract functions is P(W × (W ∪ {Ω})). However, inclusion between the

extensional interpretations of two types clearly implies inclusion between the sets of

values of those types, and for the converse implication to hold, it suffices that every

type whose extensional interpretation is non-empty has a witness in the language.

Indeed, because we have boolean combinators in the type algebra, the question of

inclusion reduces to a question of emptiness.

It is not immediately obvious that a language with that property (i. e. that when-

ever there exists an abstract function of some type, there is also a function of that

type in the language) exists. However the following property makes it easy to define

one: whenever there exists an abstract function of some type, there also exists a finite

abstract function (i. e. the set of pairs is finite) of the same type. To get an intuition

of why this is true, remark that for an abstract function to have type τ1 → τ2, it

suffices that it contains no pair (a, b) with (a : τ1) and (b : ¬τ2). For it to have type

¬(τ1 → τ2), it suffices that it contains one such pair. Since the type algebra only

allows finite boolean combinations of types, it is quite clearly impossible to build a

type constraint that would be satisfied only by infinite sets of pairs.

Therefore, if we consider an abstract language where function values are simply

finite lists of pairs of values, with the semantics described above, the semantic sub-

typing relation it induces on types is the same as any sufficiently expressive concrete

language with the same set of base constants. We now define formally our semantic

domain.

3.2.2.2 Formal definitions

Consider an arbitrary set C of constants. From it, we define the semantic domain D
as the set of ds generated by the following grammar, where c ranges over constants in

1The attentive reader may remark that the complement of an arrow type includes not just all functions
which do not have that type but also all non-functional values. In the full formal development
in [Frisch et al. 2008], the extensional interpretation of a type is actually a subset of the disjoint union
of non-functional values and abstract functions, so that this kind of things is taken into account.

3.2. Semantic Subtyping Framework 49

C :
d ::= domain element

c base constant

| (d, d) pair

| {(d, d′), . . . , (d, d′)} function

d′ ::= extended domain element

d

| Ω error

We suppose we have an interpretation BJ·K of basic types b as subsets of C .

To properly define the typing relation between extended domain elements and

types, we first define a structural ordering relation E on (D∪{Ω})×T where T is the

set of types:

• On extended domain elements, we use the ordering d′1 E d
′
2 if d′1 is a subterm of

d′2;

• Let the shallow depth of a type term be the longest path, in its syntactic tree,

starting from the root and consisting only of µ, ∨, and ¬ nodes. We order types

by τ1 E τ2 if the shallow depth of τ1 is less than the shallow depth of τ2;

• Pairs are ordered lexicographically, i. e. (d′1, τ1) E (d′2, τ2) if either d′1 / d′2 or

d′1 = d′2 and τ1 E τ2.

Recall the well-formedness constraint on types : in the syntactic tree, a recursion

variable is always separated from its binder by a × or → constructor. This implies

that the unfolding of a recursive type always has a strictly smaller shallow depth than

the original type: µv.τ . τ{µv.τ/v}; indeed, the substitution may increase the depth of

the syntactic tree, but only below a × of → node, so it does not affect its shallow

depth.

The predicate (d′ : τ) where d′ is either an element of D or Ω and τ is a type can

now be defined recursively in the following way:

(Ω : τ) = false

(c : b) = c ∈ BJbK

((d1, d2) : τ1 × τ2) = (d1 : τ1) ∧ (d2 : τ2)

({(d1, d
′
1), . . . , (dn, d

′
n)} : τ1 → τ2) = ∀i, (di : τ1)⇒ (d′i : τ2)

(d : τ1 ∨ τ2) = (d : τ1) ∨ (d : τ2)

(d : ¬τ) = ¬(d : τ)

(d : µv.τ) = (d : τ{µv.τ/v})
(d : τ) = false in any other case

It is easy to check that all occurrences of the predicate on the right-hand side of

the definition are for pairs strictly smaller, with respect to E, than the one on the left.

Because all terms and types are finite, this makes the definition well-founded.

50 Chapter 3. Functions and Polymorphism

The interpretation of types as parts of D is then defined as JτK = {d | (d : τ)}.
Note that Ω is not part of any type, as expected.

In this framework, we consider XML types as regular tree languages. An XML tree

type is interpreted as the set of documents that match the type.

Finally, the subtyping relation is defined as τ1 6 τ2 ⇔ Jτ1K ⊂ Jτ2K, or, equivalently,

Jτ1 ∧ ¬τ2K = ∅.

3.3 Tree Logic Framework

In this section we introduce the logic in which we model the semantic subtyping frame-

work. This logic is a subset of the one proposed in [Genevès et al. 2007]: a variant

of µ-calculus whose models are finite trees. We first introduce below the syntax and

semantics of the logic, before tuning it for representing types.

3.3.1 Formulas

Formulas are defined thus:

ϕ,ψ ::= formula

> true

| σ | ¬σ atomic proposition (negated)

| X variable

| ϕ ∨ ψ disjunction

| ϕ ∧ ψ conjunction

| 〈a〉ϕ | ¬ 〈a〉> existential (negated)

| µ(Xi = ϕi)i∈I in ψ (least) n-ary fixpoint

where a ∈ {1, 2} are programs, and I is a finite set. Atomic propositions σ corre-

spond to labels from a countable set Σ. Additionnally, we use the abbreviation µX.ϕ

for µ(X = ϕ) in ϕ.

Intuitively, the logic allows one to formulate regular properties on unranked trees:

the programs “1” and “2” are respectively used to access the first child node and the

next sibling node in an unranked tree. For instance, the formula a ∧ 〈1〉 (b ∧ 〈2〉 c) is

satisfied at the root of the tree denoted by the term a(b, c). The recursive formula

〈1〉 (µX.a ∨ 〈1〉X ∨ 〈2〉X) states the existence of some node labelled with “a” at an

arbitrary depth in the subtree. We formalize those intuitions in the next sections.

3.3. Tree Logic Framework 51

3.3.2 Semantic domain

The semantic domain is the set F of focused trees defined by the following syntax,

where we have an alphabet Σ of labels, ranged over by σ:

t ::= σ[tl] tree

tl ::= list of trees

ε empty list

| t :: tl cons cell

c ::= context

(tl ,Top, tl) root of the tree

| (tl , c[σ], tl) context node

f ::= (t, c) focused tree

A focused tree (t, c) is a pair consisting of a tree t and its context c. The context

(tl , c[σ], tl) comprises three components: a list of trees at the left of the current tree

in reverse order (the first element of the list is the tree immediately to the left of the

current tree), the context above the tree, and a list of trees at the right of the current

tree. The context above the tree may be Top if the current tree is at the root, otherwise

it is of the form c[σ] where σ is the label of the enclosing element and c is the context

in which the enclosing element occurs.

The name of a focused tree is defined as nm(σ[tl], c) = σ.

We now describe how to navigate focused trees, in binary style. There are four

directions, or modalities, that can be followed: for a focused tree f , f 〈1〉 changes the

focus to the first child of the current tree, f 〈2〉 changes the focus to the next sibling

of the current tree, f
〈
1
〉

changes the focus to the parent of the tree if the current tree

is a leftmost sibling, and f
〈
2
〉

changes the focus to the previous sibling.

Formally, we have:

(σ[t :: tl], c) 〈1〉 def
= (t, (ε, c[σ], tl))

(t, (tl l, c[σ], t′ :: tlr)) 〈2〉
def
= (t′, (t :: tl l, c[σ], tlr))

(t, (ε, c[σ], tl))
〈
1
〉 def

= (σ[t :: tl], c)

(t′, (t :: tl l, c[σ], tlr))
〈
2
〉 def

= (t, (tl l, c[σ], t′ :: tlr))

When the focused tree does not have the required shape, these operations are not

defined.

52 Chapter 3. Functions and Polymorphism

3.3.3 Interpretation

Formulas are interpreted as subsets of F in the following way, where V is a mapping

from variables to formulas:

J>KV
def
= F JσKV

def
= {f | nm(f) = σ}

JXKV
def
= V (X) J¬σKV

def
= {f | nm(f) 6= σ}

Jϕ ∨ ψKV
def
= JϕKV ∪ JψKV Jϕ ∧ ψKV

def
= JϕKV ∩ JψKV

J〈a〉ϕKV
def
= {f 〈a〉 | f ∈ JϕKV ∧ f 〈a〉 defined}

J¬ 〈a〉>KV
def
= {f | f 〈a〉 undefined}

Jµ(Xi = ϕi)i∈I in ψKV
def
=

let S = {(Ti) ∈ P(F)I | ∀j ∈ I, JϕjKV [Ti/Xi]
⊂ Tj} in

let (Uj) =
(⋂

(Ti)∈S Tj
)
j∈I in JψK

V [Ui/Xi]

where V [Ti/Xi](X) = V (X) if X 6∈ {Xi} and Ti if X = Xi.

The lemma 4.2 of [Genevès et al. 2007] says that the interpretation of a fixpoint

formula is equal to the union of the interpretations of all its finite unfoldings (where

unfolding is defined as usual). A consequence (detailed in [Genevès et al. 2007]) is that

the logic is closed under negation, i. e. for any closed ϕ, ¬ϕ can be expressed in the

syntax using De Morgan’s relations and this definition:

¬ 〈a〉ϕ def
= ¬ 〈a〉> ∨ 〈a〉 ¬ϕ

¬µ(Xi = ϕi) in ψ
def
= µ(Xi = ¬ϕi{Xi/¬Xi}) in ¬ψ{Xi/¬Xi}

In the following, we consider only closed formulas and write JϕK for JϕK∅.

3.4 Logical Encoding

In the context of the present chapter, we want finite tree models of the logic to corre-

spond to types introduced in section 3.2. Thus, we first extend the alphabet of node

labels to be able to reason with type constructors. Then, we present the translation

of a type into a logical formula.

3.4.1 Representation of domain elements

Let T be the set of (unfocused) trees. Set C = {B[tl] | tl ∈ T ∗}, where B is a label

not in Σ : the set of trees with a distinguished root B. Let Text be the set of trees

obtained by extending Σ with the four extra labels (→), (×),B and Ω. Then DΩ can

3.4. Logical Encoding 53

straightforwardly be embedded into Text in the following way:

tree(c) = c

tree(Ω) = Ω[ε]

tree(d, d′) = (×)[tree(d) :: tree(d′) :: ε]

tree({(d1, d
′
1), . . . , (dn, d

′
n)}) = (→)[tree(d1, d

′
1) :: . . . :: tree(dn, d

′
n) :: ε]

The intuition of this tree representation is illustrated in Figure 3.1.

(d, d′) =

(×)

d d′

{(d1, d
′
1), (d2, d

′
2), . . .} = (×)

d2 d′2

(×)

d1 d′1

. . .

(→)

Figure 3.1: Pairs and functions are represented as trees with special labels.

In the following we consider this embedding implicitly done, so DΩ ⊂ Text.

3.4.2 Translation of types

First of all, we can define basic types b, which are to represent sets of trees with no

special nodes but the distinguished root B, as the (closed) base formulas of the logic.

The full interpretation of formulas uses sets of focused trees, but note that a toplevel

formula cannot contain any constraint on what is above or to the left of the node at

focus, so it can be considered as describing just a list of trees. The interpretation of

a base type will then be a B root whose list of children is described by the formula.

Formally:

BJϕK def
= {B[t :: tl2] | (t, (tl1, c[σ], tl2)) ∈ JϕK}

Note how the only part of the context taken into account in defining the semantics is

the list of following siblings of the current node.

Then, we translate the types into extended formulas obtained (as for extended

trees) by adding to Σ the labels (×), (→),Ω and B. Straightforwardly these formulas

denote lists of trees in Text.

54 Chapter 3. Functions and Polymorphism

First, we define the following formulas:

isbase = µX.((¬ 〈1〉> ∨ 〈1〉X) ∧ (¬ 〈2〉> ∨ 〈2〉X)

∧ ¬B ∧ ¬(→) ∧ ¬(×) ∧ ¬Ω)

error = Ω ∧ ¬ 〈1〉>
isd = µX.(

(B ∧ 〈1〉 isbase)∨
((×) ∧ 〈1〉 (X ∧ 〈2〉 (X ∧ ¬ 〈2〉>)))∨
((→) ∧ (¬ 〈1〉>∨
〈1〉µY.((¬ 〈2〉> ∨ 〈2〉Y)∧

(×) ∧ 〈1〉 (X ∧ 〈2〉 ((X ∨ error) ∧ ¬ 〈2〉>))

))))

isbase selects all tree lists which do not contain any of the special labels (the fixpoint

is for selecting all the nodes). error is straightforward. isd selects all elements of D
(actually, all tree lists whose first element is in D): either they are a constant (a B
node with a base list as children), or a pair (a (×) node with exactly two children each

of which is itself in D), or a function: a (→) node with either no children at all or a

list of children (described by Y) all of which are pairs whose second element may be

error.

We now associate to every type τ the formula fullform(τ) = isd ∧ form(τ), with

form(τ) defined as follows, where Xv is a different variable for every v and is also

different from X:

form(b) = B ∧ 〈1〉 b
form(τ1 × τ2) = (×) ∧ 〈1〉 (form(τ1) ∧ 〈2〉 form(τ2))

form(τ1 → τ2) = (→) ∧ (¬ 〈1〉>∨
〈1〉µX.((¬ 〈2〉> ∨ 〈2〉X)

∧ 〈1〉 (¬form(τ1) ∨ 〈2〉 form(τ2)))

)

form(τ1 ∨ τ2) = form(τ1) ∨ form(τ2)

form(¬τ) = ¬form(τ)

form(0) = ¬>
form(v) = Xv

form(µv.τ) = µXv.form(τ)

Recall that basic types b are themselves formulas, but that their interpretation as

a type is different from their interpretation as a formula (see the first paragraph of

Section 3.4.2 and the definition of BJϕK, the interpretation as a type, in terms of JϕK,

3.5. Polymorphism: Supporting Type Variables 55

the interpretation as a formula). This explains why the translation of b contains b

itself. The translation of product types is simple: it describes a (×) node whose first

child is described by form(τ1) and has a following sibling described by form(τ2). The

translation of arrow types has a structure similar to what appeared in isd: it describes

a (→) node with either no children or a list of children recursively described by X

(each node has either no following sibling or a following sibling itself described by X).

Each of these nodes must have a first child which either is not of type τ1 or has a

next sibling of type τ2 — this means that these nodes represent pairs (di, d
′
i) such that

(di : τ1) ⇒ (d′i : τ2). The attentive reader may notice that the formula form(τ1 → τ2)

does not enforce in itself that all children of the (→) node are actually pairs; the reason

for that is that isd already enforces it.

We can see that the formulas in the translation do not contain any 〈2〉 at toplevel

(i. e. not under 〈1〉), nor does isd. This means they describe a single tree (they say

nothing on its siblings), or in other words that in their interpretation as focused trees,

the context is completely arbitrary, as it is not constrained in any way. Formally, we

thus define the restricted interpretation of extended formulas as follows:

FJϕK def
= {t | (t, c) ∈ JϕK}

That is, we drop the context completely.

Then we have FJfullform(τ)K = JτK. This is a particular case of the property for

polymorphic types which will be proved in the following section.

The main consequence of this property is that a type τ is empty if and only if

the interpretation of the corresponding formula is empty — which is equivalent to the

formula being unsatisfiable. Because there exists a satisfiability-checking algorithm

for this tree logic [Genevès et al. 2007], this means that this translation gives an

alternative way to decide the classical semantic subtyping relation as defined in [Frisch

et al. 2008]. More interestingly, it yields a decision procedure for the subtyping relation

in the polymorphic case as well, as we will explain in the next section.

3.5 Polymorphism: Supporting Type Variables

So far we have described a new, logic-based approach to a question — semantic sub-

typing in the presence of intersection, negation and arrow types — which had already

been studied. We now show how this new approach allows us, in a very natural way,

to encompass the latest work by adding polymorphism to the types along the lines

of [Castagna & Xu 2011].

We add to the syntax of types variables, α, β, γ taken from a countable set V. If τ is

a polymorphic type, we write var(τ) the set of variables it contains and call ground type

a type with no variable. We sometimes write τ(α) to indicate that var(τ) is included

in α.

Note that we only consider prenex (ML-style) parametric polymorphism, not higher-

rank polymorphism, so there are no quantifiers in the syntax of types.

56 Chapter 3. Functions and Polymorphism

3.5.1 Subtyping in the polymorphic case: a problem of definition

Before defining formal interpretations for polymorphic types, we briefly review how ex-

tending the semantic subtyping framework to the polymorphic case has been addressed

in previous work.

The intuition of subtyping in the presence of type variables is that τ1(α) 6 τ2(α)

should hold true whenever, independently of the variables α, any value of type τ1 has

type τ2 as well. However the correct definition of ‘independently’ is not obvious. It

should look like this:

∀α, Jτ1(α)K ⊂ Jτ2(α)K

but because variables are abstractions, it is not completely clear over what to quantify

them. As mentioned in [Hosoya et al. 2009], a candidate — naive — definition would

use ground substitutions, that is, if the inclusion of interpretations always holds when

variables are replaced with ground types, then the subtyping relation holds:

τ1(α) 6 τ2(α)⇔ ∀τ ground types, Jτ1(τ/α)K ⊂ Jτ2(τ/α)K (3.2)

Obviously the condition on the right must be necessary for subtyping to hold. But

deciding that it is sufficient as well makes the relation unsatisfactory and somehow

counterintuitive, as remarked in [Hosoya et al. 2009]. Indeed, suppose int is an indivis-

ible type, that is, that it has no subtype beside 0 and itself. Then the following would

hold:

int× α 6 (int× ¬int) ∨ (α× int) (3.3)

This relation abuses the definition by taking advantage of the fact that for any ground

type τ , either JintK ⊂ JτK or JτK ⊂ J¬intK. In the first case, because JτK ⊂ (J¬intK∪JintK),
we have Jint× τK ⊂ Jint×¬intK∪ Jint× intK and then the second member of the union

is included in Jτ × intK. In the second case, we directly have Jint× τK ⊂ Jint× ¬intK.
This trick, which only works with indivisible ground types, not only shows that

candidate definition (3.2) yields bizarre relations where a variable occurs in unrelated

positions on both sides. It also means the candidate definition is very sensitive to the

precise semantics of base types, since it distinguishes indivisible types from others.

More precisely, it means that refining the collection of base types, for example by

adding types even and odd, can break subtyping relations which held true without

these new types — this is simply due to the fact that it increases the set over which τ

is quantified in (3.2), making the relation stricter. This could hardly be considered a

nice feature of the subtyping relation.

The conclusion is thus that the types in (3.3) should be considered related by chance

rather than by necessity, hence not in the subtyping relation, and that quantifying over

all possible ground types is not enough; in other words, candidate definition (3.2) is too

weak and does not properly reflect the intuition of ‘independently of the variables’.

Indeed, (3.3) is in fact dependent on the variable as we saw, the point being that

there are only two cases and that the convoluted right-hand type is crafted so that the

relation holds in both of them, though for different reasons.

3.5. Polymorphism: Supporting Type Variables 57

In order to restrict the definition of subtyping, [Hosoya et al. 2009], which concen-

trates on XML types, uses a notion of marking : some parts of a value can be marked

(using paths) as corresponding to a variable, and the relation ‘a value has a type’ is

changed into ‘a marked value matches a type’, so the semantics of a type is not a set

of values but of pairs of a value and a marking. This is designed so that it integrates

well in the XDuce language, which has pattern-matching but no higher-order functions

(hence no arrow types), so their system is tied to the operational semantics of matching

and provides only a partial solution.

The question of finding the correct definition of semantic subtyping in the polymor-

phic case was finally settled very recently by Castagna and Xu [Castagna & Xu 2011].

Their definition does, in the same way as (3.2), follow the idea of a universal quantifi-

cation over possible meanings of variables but solves the problem raised by (3.3) by

using a much larger set of possible meanings — thus yielding a stricter relation. More

precisely, variables are allowed to represent not just ground types but any arbitrary

part of the semantic domain; furthermore, the semantic domain itself must be large

enough, which is embodied by the notion of convexity. We refer the reader to [Castagna

& Xu 2011] for a detailed discussion of this property and its relation to the notion of

parametricity studied by Reynolds in [Reynolds 1983]; we will here limit ourselves to

introducing the definitions strictly necessary for the discussion at hand.

In this work, we do not use this definition with its universal quantification directly.

Rather, we retain from [Hosoya et al. 2009] the idea of tagging (pieces of) values which

correspond to variables, but do so in a more abstract way, by extending the semantic

domain, and define a fixed interpretation of polymorphic types in this extended domain

as a straightforward extension of the monomorphic framework. We then show how to

build a set-theoretic model of polymorphic types, in the sense of [Castagna & Xu 2011],

based on this domain, and prove that the inclusion relation on fixed interpretations

is equivalent to the full subtyping relation induced by this model. Finally, we explain

briefly the notion of convexity and show that this model is convex, implying that this

relation is, in fact, the semantic subtyping relation on polymorphic types, as defined

in [Castagna & Xu 2011]. These steps are formally detailed in the following section.

3.5.2 Interpretation of polymorphic types

Let Λ be an infinite set of optional labels, and ι an injective function from the set

of variables V to Λ. (It would be possible to set Λ = V, but for clarity we prefer

to distinguish labels which tag elements of the semantic domain from variables which

occur in types.) We extend the grammar of (extended) trees by allowing any node to

bear, in addition to its single σ label from Σ ∪ {(→), (×),B,Ω}, any (finite) number

of labels from Λ. We write it σL[tl] where L is a finite part of Λ. We extend C and D
accordingly. When using the non-tree form of types, for instance (d1, d2), we indicate

the set of root labels on the bottom right like this: (d1, d2)L (here L is the set of labels

borne by the (×) node constituting the root of the pair tree).

We then extend the predicate defining the interpretation of types given in Section

58 Chapter 3. Functions and Polymorphism

3.2.2.2 with the following additional case:

(σL[tl] : α) = ι(α) ∈ L

In other words, the interpretation of a type variable is the set of all trees whose root

bears the label corresponding to that variable. The other cases are unchanged, except

that the semantic domain is now much larger. This means that the same definition

leads to larger interpretations; in particular, the interpretation of a (nonempty) ground

type is always an infinite set which contains all possible labellings for each of its trees.

Subtyping over polymorphic types is then defined, as before, as set inclusion be-

tween interpretations:

τ1(α) 6 τ2(α)⇔ Jτ1(α)K ⊂ Jτ2(α)K (3.4)

It may seem strange to give type variables a fixed interpretation, and on the other

hand it may seem surprising that this definition of subtyping does not actually contain

any quantification and is nevertheless stronger than (3.2) which contains one. The

key point is that a form of universal quantification is implicit in the extension of the

semantic domain: in some sense, the interpretation of a variable represents all possible

values of the variable at once. Indeed, for any variable α and any tree d in the domain,

there always exist both an infinity of copies of d which are in the interpretation of α and

another infinity of copies which are not. From the point of view of logical satisfiability,

this makes the domain big enough to contain all possible cases.

In order to show that, despite the appearances, Definition (3.4) accurately repre-

sents a relation that holds independently of the variables, we rely, as discussed above,

on the formal framework developed by Castagna and Xu [Castagna & Xu 2011]. For

this, we first introduce assignments η: functions from V to P(D) (where D is the ex-

tended semantic domain with labels). Thus an assignment attributes to each variable

an arbitrary set of elements from the semantic domain.

We then define the interpretation of a type relative to an assignment in the following

way: the predicate (d′ :η τ) is defined inductively in the same way as the (d′ : τ) of

Section 3.2.2.2 but with the additional clause:

(d :η α) = d ∈ η(α).

The interpretation of the polymorphic type τ relative to the assignment η is then

JτKη = {d | (d :η τ)}. This defines an infinity of possible interpretations for a type,

depending on the actual values assigned to the variables, and constitutes a set-theoretic

model of types in the sense of [Castagna & Xu 2011]. The subtyping relation induced

by this model is the following:

τ1(α) 6 τ2(α)⇔ ∀η ∈ P(D)V , Jτ1(α)Kη ⊂ Jτ2(α)Kη (3.5)

which we can more easily compare to the candidate definition (3.2): it does in the

same way quantify over possible meanings of the variables but uses a much larger set

3.5. Polymorphism: Supporting Type Variables 59

of possible meanings, yielding a stricter relation. We will now prove that this relation

is, for our particular model, actually equivalent to (3.4).

For this, let us first define the canonical assignment ηι as follows:

ηι(α)
def
= {σL[tl] ∈ D | ι(α) ∈ L}.

Then it is easily seen that the fixed interpretation JτK of a polymorphic type is the

same as its interpretation relative to the canonical assignment, JτKηι. What we would

like to prove is that the canonical assignment is somehow representative of all possi-

ble assignments, making the fixed interpretation sufficient for the purpose of defining

subtyping. This is done by the following lemma and corollary.

Lemma 1. Let V be a finite part of V. Let η be an assignment. Let T be the set of

all types τ such that var(τ) ⊂ V . Then there exists a function F ηV : D → D such that:

∀τ ∈ T, ∀d ∈ D, d ∈ JτKη ⇔ F ηV (d) ∈ JτKηι.

Proof. For d in D, let L(d) = {ι(α) | α ∈ V ∧d ∈ η(α)}. Since V is finite, L(d) is finite

as well. We define F ηV (d) inductively as follows:

• If d = BL[tl] then F ηV (d) = BL(d)[tl]

• If d = (d1, d2)L then F ηV (d) = (F ηV (d1), F ηV (d2))L(d)

• F ηV (Ω) = Ω

• If d = {(d1, d
′
1), . . . , (dn, d

′
n)}L then

F ηV (d) = {(F ηV (d1), F ηV (d′1)), . . . , (F ηV (dn), F ηV (d′n))}L(d)

So F ηV preserves the structure but changes the labels so that the root node of F ηV (d) is

labelled with L(d) and so on inductively for its subterms.

Let P(d, τ) = d ∈ JτKη ⇔ F ηV (d) ∈ JτKηι. We prove that it holds for all pairs (d, τ)

such that τ is in T by induction on those pairs, using the ordering relation E defined

in Section 3.2.2.2, noticing that τ ∈ T implies that all subterms (and unfoldings) of τ

are in T as well. The base cases are:

• If τ is a variable. Then it is in V by hypothesis and P(d, τ) is true by definition

of L(d).

• If it is a base type. Then P(d, τ) is true because the interpretation of τ is

independent of assignments and labellings.

For the inductive cases, we suppose the property true for all strictly smaller pairs (d, τ)

such that τ is in T .

• For the arrow and product cases, the inductive definition of F ηV makes the result

straightforward.

• For the negation and disjunction cases, the result is immediate from the induction

hypothesis.

60 Chapter 3. Functions and Polymorphism

• For µv.τ , recall that the well-formedness constraint on types implies that the

type’s unfolding has a strictly smaller shallow depth than the original type, hence

we can use the induction hypothesis on the unfolding and conclude.

Corollary 1. Let τ be a type.
⋃

η∈P(D)V
JτKη = ∅ if and only if JτKηι = ∅.

Proof. If the union is not empty, there exists η and d such that d ∈ JτKη. From the

previous lemma we then have F ηvar(τ)(d) ∈ JτKηι.

This corollary shows that the canonical assignment is representative of all possible

assignments and implies that the subtyping relation defined by (3.4) is equivalent to

the one defined by (3.5).

Convexity of the model. Definition (3.5) corresponds to semantic subtyping as

defined in [Castagna & Xu 2011], but only on the condition that the underlying model

of types be convex. Indeed, we can see that this definition is dependent on the set of

possible assignments, which itself depends on the chosen (abstract) semantic domain,

so it is reasonable to think that increasing the semantic domain could restrict the

relation further. In other words, for the definition to be correct, the domain must

be large enough to cover all cases. Castagna and Xu’s convexity characterises this

notion of ‘large enough’. The property is the following: a set-theoretic model of types

is convex if, whenever a finite collection of types τ1 to τn each possess a nonempty

interpretation relative to some assignment, then there exists a common assignment

making all interpretations nonempty at once. This reflects the idea that there are

enough elements in the domain to witness all the cases.

In our case, it comes as no surprise that the extended model of types is convex

since any nonempty ground type has an infinite interpretation, which, as proved in

[Castagna & Xu 2011], is a sufficient condition. But we need not even rely on this

result since Corollary 1 proves a property even stronger than convexity: having a

nonempty interpretation relative to some assignment is the same as having a nonempty

interpretation relative to the common canonical assignment. This stronger property

makes the apparently weaker relation defined by (3.4) equivalent, in our particular

model, to the full semantic subtyping relation Castagna and Xu defined. This allows

us to reduce the problem of deciding their relation to a question of inclusion between

fixed interpretations, making the addition of polymorphism a mostly straightforward

extension to the logical encoding we presented for the monomorphic case.

Interestingly, in [Castagna & Xu 2011] the authors suggest that convexity con-

strains the relation enough that it should allow reasoning on types, similarly to the

way parametricity allowed Wadler [Wadler 1989] to deduce ‘theorems for free’ from

typing information. The fact that our logical reasoning approach very naturally has

this convexity property — indeed, it is difficult to think of a logical representation of

variables which would not have it — seems to corroborate their intuition, although

reasoning on types beyond deciding subtyping is currently left as future work.

3.5. Polymorphism: Supporting Type Variables 61

We now show how the type system extended with type variables is encoded in our

logic.

3.5.3 Logical encoding of variables

We extend the logic with atomic propositions α which behave similarly as σ except

they are not mutually exclusive. The interpretation of these propositions is defined as:

JαK = {(σL[tl], c) | ι(α) ∈ L}

J¬αK = {(σL[tl], c) | ι(α) 6∈ L}

The translation form(τ) of types into formulas is extended in the obvious way by

form(α) = α.

Theorem 1. With these extended definitions, FJfullform(τ)K = JτK.

Proof. Preliminary remark: whenever ϕ does not contain any 〈2〉 at toplevel (which

is the case of the formulas representing types), then JϕK = FJϕK × C where C is

the set of all possible contexts. Hence, when considering such formulas, set-theoretic

relations between full interpretations are equivalent to the same relations between first

components.

First we check that FJisdK = D and reformulate the statement as D∩FJform(τ)K =

JτK.
We make the embedding function tree explicit for greater clarity. What we have to

show is that, for any d in D, we have (d : τ) if and only if (tree(d), c) is in Jform(τ)K
for some (or, equivalently, for any) c.

The property is proved by induction on the pair (d, τ), following the definition of

the predicate:

• For (c : b) it holds by definition.

• For ((d1, d2)L : τ1 × τ2), let f = (tree((d1, d2)L), c). f is in Jform(τ1 × τ2)K if and

only if f 〈1〉 is in Jform(τ1)K and f 〈1〉 〈2〉 is in Jform(τ2)K. (We already know that

the node name is (×) by the structure of d.) Just see that the tree rooted at

f 〈1〉 is tree(d1) and the one at f 〈1〉 〈2〉 is tree(d2).

• For functions, use the finite unfolding property and the fact the set of pairs is

finite, then see, similarly as above, that the correct properties are enforced when

navigating the tree.

• For union, negation and empty types, use the preliminary remark.

• For (d : α), just see that d ∈ ι(α) and d ∈ FJαK both mean that the root node of

d, which is the node at focus in the formula, bears the label ι(α).

• For (d : µv.τ), use the property that the interpretation of a fixpoint formula and

its unfolding are the same (lemma 4.2 of [Genevès et al. 2007]).

62 Chapter 3. Functions and Polymorphism

Corollary 2. τ1 6 τ2 holds if and only if fullform(τ1 ∧ ¬τ2), or alternatively isd ∧
form(τ1) ∧ ¬form(τ2), is unsatisfiable.

3.5.4 Complexity

Lemma 2. Provided two types τ1 and τ2, the subtyping relation τ1 6 τ2 can be decided

in time 2O(|τ1|+|τ2|) where |τi| is the size of τi.

Proof. The logical translation of types performed by the function form(·) does not

involve duplication of subformulas of variable size, therefore form(τ) is of linear size

with respect to |τ |. Since isd has constant size, the whole translation fullform(τ) is linear

in terms of |τ |. For testing satisfiability of the logical formula, we use the satisfiability-

checking algorithm presented in [Genevès et al. 2007] whose time complexity is 2O(n)

in terms of the formula size n.

3.6 Implementation and Practical Experiments

In this section we report on some interesting lessons learned from practical experiments

with the implementation of the system in order to prove relations in the type algebra.

We first describe the main techniques used to implement the whole system, the minimal

necessary background for using the implementation, and then we review and discuss

several informative examples.

3.6.1 Implementation Principles

The algorithm for deciding the subtyping relation has been implemented on top of the

satisfiability solver that was first introduced in [Genevès 2006, Genevès et al. 2007].

Since this algorithm constitutes the core of our implementation we briefly review its

essential principles below and highlight its properties in the polymorphic setting.

Search universe and exponential complexity. The fundamental principle of the

algorithm is to look for a finite tree that satisfies a given logical formula. For this

purpose, it first constructs a compact representation of the relevant search universe in

which to look for a tree model satisfying the given formula. This representation, called

the Lean of the formula, is a set of subformulas of the initial formula. It is computed

from the so-called Fisher-Ladner closure of the initial formula: it is composed of all

the atomic propositions found in the formula, plus all distinct modal subformulas that

can be obtained by unrolling fixpoints, and four basic “topological” formulas that

indicate whether a given node admits some parent node, some child (or whether it is

leaf and/or a root). This Lean set is important since its powerset precisely defines

the search universe in which the algorithm looks for trees. For this reason, the time

complexity of the algorithm is 2O(n) with respect to Lean size n. The acute reader

may notice that the Lean size of a large logical formula is usually smaller than the

3.6. Implementation and Practical Experiments 63

size of the formula measured as the number of all connectives and operands. This

is because the Lean representation naturally eliminates duplicate subformulas and

discards disjunctions and conjunctions at top level. Furthermore, we implemented an

additional optimization: we rely on a binary encoding of indices of symbols in order to

perform a logarithmic compression of the number of atomic propositions in the lean.

The effect of this optimization can be observed for complex types with a large number

of symbols, for which it is particularly effective2.

Bottom-up search as a fixpoint computation. Once the Lean set is known, the

algorithm starts traversing all relevant tree nodes in an attempt to build a satisfying

tree. This search is performed in a bottom-up fashion, in the manner of a fixpoint

computation. The algorithm considers a set of tree nodes whose subtrees have been

proved consistent. The algorithm begins with the empty set of nodes, then at the first

step, all possible leaves are added. Then, the algorithm repeatedly try to add new tree

nodes to this set, until no more nodes can be added, i.e. a fixpoint has been reached.

It is easy to observe that the algorithm terminates since, in the worst case (when the

formula is unsatisfiable) it explores all the relevant nodes, that is, all subsets of the

Lean, which is a finite set. At each step, whenever the algorithm is about to add a

candidate node to the set of proved nodes, essential checks are performed to make

sure that the higher tree rooted at the candidate node is logically consistent with

subtrees already proved at earlier steps. In particular, modal formulas may impose

constraints on successor nodes that must be checked for consistency when two nodes

are connected. These checks are described formally in [Genevès et al. 2007]. At each

step of the computation, the truth status of the initial formula given as input to the

algorithm is tested at the freshly proved nodes. It the formula is found to hold at

this node then the algorithm immediately terminates with a proof that the formula is

satisfiable. This step by step approach offers several advantages. First, it opens the

door to an implementation with semi-implicit techniques, and second, one can easily

keep track of the current state of the set of proved nodes at each step in order to

generate small satisfying trees.

Use of semi-implicit techniques. An important observation about the fixpoint

computation is that for a given candidate node to be added to the set of proved nodes,

the algorithm does not need to keep track of all possible subtrees that are consistent

with the candidate node, but instead it is enough to find only one proved subtree for

each successor of the candidate node. This observation has an important consequence:

it makes it possible to avoid the explicit enumeration of all proved subtrees into mem-

ory. Instead checking the existence of at least one proved subtree per required successor

of a candidate node is enough. This makes it possible to encode the algorithm with

boolean functions operating on a bit-vector representation of the Lean set (as described

in [Genevès 2006]), opening the door for an implementation based on Binary Decision

2This optimization can be turned on using the -compressElts argument on the command line offline
version of the solver.

64 Chapter 3. Functions and Polymorphism

Diagrams (BDDs) [Bryant 1986]. BDDs provide a canonical representation of boolean

functions. Experience has shown that this representation is very compact for very large

Boolean functions. Furthermore, the effectiveness of operations over BDDs is notably

well-known in the area of formal verification of systems [Edmund M. Clarke et al. 1999],

in the context of simpler (less expressive) modal logics like K [Pan et al. 2006], and

even in the context of much more complex problems that can be reduced to µ-calculus

satisfiability testing, such as the problem of automatically detecting the impacts of a

schema change on a regular query [Genevès et al. 2009]. Here again, the use of BDDs

constitutes one of the major reasons why our approach performs well in practice.

Generation of Counter-Examples. The role of the satisfiability-solving algorithm

is not limited to the partitioning of the set of logical formulas based on whether they

are satisfiable or not: it can in addition generate a sample satisfying tree for satis-

fiable formulas. Technically, once the formula is found satisfiable at some node, the

implementation reconstructs a sample satisfying tree in a top-down manner, start-

ing from the root of the satisfying tree. It actually attempts to generate one of the

smallest possible satisfying trees. For that purpose, a pointer to the current state

of the set of proved nodes is kept at each step of the fixpoint computation. During

the (re)construction of the satisfying tree, smaller proved subtrees are then preferred,

resulting in a minimal satisfying tree.

In the context of our type algebra, the validity of a subtyping statement of the

form τ1 6 τ2 is checked by testing for the unsatisfiability of ψ = ¬(τ1 6 τ2). If ψ

is unsatisfiable then τ1 is a subtype of τ2. If ψ is satisfiable, then the tree satisfying

ψ generated by the algorithm represents a counter-example for the relation τ1 6 τ2.

Such a sample tree often happens to be of great practical value in order to ease the

understanding of the reason(s) why the relation does not hold.

In the polymorphic setting, a counter-example is in principle, according to the

extended semantics, a labelled tree. However, as mentioned in Section 3.5.2, whenever

a formula is satisfiable there always exists an infinity of possible labellings which satisfy

it. Therefore, rather than proposing just one labelled tree, the solver gives a minimal

tree together with labelling constraints representing all labellings which make that

particular tree a counter-example. Namely, for each variable α, every node will be

labelled with α to indicate that it must be labelled with α for the formula to be

satisfied, with ¬α to indicate that it must not be, or with nothing if label α is irrelevant

for that particular node. This allows an easier interpretation of the counter-example

in terms of assignments: the subtyping relation fails whenever the assignment for each

variable α contains all the trees whose root is marked with α and none of those whose

root is marked with ¬α.

3.6.2 Using the Implementation

Our implementation is publicly available. Interaction with the system is offered through

a user interface in a web browser. The whole system is available online at:

http://wam.inrialpes.fr/websolver/

http://wam.inrialpes.fr/websolver/

3.6. Implementation and Practical Experiments 65

A screenshot of the interface is given in Figure 3.2. The user can either enter a

formula through area (1) of Figure 3.2 or select from pre-loaded analysis tasks offered

in area (4) of Figure 3.2. The level of details displayed by the solver can be adjusted

in area (2) of Figure 3.2 and makes it possible to inspect logical translations and

statistics on problem size and the different operation costs. The results of the analysis

are displayed in area (3) of Figure 3.2 together with counter-examples.

Concrete Syntax for Type Algebra. All the examples in the subsection that

follows can be tested in our online prototype. For this purpose, the following table

gives the correspondence between the syntax used in the chapter and the syntax that

must be used in the implementation:

Syntax Implementation Syntax

Type variables α, β, γ a, b, g

Type constructors ×,→ *,->

Recursive types µv.τ let $v = t in $v

Basic types 0,1 F,T

Logical connectives ∧,∨,¬,⇒ &,|, ,̃=>

Subtyping ¬(τ1 6 τ2) nsubtype(t1,t2)

Additionally, the embedding of a base formula of the logic into a base type is provided

by curly braces: {ϕ} is an abbreviation for isbase ∧ 〈1〉ϕ.

3.6.3 Examples and Discussion

The goal of this subsection is to illustrate through some examples how our logical

setting is natural and intuitive for proving subtyping relations. For example, one can

prove simple properties such as the one below:

(α→ γ) ∧ (β → γ) 6 (α ∨ β)→ γ (3.6)

This is formulated as follows:

nsubtype((_a -> _g) & (_b -> _g), (_a | _b) -> _g)

which is automatically compiled into the logical formula shown on Figure 3.3 and given

to the satisfiability solver that returns:

Formula is unsatisfiable [16 ms].

which means that no satisfying tree was found for the formula, or, in other terms,

that the negation of the formula is valid. The satisfiability solver is seen as a theorem

prover since its run built a formal proof that property (3.6) holds.

66 Chapter 3. Functions and Polymorphism

(1)

(2)

(3)

(4)

Figure 3.2: Screenshot of the Web-Based Interface.

3.6. Implementation and Practical Experiments 67

(mu X8.(((
(let_mu
X5=(((BASE & <1>(mu X4.(((˜(<1>T) | <1>X4) & (˜(<2>T) | <2>X4))

& (˜(ERROR) & ˜(BASE) & ˜(FUNCTION) & ˜(PAIR)))))
| (PAIR & <1>(X5 & <2>(X5 & ˜(<2>T)))))

| (FUNCTION & (˜(<1>T) | <1>X6))),
X6=(((˜(<2>T) | <2>X6) & PAIR)

& <1>(X5 & <2>((X5 | (ERROR & ˜(<1>T))) & ˜(<2>T))))
in
X5) & ((FUNCTION & (˜(<1>T) | <1>(mu X1.((˜(<2>T)

| <2>X1) & <1>(˜(_a) | <2>_g)))))
& (FUNCTION & (˜(<1>T) | <1>(mu X2.((˜(<2>T)

| <2>X2) & <1>(˜(_b) | <2>_g)))))))
& (˜(FUNCTION) | (<1>T & (˜(<1>T)

| <1>(mu X7.((<2>T & (˜(<2>T) | <2>X7))
| (˜(<1>T) | <1>((_a | _b)

& (˜(<2>T) | <2>˜(_g))))))))))
| (<1>X8 | <2>X8)))

Figure 3.3: Logical translation tested for satisfiability.

Lists. Jerôme Vouillon [Vouillon 2006] uses simple examples with lists to illustrate

polymorphism with recursive types. For instance, consider the type of lists of elements

of type α:

τlist = µv.(α× v) ∨ nil

where “nil” is a singleton type. The type of lists of an even number of such elements

can be written as:

τeven = µv.(α× (α× v)) ∨ nil

By giving the following formula to the solver:

nsubtype(let $v = (_a * _a * $v) | {nil} in $v,
let $w= (_a * $w) | {nil} in $w)

which is found unsatisfiable, we prove that

τeven 6 τlist

If we now consider the type of lists of an odd number of elements of type α:

τodd = µv.(α× (α× v)) ∨ (α× nil)

we can check additional properties in a similar manner, like:

(τeven ∨ τodd 6 τlist) ∧ (τlist 6 τeven ∨ τodd)

68 Chapter 3. Functions and Polymorphism

The following formula corresponds to the example (3.1) of the introduction:

bool() = {true|false};
list() = let $l = (_a * $l) | {nil} in $l;
odd() = let $o = (_a * _a * $o) | (_a * {nil}) in $o;
even() = let $e = (_a * _a * $e) | {nil} in $e;

nsubtype ((odd() -> {true}) & (even() -> {false}),
list() -> bool())

This formula is found unsatisfiable by the solver, which proves the validity of the

subtyping statement (3.1).

Hints about non-trivial relations. Giuseppe Castagna (see section 2.7 of [Castagna

& Xu 2011]) gives some examples of non-trivial relations that hold in the type algebra.

For instance, the reader can check that the types 1 → 0 and 0 → 1 can be seen as

extrema among the function types:

1→ 0 6 α→ β and α→ β 6 0→ 1

Our system also permitted to detect an error in [Castagna & Xu 2011] and provided

some helpful information to the authors of [Castagna & Xu 2011] in order to find the

origin of the error and make corrections. Specifically, in a former version of [Castagna

& Xu 2011], the following relation was considered:

(¬α→ β) 6 ((1→ 0)→ β) ∨ α (3.7)

Authors explained how this relation was proved by their algorithm. However, by

encoding the relation in our system we found that this relation actually does not hold.

Specifically, this is formulated as follows in our system:

nsubtype (˜_a -> _b, ((T -> F) -> _b) | _a)

The satisfiability solver, when fed this formula, returns the following counter-example:

FUNCTION ˜_a (PAIR(FUNCTION _a (#, ˜_b ERROR), #), #)

FUNCTION represents (→) and PAIR represents (×). This is a binary tree representa-

tion of the n-ary tree

(→)¬α[(×)[(→)α[ε] :: Ω :: ε] :: ε]

which corresponds to the domain element

{({}α,Ω)}¬α.

The inner (→) node has no children and thus represents the function which always

diverges: {}. More precisely, it represents a copy f of this function that belongs to

3.6. Implementation and Practical Experiments 69

the interpretation of α. The root (→) node then represents a function which is not in

JαK and which to f associates an error, while diverging on any other input.

Now, why is it a counter-example to (3.7)? As the function diverges but on one

input f and that input is in JαK, it is vacuously true that on all inputs in J¬αK for

which it returns a result, this result is in JβK. Thus it does have the type on the

left-hand side. However, it does not have type α, nor does it have type ((1→ 0)→ β).

Indeed, f does have type 1→ 0 and our counter-example function associates to it an

error, which is not in JβK.

Big XML Types. One purpose of the next example is to illustrate how the system

can handle large types. We consider the tree grammars that define the admissible

structures of webpages conforming to the XHTML Basic 1.0 and XHTML Basic 1.1

specifications. We formulate a very simple example to check that the type of a function

that modifies XHTML Basic 1.0 documents while preserving their validity is a subtype

of the type of a more general transformation that produces XHTML Basic 1.1 output

from XHTML Basic 1.0 input documents.

The formula given to the solver is the following3:

nsubtype({type("xhtml-basic10.dtd","html")}
->{type("xhtml-basic10.dtd","html")}

,
{type("xhtml-basic10.dtd","html")}

->{type("xhtml-basic11.dtd", "html")})

The system first triggers the parsing of the two real world tree grammars whose

sizes are significant: xhtml-basic10.dtd contains 52 tag names and 71 type variables,

whereas xhtml-basic11.dtd contains 67 tag names and 89 type variables. Those gram-

mars are then linearly compiled into logical formulas in order to compose the global

logical formula. The entire expansion of this global formula is huge: it contains 1461

atomic propositions, 7150 modalities, 2410 variables, 8 (n-ary) fixpoint binders, 3715

negations, 2126 conjunctions and 3226 disjunctions. Those numbers include dupli-

cate subformulas that are factorized by our lean set representation, as described in

Section 3.6.1. The intermediate results are as follow:

Input parsed and compiled [total time: 1562 ms].
Computing Relevant Closure...
Computed Relevant Closure [533 ms].
Computed Lean [2 ms].
Lean size is 201. It contains 192 modal formulas and 9 symbols.

3The command line instruction to reproduce this test with the offline version of the solver is the
following: java -Xmx5g -Xms2g -Xmx2g -jar solver.jar fleche.txt -compressElts
-stats where the first three arguments increase the default heap size of the java virtual machine,
“fleche.txt” is a text file containing the logical formula, “-compressElts” indicates that the
binary encoding of symbols must be used in order to reduce the lean size, and “-stats” displays
some formula statistics like e.g. the number of different connectives in the logical formula.

70 Chapter 3. Functions and Polymorphism

This means that the global search universe in which a tree is automatically looked for

is composed of 2201 distinct tree nodes! Nevertheless, the fixpoint is computed in less

than 18 seconds:

Fixpoint Computation Initialized [149 ms].
Computing Fixpoint...........[16542 ms].
Formula is unsatisfiable [17229 ms].

3.7 Related Work

We review below related works while recalling how the introduction of XML progres-

sively renewed the interests in parametric polymorphism.

The seminal work by Hosoya, Vouillon and Pierce on a type system for XML

[Hosoya et al. 2005] applied the theory of regular expression types and finite tree au-

tomata in the context of XML. The resulting language XDuce [Hosoya & Pierce 2003]

is a strongly typed language featuring recursive, product, intersection, union, and com-

plement types. The subtyping relation is decided through a reduction to containment

of finite tree automata, which is known to be in EXPTIME. This work does not support

function types nor polymorphism, but provided a ground for further research.

In particular, Frisch, Castagna and Benzaken provide a gentle introduction to

semantic subtyping in [Frisch et al. 2008]. Semantic subtyping focuses on a set-theoretic

interpretation, as opposed to traditional subtyping through direct syntactic rules. Our

logical modeling presented in Section 3.4 naturally follows the semantic subtyping

approach as the underlying logic has a set-theoretic semantics. Frisch, Castagna and

Benzaken added function types to the semantic subtyping performed by XDuce’s type

system. This notably resulted in the CDuce language [Benzaken et al. 2003]. However,

CDuce does not support type variables and thus lacks polymorphism.

Vouillon studied polymorphism in the context of regular types with arrow types in

[Vouillon 2006]. Specifically, he introduced a pattern algebra and a subtyping relation

defined by a set of syntactic inference rules. A semantic interpretation of subtyping is

given by ground substitution of variables in patterns. The type algebra has the union

connective but lacks negation and intersection. The resulting type system is thus less

general than ours.

Polymorphism was also the focus of the later work found in [Hosoya et al. 2009].

In [Castagna & Xu 2011], it is explained that at that time a semantically defined

polymorphic subtyping looked out of reach, even in the restrictive setting of [Hosoya

& Pierce 2003], which did not account for higher-order functions. This is why [Hosoya

et al. 2009] fell back on a somewhat syntactic approach linked to pattern-matching that

seemed difficult to extend to higher-order functions. Our work shows however that such

an extension was possible using similar basic ideas, only slightly more abstract.

The most closely related work is the one found in [Castagna & Xu 2011], which

solves the problem of defining subtyping semantically in the polymorphic case for the

first time, and addresses the problem of its decision through an ad-hoc and multi-step

algorithm, which was only recently proved to terminate in all cases. Our approach

3.8. Conclusion 71

also addresses the problem of deciding their subtyping relation and solves it through

a more direct, generic, natural and extensible approach since our solution relies on a

modeling into a well-known modal logic (the µ-calculus) and on using a satisfiability

solver such as the one proposed in [Genevès et al. 2007]. This logical connection also

opens the way for extending polymorphic types with several features found in modal

logics.

The work of [Bierman et al. 2010] follows the same spirit than ours: typechecking

is subcontracted to an external logical solver. An SMT-solver is used to extend a

type-checker for the language Dminor (a core dialect for M) with refinement type and

type-tests. The type-checking relies on a semantic subtyping interpretation but neither

function types nor polymorphism are considered. Therefore, their work is incomparable

to ours.

The present work heavily relies on the work presented in [Genevès et al. 2007] since

we repurpose the satisfiability-checking algorithm of [Genevès et al. 2007] for deciding

the subtyping relation. The goal pursued in [Genevès et al. 2007] was very different in

spirit: the goal was to decide containment of XPath queries in the presence of regular

tree types. To this end, the decidability of a logic with converse for finite ordered

trees is proved in a time complexity which is a simple exponential of the size of the

formula. The present work builds on these results for solving semantic subtyping in

the polymorphic case.

3.8 Conclusion

The main contribution of this chapter is to define a logical encoding of the subtyping

relation defined in [Castagna & Xu 2011], yielding a decision algorithm for it. We prove

that this relation is decidable with an upper-bound time complexity of 2(n), where n

is the size of types being checked. In addition, we provide an effective implementation

of the decision procedure that works well in practice.

This work illustrates a tight integration between a functional language type-checker

and a logical solver. The type-checker uses the logical solver for deciding subtyping,

which in turn provides counter-examples (whenever subtyping does not hold) to the

type-checker. These counterexamples are valuable for programmers as they represent

evidence that the relation does not hold. As a result, our solver represents a very

attractive back-end for functional programming languages type-checkers.

This result pushes the integration between programming languages and logical

solvers to an advanced level. The proposed logical approach is not only capable of

modeling higher order functions, but it is also capable of expressing values from se-

mantic domains that correspond to monadic second-order logics such as XML tree

types. This shows that such logical solvers can become the core of XML-centric func-

tional languages type-checkers such as, e.g., those used in CDuce or XDuce.

Chapter 4

Analysis of Cascading Style

Sheets

Contents

4.1 Introduction . 74

4.2 Current Practice . 75

4.3 CSS: An Overview . 76

4.4 Theoretical Foundations . 79

4.5 A Logical Modeling of CSS . 83

4.6 Prototype Implementation . 86

4.7 Reasoning with Style . 86

4.8 Automated CSS Size Reduction 92

4.9 Conclusions . 97

Abstract

Cascading Style Sheets (CSS) is a standard language for stylizing and formatting web

documents. It plays an increasingly important role in web user experience. Developing

and maintaining cascading style sheets (CSS) is an important issue to web developers

as they suffer from the lack of rigorous methods. Most existing means rely on validators

that check syntactic rules, and on runtime debuggers that check the behavior of a CSS

style sheet on a particular document instance. However, the aim of most style sheets

is to be applied to an entire set of documents, usually defined by some schema. To

this end, a CSS style sheet is usually written w.r.t. a given schema. While usual

debugging tools help reducing the number of bugs, they do not ultimately allow to

prove properties over the whole set of documents to which the style sheet is intended

to be applied.

We propose a novel approach to fill this lack. We present an original tool based on

our recent advances in tree logics. The tool is capable of statically detecting a wide

range of errors (such as empty CSS selectors and semantically equivalent selectors),

as well as proving properties related to sets of documents (such as coverage of styling

information), in the presence or absence of schema information. This new tool can be

used in addition to existing runtime debuggers to ensure a higher level of quality of

CSS style sheets.

74 Chapter 4. Analysis of Cascading Style Sheets

In addition, we present a first prototype of static CSS semantical optimizer that

is capable of automatically detecting and removing redundant property declarations

and rules. Existing purely syntactic CSS optimizers might be used in conjunction with

our tool, for performing complementary (and orthogonal) size reduction, toward the

common goal of providing cleaner, lighter, and easily debuggable CSS files.

4.1 Introduction

“Style sheet languages are terribly under-researched” [Marden & Munson 1999]. This

statement dates back from 1999, but it is still true. However, Cascading Style Sheets

(CSS) [Lie 2005] was the first feature that was added to the initial foundations of the

web (HTML, HTTP and URLs). While style has become a key component of web user

experience, development tools for style sheets have involved very little basic research.

As a result, empirical methods are the only means available to web developers for

implementing and maintaining style sheets.

The research presented in this chapter addresses the issue of debugging CSS style

sheets. At first glance, CSS appears to be a simple language, and from a syntactical

perspective, it really is. Basically, a style sheet is simply a sequence of style rules.

Each rule has a selector that specifies elements of interest in the document structure,

and provides a value for a style property. The value is assigned to the corresponding

property for all elements specified by the selector.

This apparent simplicity is contradicted by a number of combinatorial aspects,

which bring a significant power to the CSS language, while making it a bit more

complex. Style rules can be grouped to share the same selector, for specifying different

properties that apply to the same elements. Style rules are also grouped by style

sheets, and several style sheets may apply to a single document. A style sheet is

usually external to the document it applies to, but it may also be embedded in the

document, with the style element of HTML. Finally, several style rules may also be

embedded within an element in a document with the style attribute. In addition, the

same style property may appear several times in all these locations. The cascade sets

the priority between several rules specifying the same property for the same elements.

As a consequence, when a style sheet does not work the way it was intended, it is

very difficult to locate the origin of the problem. For this reason, the issue of debugging

and maintaining style sheets is important to web developers. In this chapter, we

propose a novel approach to this issue, based on recent advances in theoretical tools

that handle XML structures and query languages for these structures.

The chapter is organized as follows. The next section reviews the methods and

tools that web developers currently use to debug CSS style sheets. It is followed by

an overview of the main features of CSS. The theoretical foundations on which the

rest of the chapter is based are then summarized. This is mainly a tree logic that is

used in section 4.5 for modeling CSS style sheets. Based on this model, section 4.6

presents a software tool for the static analysis of style sheets which is illustrated by

typical applications and examples. The chapter closes with some perspectives.

4.2. Current Practice 75

4.2 Current Practice

Developers use basically two kinds of tools to find errors in CSS style sheets: validators

and debuggers.

Validators address only syntactic issues. They check that a style sheet strictly

follows the CSS grammar. These tools perform static checking: they analyze a style

sheet for itself, independently of any web page to which it could be applied. A typical

example of this family is the W3C CSS validator.1 While they are useful, validators

do not address the difficult issue of locating rules that do not behave as expected.

As opposed to validators, debuggers are dynamic tools. They are coupled with

a formatting engine that executes style sheets by applying them to web pages and

displaying the result. They allow the user to see how the formatter applies style rules

to the tested documents. All modern web browsers now include debuggers, such as

Firebug (Firefox), Developer Toolbar (Internet Explorer), Dragonfly (Opera), or Web

Inspector (Safari).

These tools do not address only style sheets. They deal with the many facets of a

web page (DOM tree, scripts, style) [Barton & Odvarko 2010], but they constitute the

primary tool to debug style sheets. They help CSS debugging by providing a list of all

style rules that apply to any element chosen by the user. All rules are displayed and

any rule overridden by another through the cascade is struck through, thus helping

developers to understand what style rules really apply to the chosen element. The

origin of each rule (style sheet, style element, style attribute) is also presented. Rules

can often be changed on the fly to quickly test alternative solutions.

Performances may be another issue. With complex style sheets, formatting may

take some time. A tool such as the YSlow add-on for Mozilla may help to find perfor-

mance issues, but it also addresses other aspects of performances in web pages, such

as HTML and Javascript.

Other tools target CSS selectors specifically. Dust-Me Selectors, for instance, de-

tects unused selectors dynamically, on a single HTML page or on a whole site.

Debugging style sheets after they have been written is not the only way to improve

their quality. It could be done also at writing time. Two approaches are possible: gen-

erating style sheets automatically from some higher-level specification [Keller & Nuss-

baumer 2009] [Keller & Nussbaumer 2010] [Serrano 2010], and including debugging

features in a CSS editor [Quint & Vatton 2007]. In the first case, the automatic tool is

expected to generate bug-free style sheets, but the issue of debugging the higher-level

specification remains. In the second case, the author gets assistance at the moment of

creating the style rules, which helps her to create better style sheets.

To summarize, validators are the only tools available today that perform static

analysis of a style sheet. The errors they report may potentially affect any web page

the style sheet is applied to, and if they detect no errors, developers are sure that the

style sheet will not have any syntactic issue whatever the page it is applied to.

Unfortunately, syntactic issues are only a small part of the debugging problem. To

1see http://jigsaw.w3.org/css-validator/

http://jigsaw.w3.org/css-validator/

76 Chapter 4. Analysis of Cascading Style Sheets

address the other issues, developers have only dynamic tools at their disposal. To get

some confidence in their style sheets, they have to use these tools on a number of pages,

but they can never get any complete assurance that these style sheets will not fail on

some other page. The process is both painful and unsatisfactory. We believe that

static analysis of the content of style sheets (not only their syntax) could considerably

help developers in detecting errors and proving properties that are expected from style

sheets, whatever the document they are applied to.

We have then developed a tool for the static analysis of CSS. After a brief review

of the main features of CSS, we present a logical framework for modeling structured

documents and selection of information in them, we show how CSS can be modeled in

this logic, and we describe the tool based on this model.

4.3 CSS: An Overview

A style sheet C can be seen as a set R of rules, composed of simple rules Ri each

composed of a single selector Si and a set of pairs, each made of a property Pi and its

value Vi. Selectors define which elements of a document the properties are applied to.

Properties and their values define how those elements look like in the browser.

A selector is a chain of one or more sequences of simple selectors separated by

combinators. Simple selectors considered here are of two types: the universal selector,

noted *, and the type selector which is noted by the tag name of a given element,

for example h1. For simplicity and without loss of generality, we consider that the

rules are made of single selectors (the specification allows a comma separated list of

selectors) which set a single property at a time (multiple properties are allowed for a

given selector). It is easy to rewrite multiple selectors and property rules to a set of

single selector and single property rules.

Selectors Si, sometimes called patterns in the CSS specification [Çelik et al. 2011],

define boolean functions of the form:

expression× element→ boolean

that express whether or not a given element is selected by the selector expression.

In the following, we explore the main vehicle for setting CSS properties on document

elements, namely combinators, structural pseudo-classes, and property inheritance.

4.3.1 Combinators

CSS combinators define relations between elements of a document. In CSS3, they

come in three variants according to the specification:

• Descendant combinator: a descendant combinator describes a descendant rela-

tionship between two elements. A descendant combinator is made of the whites-

pace sign, for example “body p”.

4.3. CSS: An Overview 77

• Child combinator: a child combinator describes a childhood relationship between

two elements. This combinator is made of the > sign, for example “body ¿ p”.

• Sibling combinator: there are two different sibling combinators, the adjacent

sibling combinator and the general sibling combinator. They are noted with the

+ and˜signs respectively.

4.3.2 Structural pseudo-classes

Structural pseudo-classes permit to select elements based on positional information in

the document tree. This positional information is based on calculating the position

(via an index on sibling elements) of an element relatively to its parent. There are

several pseudo-classes in the specification; we present just a few of them here. The

others are similar with additional constraints on element types:

• :root pseudo-class: It represents an element that is the root of the document. In

HTML 4, this is always the html element.

• :first-child and :last-child pseudo-classes: They represent an element that is the

first child or the last-child of some other element respectively.

• :nth-child() pseudo-class : The :nth-child(an+b) pseudo-class notation represents

an element that has an + b − 1 siblings before it in the document tree, for any

positive integer or zero value of n, and has a parent element.

• :nth-last-child(): The :nth-last-child(an+ b) pseudo-class notation represents an

element that has an+b−1 siblings after it in the document tree, for any positive

integer or zero value of n, and has a parent element.

Other pseudo-classes are defined in the specification based on both the element

type and position. Examples are :first-of-type, :last-of-type and :only-of-type pseudo-

classes.

The positional pseudo-classes are very useful to set properties (like foreground and

background colors, or fonts) in HTML structures such as tables. The following example

alternates four colors (zebra striping when two) in table rows:

tr:nth-of-type(4n+1) {color: navy;}
tr:nth-of-type(4n+2) {color: green;}
tr:nth-of-type(4n+3) {color: maroon;}
tr:nth-of-type(4n+4) {color: purple;}

4.3.3 CSS properties and inheritance

CSS inheritance works on a property by property basis. The mechanism for assigning

a value to each property for each element is based on the following steps, in order

of precedence. If the cascade results in a value, this value is used. Otherwise, if

the property is defined by the specification as inherited and the element is not the

78 Chapter 4. Analysis of Cascading Style Sheets

root of the document tree, the value of the property of the parent element is used

(this situation also corresponds to a property with value inherit). Otherwise, the

property’s initial value is used.

The initial value is specific to each property and is indicated by the specification.

The initial value for many properties is already inherit, and for most others (border
for instance), inheriting the parent element’s value is obviously not desirable. The

allowed values for properties, their initial value, and whether they are inherited or not

are summarized in the property table of the specification [Bos et al. 2011].

For example, with this style sheet and this HTML fragment:

div { background-color: white;
color: blue;
font-weight: normal; }

p { background-color: inherit;
color: inherit; }

<div>
<p>

Hello, world.
</p>

</div>

the background color of the div element is set to white. The background color of the

paragraph is also white, because its background-color property is set to inherit
and the background color of the div parent element is white.

The inherit value does not require that the parent element have the same prop-

erty set explicitly; it works from the computed value. In the above example, the color
property of the paragraph has value inherit, but the computed value is blue be-

cause it inherits. The font-weight property of the p element is also set to normal
since it is inherited by default.

When two selectors select the same element for a given property, the more “specific”

one gets precedence. Specificity of selectors consists in counting a four integer vector

corresponding to (1) whether the property is specified in a style attribute of not,

(2) the number of id attributes in the selector, (3) the number of other attributes

and pseudo-classes in the selector, (4) the number of element names in the selector.

In our case, since we consider analyzing style properties on a possibly infinite set of

HTML documents, we consider that selectors specificity is defined by the last integer

corresponding to the number of element names. For example:

* {} specificity = 0,0,0,0 */
li {} specificity = 0,0,0,1 */
ul li {} specificity = 0,0,0,2 */
ul ol+li {} specificity = 0,0,0,3 */

Since specificity can be easily and statically computed before analysis, we consider

that the corresponding number is provided for each selector by a function Specificity(Si).

4.4. Theoretical Foundations 79

4.4 Theoretical Foundations

In this section, we present the static analysis technology on which our tool is based,

which relies on automated verification of properties that are expressed as logical for-

mulas over trees.

4.4.1 Approach overview

We use a tree logic capable of capturing the semantics of CSS selectors as well as

schemas. Schemas we consider are regular tree grammars which capture most of the

XML Schemas, Relax NG schemas, and DTDs. Our approach consists in modeling

element selection performed by CSS selectors and structural constraints described by

schema information into the tree logic. We then use an algorithm to check satisfiability

of formulas of the logic. Such an algorithm defines a partition of the set of logical

formulas: satisfiable formulas (for which there exist at least one tree, among those

defined by the schema, that satisfies the constraints expressed by the formula) and

remaining formulas which are unsatisfiable (no tree satisfies the formula). Alternatively

(and equivalently), formulas can be divided into valid formulas (formulas which are

satisfied by all trees) and invalid formulas (formulas that are not satisfied by at least

one tree). The use of a satisfiability-testing algorithm allows proving validity of a given

logical statement P by testing its negation (¬P) for unsatisfiability.

In the sequel, we progressively introduce the tree logic and explain how it captures

schemas and CSS selectors. We first present the data model of the logic and then we

introduce the syntax of logical formulas through examples.

4.4.2 Data model

A document is considered as a finite tree of unbounded depth and arity, with two kinds

of nodes respectively named elements and attributes. In such a tree, an element may

have any number of children elements, and may carry zero, one or more attributes.

Attributes are leaves with a value. Elements are ordered whereas attributes are not,

as illustrated on Figure 4.1. The logic allows reasoning on such trees.

<r c=" " a=" " b=" ">
<s d=" ">
<v/><w/><x e=" "/>

</s>
<t/>
<u/>

</r>

XML Notation

a
b c

d

e

r

s t u

v w x

Figure 4.1: Sample XML Tree with Attributes.

80 Chapter 4. Analysis of Cascading Style Sheets

Unranked and binary trees There exist bijective encodings between unranked

trees (trees of unbounded arity) and binary trees. Owing to these encodings binary

trees may be used instead of unranked trees without loss of generality. The logic

operates on binary trees. The logic relies on the “first-child & next-sibling” encoding

of unranked trees. In this encoding, the first child of a node is preserved in the binary

tree representation, whereas siblings of this node are appended as right successors in

the binary representation. The intuition of this encoding is illustrated on Figure 4.2

for a sample tree.

0

1

2

3

0
1

2
3

Figure 4.2: Binary encoding principle.

In the remaining of this chapter, the binary representation of a tree is implicitly

considered, unless stated otherwise. From an XML point of view, notice that only the

nested structure of XML elements (which are ordered) is encoded into a binary form

like this. XML attributes (which are unordered) are left unchanged by this encoding.

For instance, Figure 4.3 presents how the sample tree of Figure 4.1 is mapped.

a
b c

d

e

r

s

t

u

v

w

x

Figure 4.3: Binary encoding of tree of figure 4.1

4.4. Theoretical Foundations 81

4.4.3 A gentle introduction to tree logic

Navigating in trees with modalities The logic uses two programs for navigating

in binary trees: the program 1 for navigating from a node down to its first successor

and the program 2 for navigating from a node down to its second successor. The

logic also features converse programs -1 and -2 for navigating upward in binary trees,

respectively from the first and second successors to the parent node. Some basic logical

formulas together with corresponding satisfying binary trees are shown in Figure 4.4.

Sample Formula Satisfying Tree (focus in bold) In XML

a & <1>b
a

b

<a>

a & <2>b
a

b

<a/>

a & <1>(b & <2>c)

a

b

c

<a>

<c/>

e & <-1>(d&<2>g)
d

e g

<d>

<e/>

</d><g/>

f & <-2>(g&˜<2>T) none none

Figure 4.4: Sample formulas using modalities.

The set of logical formulas is defined by the syntax given on Figure 4.5, where the

meta-syntax 〈X〉� means one or more occurrences of X separated by commas. Models

of a formula are finite binary trees for which the formula is satisfied at some node. The

semantics of logical formulas is formally defined in [Genevès 2006,Genevès et al. 2007].

Figure 4.4 gives basic formulas that use modalities for navigating in binary trees and

node names, as well as sample satisfying trees in binary and XML notation.

Recursive formulas The logic allows expressing recursion in trees through the use

of a fixpoint operator. For example the recursive formula:

let $X = b | <2>$X in $X

means that either the current node is named b or there is a sibling of the current node

which is named b. For this purpose, the variable $X is bound to the subformula b
| <2>$X which contains an occurrence of $X (therefore defining the recursion). The

scope of this binding is the subformula that follows the in symbol of the formula,

that is $X. The entire formula can thus be seen as a compact recursive notation for a

82 Chapter 4. Analysis of Cascading Style Sheets

ϕ ::= formula
T true

| F false
| l element name
| p atomic proposition
| ϕ | ϕ disjunction
| ϕ & ϕ conjunction
| ϕ => ϕ implication
| ϕ <=> ϕ equivalence
| (ϕ) parenthesized formula
| ϕ̃ negation
| <p>ϕ existential modality
| <l>T attribute named l
| <l>’v’ attribute l with value ’v’
| $X variable
| let 〈$X = ϕ〉� in ϕ binder for recursion

p ::= program inside modalities
1 first child

| 2 next sibling
| -1 parent
| -2 previous sibling

Figure 4.5: Syntax of logical formulas

infinitely nested formula of the form:

b | <2>(b | <2>(b | <2>(...)))

Recursion allows expressing global properties. For instance, the recursive formula:

˜ let $X = a | <1>$X | <2>$X in $X

expresses the absence of nodes named a in the whole subtree of the current node

(including the current node). Furthermore, the fixpoint operator makes possible to

bind several variables at a time, which is specifically useful for expressing mutual

recursion. For example, the mutually recursive formula:

let $X = (a & <2>$Y) | <1>$X | <2>$X, $Y = b | <2>$Y in $X

asserts that there is a node somewhere in the subtree such that this node is named

a and it has at least one sibling which is named b. Binding several variables at a

time provides a very expressive yet succinct notation for expressing mutually recursive

structural patterns (that may occur in DTDs for instance).

The combination of modalities and recursion makes the logic one of the most expres-

sive (yet decidable) logic known. For instance, most DTDs and schemas (specifically

4.5. A Logical Modeling of CSS 83

regular tree grammars) can be expressed with the logic using recursion and (forward)

modalities (see [Genevès 2006] or [Genevès et al. 2007] for details). The combination of

converse programs and recursion allows expressing properties about previous siblings

of a node for instance, which happens to be very useful for capturing the semantics of

CSS selectors.

4.5 A Logical Modeling of CSS

4.5.1 Capturing selectors

CSS selectors are systematically translated into the logic: Figure 4.6 shows how the

main combinators found in CSS selectors level 3 [Çelik et al. 2011] are mapped into

their corresponding logical representation. The logical formula holds for elements

that are selected by the CSS selector. Figure 4.7 presents how the structural and

negation pseudo-classes of CSS level 3 are compiled into logical formulas. We have

developed a general compiler that takes a CSS selector as input, systematically applies

the translation rules, and outputs the corresponding logical formula. In the remaining

part of this chapter, we denote this compiler by a compilation function F(·) so that we

can refer to the logical translation of a selector Si with F(Si).

For example, the selector S1 = ul li:nth-last-of-type(2) selects any li
element which is a second sibling of its type, counting from the last one, while being

a descendant of some ul element. The corresponding logical formula is built in two

steps. First, the translation of the descendant combinator (shown in Figure 4.6) is

instantiated with the appropriate parameters ul and li:nth-last-of-type(2),

therefore the logical translation F(S1) is as follows:

ϕ & let $X= <-1>(ψ | $X) | <-2>$X in $X

where ϕ = F(li:nth-last-of-type(2)) and ψ = F(ul). As a second step, ϕ and

ψ are computed:

• ϕ = li & let $X= <2>(li & ˜let $Y=<2>li|<2>$Y in $Y) |<2>$X
in $X (see f8 in Figure 4.7);

• ψ = ul (see Figure 4.6).

Notice that the class attribute which very frequently used in style sheets is simply

translated as an ordinary attribute (see class foo Figure 4.6).

4.5.2 Capturing Properties

In order to capture CSS properties, we consider that all elements in a schema, in

HTML in particular, are augmented with the entire set of CSS properties encoded as

attributes. For example, the following rule:

ul li:nth-last-of-type(2) {color: green;}

84 Chapter 4. Analysis of Cascading Style Sheets

Semantics CSS Tree Logic

Any element * T

Any ’p’ element p p

Any child of some p element p > * let $X= <-1>p | <-2>$X in $X

Any descendant ’b’ of some ’a’ a b b&let $X=<-1>(a|$X)|<-2>$X in $X

Any element with class ’foo’ .foo <class>’foo’

Any element with attribute ’title’ *[title] <title>T

Any ’p’ element with an ’a’ child Not possible p&<1>let $X= a | <2>$X in $X

Any adjacent next sibling of a ’p’ p + * <-2>p

Any next sibling ’p’ of a ’h1’ h1 ˜ p p&let $X=<-2>h1|<-2>$X in $X

Any ’e’ with ’foo’ attr. value ’bar’ e[foo="bar"] e & <foo>bar

Figure 4.6: Main CSS combinators and corresponding logical formulas.

is translated as F(S1) & <css:color>’green’ in the logic, with F(S1) computed

as explained above.

4.5.3 Capturing Inheritance

The CSS property value inherit is a very particular value which is not related to

style, but instead it indicates how the property value must be computed. Specifically,

a computed value v 6= inherit is obtained for a property p at a given element iff:

• value of p is explicitly set to v at the given element (intuitively this has been set

by some custom selector);

• value of p is not explicitly set to v at the given element, it is not set to inherit
either at that element, but the initial value for this property is v;

• value of p is set to inherit at that element, the given element is the root, the

initial value for this property happens to be v.

• value of p is set to inherit at that element, the given element is not the root,

and value v is obtained for the parent element (by applying this case analysis

recursively);

We model this inheritance mechanism for propagating values in logical terms. We

introduce a predicate that logically describes each of those possible cases.

4.5. A Logical Modeling of CSS 85

Semantics CSS Tree Logic

An ’e’ element, root of the document e:root f0

Any first child of a ’p’ element p > *:first-child f1

Any ’li’ element, last child of a ’ol’ element ol > li:last-child f2

Any odd row of an HTML table tr:nth-child(odd) f3

Any even row of an HTML table tr:nth-child(even) f4

Any ’foo’, third child of its parent element foo:nth-child(3) f5

Any ’e’, 2nd child of its parent, from the last one e:nth-last-child(2) f6

Any ’e’ element, second sibling among the ’e’ ’s e:nth-of-type(2) f7

Any ’e’, 2nd sibling of its type, from the last one e:nth-last-of-type(2) f8

Any ’e’ element, first sibling of its type e:first-of-type f9

Any ’e’ element, last sibling of its type e:last-of-type f10

Any ’e’ element, only child of its parent e:only-child f11

Any ’e’ element, only sibling of its type e:only-of-type f12

Any ’e’ element that has no children e:empty e & ˜<1>T

Any ’e’ element not matching selector s e:not(s) e & ˜s

f0 = e & ˜<-1>T & ˜<-2>T

f1 = ˜<-2>T & let $X=<-1>p|<-2>$X in $X

f2 = ˜<2>T & li & let $X=<-1>ol|<-2>$X in $X

f3 = tr & let $X=<-1>T|<-2><-2>$X in $X

f4 = tr & let $X=<-2><-1>T|<-2><-2>$X in $X

f5 = foo & <-2><-2>(˜<-2>T) & let $X=<-1>T|<-2>$X in $X

f6 = e & <2>(˜<2>T) & let $X=<-1>T|<-2>$X in $X

f7 = e & let $X= <-2>(e & ˜let $Y=<-2>e|<-2>$Y in $Y) |<-2>$X in $X

f8 = e & let $X= <2>(e & ˜let $Y=<2>e|<2>$Y in $Y) |<2>$X in $X

f9 = e & ˜let $X=<-2>e|<-2>$X in $X

f10 = e & ˜let $X=<2>e|<2>$X in $X

f11 = e & ˜<2>T & ˜<-2>T & let $X=<-1>T|<-2>$X in $X

f12 = e & ˜let $X=<2>e|<2>$X in $X & ˜let $Y=<-2>e|<-2>$Y in $Y

Figure 4.7: Structural and negation pseudo-classes (CSS level 3) and corresponding
logical formulas.

86 Chapter 4. Analysis of Cascading Style Sheets

The predicate inherit(p, v) holds at a given element iff value v is obtained for

property p at this element:

inherit(p, v) = let $X = <-1>(<p>’v’

| ˜<p>’v’ & ˜<p>’inherit’ & initialvalue(p, v)

| <p>’inherit’ & ˜<-1>T & ˜<-2>T & initialvalue(p, v)

| <p>’inherit’ & $X)

| <-2>$X in $X

where initialvalue(p, v) is a predicate that holds iff property p has initial value v,

as defined by the CSS recommendation (see [Bos et al. 2011]).

4.6 Prototype Implementation

We present here the tool we have developed based on the logical modeling presented

in the previous section. Its architecture is outlined in Figure 4.8. It is composed

of a set of parsers for reading the CSS and schema files (XML Schema, Relax NG,

or DTD) together with a text file corresponding to problem description as a logical

formula. Some compilers are used for translating schemas and CSS files into their

logical representations. CSS files are first converted into the simplified form explained

in Section 4.3. Then, the solver takes the overall problem formulation and checks it

for satisfiability.

!"##!$%&'!

#()'*+!$%&'!

,-./&'*!$.-*0&+1%.2!

let $X=e &<1>$X...!

3.4%(+&!$.-*0&+!.5'-!
/%2+-6!1-''7!

#+1%7$%+/%&%16!1'71!

827+1%7$%+/&'!$.-*0&+!

".021'-9':+*;&'!!
4'2'-+1%.2!

Figure 4.8: Overall architecture

The result of the analysis corresponds to two situations: either the formula is

found unsatisfiable (meaning that the checked property holds for any tree), or it is

satisfiable. In this case, the solver generates a counter-example document satisfying

the formula (described in [Genevès et al. 2014]). The tool is available at: http:
//wam.inrialpes.fr/websolver

4.7 Reasoning with Style

In this section, we present some experiments highlighting how the analyzer works on

some typical examples. These examples are simplified in order to make the analysis

http://wam.inrialpes.fr/websolver
http://wam.inrialpes.fr/websolver

4.7. Reasoning with Style 87

easier to understand (but the same kind of analyses can be applied to more complex

cases). Notice that users are not asked to type these formulas as generic tests are

provided as a set of macros in the tool (see Section 4.7.1). We just detail some of them

enough to explain how they work. For the same reasons, we use the simplified HTML

DTD shown in Figure 4.9.

<!ELEMENT html (head,body)>
<!ELEMENT head (title)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT body ((div|table)*)>
<!ELEMENT table (tbody)>
<!ELEMENT tbody (tr+)>
<!ELEMENT tr (td+)>
<!ELEMENT td (div*)>
<!ELEMENT div (#PCDATA|div)*>

Figure 4.9: Simplified HTML DTD.

The first example is the verification of the behavior of a style sheet when it comes

to displaying text in different font sizes. Indeed, setting the font-size property to

the value inherit can be error-prone. Specifically, a computed font-size value

repeatedly obtained by inheritance from a relative value like 80% or smaller may

result in tiny or unreadable text. The goal of the test here is to check whether the

style sheet may yield such a bad rendering on some documents. This can be expressed

logically by the following formula:

1. type("html.dtd","html") & ˜<-1>T & ˜<-2>T
2. & let $CSS = (div => <font-size>’smaller’)
3. & (˜div => (˜<font-size>T |<font-size>’normal’))
4. & (˜<1>T | <1>$CSS) & (˜<2>T | <2>$CSS) in $CSS
5. & let $Q = <font-size>’smaller’

& ancestor(<font-size>’smaller’
& ancestor(<font-size>’smaller’)) | <1>$Q | <2>$Q in $Q

This formula is built from the sample style sheet of Figure 4.11. The first line allows

translating the simplified schema of Figure 4.9 into a logical formula (omitted here).

Notice that ˜<-1>T & ˜<-2>T means that the element has no parent nor a previous

sibling, i.e. it is the root element. Line 2 represents the logical counterpart of CSS rule

6 of the sample CSS of Figure 4.11. It corresponds to the logical implication “if an

element is labeled div then the value of its font-size property must be smaller”.

Line 3 states that any other element than div (elements that are not concerned by

the previous rules) may either carry no font-size property or if they do, then the

value for font-size is set to normal. This models the default behavior of CSS for

property font-size which is overridden by the rules for div. Line 4 in is charge of

applying the style information to every element in the document.

Thus, lines 1 to 4 restrict the considered set of documents to those that are valid

with respect to the DTD, and that have the style information defined by the style

88 Chapter 4. Analysis of Cascading Style Sheets

sheet.

Now, line 5 formulates the question: “may the application of my style sheet render

some valid document with unreadable text due to font-size too small because of a triple

application of the relative font-size value ’smaller’?” In this example, the predicate

inherit(p, v) is simply substituted by the simpler ancestor predicate. When fed

with this formula, the logical solver explores all possible situations and produces the

following counter-example (which is displayed in the browser as the picture on the left

in Figure 4.10):

<html xmlns:solver="http://wam.inrialpes.fr/xml">
<head>
<title/>

</head>
<body>Body text
<div font-size="smaller">text in first level of div
<div font-size="smaller">text in second level of nested div

<div font-size="smaller">text in third level of nested
div </div>

</div>
</div>

</body>
</html>

Notice that if we add the following rule

div div div {font-size:medium;}

in order to fix the style sheet, then the solver cannot find any counter-example anymore.

Figure 4.10: Generated counter-example layouts.

The second test consists in verifying that for a given style sheet, there is no docu-

ment such that the style sheet generates text with the same color as the background

color. For example, we consider the simple style sheet of Figure 4.11. The problem

consists in testing wether rules that set the color and background-color proper-

ties together with the CSS inheritance mechanism may result in such a situation. This

is expressed in logical terms is as follows:

1. type("html.dtd","html") & ˜<-1>T & ˜<-2>T
2. & let $CSS =

4.7. Reasoning with Style 89

((tr & let $V=<-1>T|<-2><-2>$V in $V)
=> <background-color>’LightGray’)

3. & ((tr & let $X=<-2><-1>T|<-2><-2>$X in $X)
=> <background-color>’DarkGray’)

4. & (˜tr => (˜<background-color>T |<background-color>’white’))
5. & (div => <color>’DarkGray’)
6. & (˜div => (˜<color>T |<color>’black’))
7. & (˜<1>T | <1>$CSS) & (˜<2>T | <2>$CSS) in $CSS
8. & let $Q = (<color>’DarkGray’

& ancestor(<background-color>’DarkGray’))
| <1>$Q | <2>$Q in $Q

Line 2 and 3 are the logical counterparts of CSS rule 1 and 2 of the sample of Fig-

ure 4.11. They correspond to the logical implication “if an element is labeled tr and is

at an even position (odd position respectively) among its siblings, then its background

color must be ’LightGray’ (’DarkGray’ respectively)”. Line 4 says that any other ele-

ment than tr (elements that are not concerned by the previous rules) may either carry

no background-color property or if they do, then its value is set towhite. This

models the default behavior of CSS for the background-color property which is

overridden by the rules for tr. Similarly, line 5 is the logical implication that corre-

sponds to the CSS rule on line 5 of Figure 4.11. Line 6 models the default behavior

for the property color. Line 7 is in charge of applying the style information to every

element in the document.

1. tr:nth-child(even) {background-color:LightGray;}
2. tr:nth-child(odd) {background-color:DarkGray;}
3. table td {font-size: 16px;}
4. td {font-size: 14px;}
5. div {color:gray};
6. div {font-size:smaller;}

Figure 4.11: Sample CSS style sheet.

Line 8 formulates the question: “may the application of my style sheet render some

valid document with unreadable text because it is displayed in the same color as the

background?” For the sake of simplicity, the ancestor predicate in this line models

the default CSS inheritance behavior for the background-color property. A more

general statement should use the predicate inheritedValue. When fed with this

formula, the logical solver explores all possible situations and ends up with this counter-

example (which is displayed in the browser as the picture on the right in Figure 4.10):

<html xmlns:solver="http://wam.inrialpes.fr/xml">
<head>

<title/>
</head>
<body>

<table>
<tbody>

90 Chapter 4. Analysis of Cascading Style Sheets

<tr background-color="LightGray">
<td>
This <div color="DarkGray"> Cell</div> is DarkGray.
</td>

</tr>
<tr background-color="DarkGray">
<td>
The <div color="DarkGray"> Cell</div> is DarkGray.
</td>

</tr>
</tbody>

</table>
</body>

</html>

The disclaimer text contained in the second cell of the table has both properties

color and background-color set to DarkGray. This is caused by the default

inheritance rules for these properties which are set to inherit. The disclaimer text

has inherited its values from the enclosing div resulting in this color collision.

Now, we check the consistency of selectors in the style sheet of Figure 4.11. The

test amounts to comparing the selectors for a given property. For example, if we focus

on the font-size property for table element selectors table td and td, the test

consists in checking the precise relation between selectors, equivalence or containment,

against the HTML DTD for instance.

The problem formulation for the solver is as follows:

1. type("html.dtd","html") & ˜<-1>T & ˜<-2>T
2. & let $Q =

˜(td & ancestor(table) <=> td)
| <1>$Q | <2>$Q in $Q

The formula is found unsatisfiable which means that the two selectors are equivalent

in the presence of the DTD. Intuitively, here, both selectors are equivalent since under

HTML schema constraints td always occurs under a table element. However, for td
elements, CSS rule precedence gives higher priority to rule 5 which has specificity 2

compared to rule 6 with specificity of 1. Therefore, rule 6 will never be reachable by

any HTML document. As a consequence, rule 6 can be safely removed from the style

sheet.

When generalized to all selectors for a given property, this mechanism allows to

clean up style sheets from such inapplicable rules, enhancing their readability, as seen

in the next Section.

While in the case of HTML such situations can be detected by an expert designer,

things become much harder when considering CSS for general XML documents. In

particular, CSS rules (see selectors of [Werntges 2011]) for very structured schemas like

Docbook [Walsh 1999] or DITA [Eberlein et al. 2010], tend to be much more involved

as they use complex compositions of combinators with type elements.

4.7. Reasoning with Style 91

4.7.1 Identifying and verifying generic issues

Our analyzer allow one to further analyze more generic issues that correspond to useful

questions for CSS developers and that can arise in many style sheets. We describe how

several such properties can be formulated and checked with our tool below. The tests

described can be checked in the absence or in the presence of a schema. In the latter

case, we use the logical translation of the schema that we insert as the initial context

for the translation of selectors2.

Emptiness of selectors This test is the generalization of the example presented

above. The test consists in extracting every selector and testing its satisfiability against

a given schema. We check F(Si) for unsatisfiability. If F(Si) is unsatisfiable then the

selector is inconsistent and the corresponding style rule is always inactive.

Equivalence of selectors We check the validity of F(Si)⇔ F(Sj) for i 6= j pairwise

by checking for the unsatisfiability of ¬ (F(Si)⇔ F(Sj)). If two selectors are equivalent

and if one has a lower specificity, i.e. Specificity(Si) < Specificity(Sj) then

the rule for Si is always inactive. If both have the same specificity then the first rule

in the lexical order in the style sheet is always inactive since CSS favors the last one

in this case.

The emptiness and equivalence tests for selectors can be used for tuning a CSS

style sheet for a particular schema by pruning inactive CSS rules automatically.

Coverage without properties nor inheritance We check the validity of T ⇒⋃
i Si, that is, we check the unsatisfiability of ¬ (

⋃
i Si). If this formula is unsatisfiable,

then it means that some elements are not covered by any style sheet selectors. In

other terms, the style properties set by the CSS developer do not cover all the possible

elements of a document. If a rule with selector * exists then obviously all elements are

covered. This test can be performed on the style sheet except * selectors, in order to

capture the coverage of CSS properties other than those defined for all elements (*).

Coverage with inheritance for a given property We want to determine, whether

a given property p is set to some value v for all elements of a document, while taking

into account the propagation of values defined by the inheritance mechanism of CSS.

We define the predicate customset(p, v) as the disjunction of all selectors that set

the value v for the property p. We check for the validity of the following formula ψ:

<p>’v’⇒ (inherit(p, v)|customset(p, v))

or in other terms we check for the unsatisfiability of ¬ψ where p is the property and

v is the value for which we check the coverage. For example, we can think of a web

designer building a style theme restricted to a limited set of colors. She may be willing

2The notion of context is explained in details in [Genevès et al. 2007].

92 Chapter 4. Analysis of Cascading Style Sheets

to test whether all possible HTML documents and their respective elements do have

only these colors without reverting to default ones.

¬(
⋃
i=1,2

<color>ci ⇒ (
⋃
i=1,2

inherit(color, ci)|customset(color, ci)))

If this formula is satisfiable, this means that there exist some document instance for

which the style sheet renders some elements with another color than the ci’s, breaking

the intended design.

4.8 Automated CSS Size Reduction

In this Section, we present another application of our analyses: the automated refactor-

ing of CSS style sheets for reducing their size. We present how we can use semantical

analyses for the purpose of automatically identifying redundant CSS declarations. We

developed a prototype that effectively removes CSS declarations detected as redun-

dant. We report on experimental results obtained with our prototype. To the best of

our knowledge, these are the first experimental results concerning automated CSS size

reduction based on a semantical analysis of CSS (as opposed to purely syntactic CSS

optimizers).

Our tool is concerned with the detection of semantical relations between CSS se-

lectors (e.g. mainly containment or equivalence). When some of these relations are

detected, our tool might determine that a property declaration is unnecessary and it

will thus be deleted, based on the specificity of selectors. In CSS, a selector’s specificity

is a vector of four integers (a, b, c, d), where a = 1 if the property is declared in a style
attribute (a = 0 otherwise), b is the number of id attributes (of the form “# ”) in the

selector, c is the number of other attributes and pseudo-classes in the selector, and d

is the number of element names and pseudo-elements in the selector. Our tool exploits

the facts that: (1) if selectors of two different rules have the same specificity, then the

last rule in the style sheet gains precedence; (2) when several selectors point to the

same set of elements, then the declarations under the one with higher specificity gain

precedence.

4.8.1 Refactoring associated with containment of selectors

One fundamental relation between two CSS selectors is containment. For example

we say that “ul ¿ li” is contained into “li” since any “li” element with an “ul”

parent is indeed a “li” element. The existence of containment relations is determined

by the analysis of the nested structures of elements and the sets of attributes carried

by elements. A selector such as “p.someclass” is contained into “p”, since any “p”

element with “class” attribute “someclass” is indeed a “p” element.

Given two selectors Sb and Sp, Sb is contained in Sp iff any element pointed by Sb
is also pointed by Sp. In this section we treat only proper containment, which means

Sb ⊂ Sp and not Sb ⊆ Sp. Under these circumstances, for each property declared

4.8. Automated CSS Size Reduction 93

under both selectors, we propose two different refactoring procedures according to the

selector’s specificity:

Refactoring 1. Subset more specific: delete the property declaration from Sb only

if it has the same value set under both Sb and Sp.

Refactoring 2. Subset less specific: delete the property declaration from Sb, since

the value set under Sp will always override the one under Sb.

For example, consider the following code snippet:

Listing 4.1: containment input.css

1 t a b l e . f oo { c o l o r : #333;

2 font−s i z e : 12px ;

3 font−weight : bold }
4

5 t a b l e { c o l o r : #666;

6 font−s i z e : 12px }� �
Note that “table.foo”⊂ “table” and the subset has a higher specificity (0, 0, 1, 1)

against (0, 0, 0, 1) from the superset, so we are in the case of optimization 1. Conse-

quently, we have to preserve the “color: #333” declaration as it will override the

one from “table” when both rules apply. On the other hand, the “font-size” prop-

erty statement can be removed from the subset as the same value is already pulled from

the superset “table”. The following code corresponds to the output of the analysis:

Listing 4.2: containment output.css

1 t a b l e . f oo { c o l o r : #333;

2 font−weight : bold }
3

4 t a b l e { c o l o r : #666;

5 font−s i z e : 12px }� �
If “table” was more specific than “table.foo”, optimization 2 would apply

and the “color” property declaration could be erased from the subset too as its value

would always be overridden by the dominant “#666” set in the superset.

4.8.2 Refactoring associated with equivalence of selectors

Another relation between CSS selectors that can lead to some refactoring is equiva-

lence. Two or more CSS selectors can be equivalent in several ways. Is not uncommon

to find a rule Ri with a selector such as “body”, and later in the same file another rule

Rj with the same selector “body”. Another case of equivalence could be a class se-

lector “.classname” and the attribute selector “[class=’classname’]”, or any

similar case with the dual syntax for id attributes. These examples could be stud-

ied with basic string processing, but the logical and semantical analysis of selectors

94 Chapter 4. Analysis of Cascading Style Sheets

allows us to detect more complex equivalences too such as the one between selectors

“p:nth-child(odd), p:nth-child(even)” and “p”, as every paragraph is ei-

ther odd or even.

Given two selectors Si and Sj , they are equivalent iff any element pointed by Si is

also pointed by Sj and vice-versa. In this context there is only one procedure over the

bodies:

Refactoring 3. For each property declared under both selectors, delete the statements

under the less specific selector.

To illustrate the analysis, consider the next listing:

Listing 4.3: equivalence input.css

1 div#bar { font−s t y l e : i t a l i c ;

2 border : none }
3

4 div [id =’bar ’] { c o l o r : #666;

5 font−s t y l e : normal ;

6 border : none }� �
In this case we have two equivalent selectors, “div#bar” and “div[id=’bar’]”

whose specificities are (0, 1, 0, 1) and (0, 0, 1, 1) respectively. For the properties de-

clared under both rules, the values from “div#bar” will dominate, so the ones under

“div[id=’bar’]” will never apply, as selectors point to the same set of elements.

This means that for “font-style” and “border”, the declarations can be safely

erased from “div[id=’bar’]”, resulting in the following output:

Listing 4.4: equivalence output.css

1 div#bar { font−s t y l e : i t a l i c ;

2 border : none }
3

4 div [id =’bar ’] { c o l o r : #666 }� �
4.8.3 Inheritance of properties

Whenever containment or equivalence relations are detected between selectors, several

selectors point to the same elements, and specificity decides which declarations get

precedence. In the context of inheritance, an element might be pointed by only one

selector and yet be affected by declarations outside the concerning rule. This is be-

cause the declaration has been propagated from some ancestor through the inheritance

mechanism. Consider a selector using a descendant combinator “Eanc > Edesc” with

a inheritable property declaration Pa : Va, and another selector “Eanc” with the same

declaration. This statement might then be redundant as for Edesc the property might

inherited from Edesc.

4.8. Automated CSS Size Reduction 95

However we do not know if some document using this CSS file, presents a structure

in which there is a certain element Ex placed in between Eanc and Edesc, and the

property declarations for Ex alter the property inheritance among Eanc and Edesc. For

example, a selector concerning only an attribute, such as “[input]”, is free to be

applied to any element on the document. Only certain CSS properties are inherited

by default. Therefore, in our analyses, the amount of refactoring due to inheritance is

a priori limited.

4.8.4 Reasoning over selectors

For detecting relations between selectors, we use the translation of CSS selectors into

the tree logic described in the previous Sections and obtain logical formulas. We then

formulate containment as logical implication, and test the formula for satisfiability

using the logical solver, as mentioned in Section 4.6. For two selectors S1 and S2, Table

4.1 summarizes the tests performed, the four possible scenarios obtained according to

the results, and the corresponding actions performed for optimizing a CSS.

S1 ⊆ S2 S1 ⊇ S2 Relation Action

0 0 None None

0 1 S1 ⊃ S2 Refactoring 1, 2

1 0 S1 ⊂ S2 Refactoring 1, 2

1 1 S1⇔ S2 Refactoring 3

Table 4.1: Actions associated with detected relations.

4.8.5 Processing template bodies

Once a relation between selectors S1 and S2 has been found, for each of the properties

declared under both rules, we determine whether it is necessary or not, depending on

three aspects: the relation between selectors, the selector’s specificity, and whether the

properties share the same value; as illustrated on examples in sections 4.8.1 and 4.8.2.

In some cases, the deletion of unnecessary property statements results in an empty

rule. In this case, the whole rule is (safely) erased from the style sheet.

4.8.6 Optimization of search space and elapsed time

In a style sheet with n rules, each rule can be tested agains all rules but itself, adding

up to a total of n× (n− 1) possible tests. Given the diversity of elements in a HTML

tree, tests concerning selector pairs such as “body” and “p” will not be uncommon.

Only by adding a few basic pre checks, we will be able to determine the result of logical

tests before actually processing it. We take advantage of two main observations for

drastically reducing the number of pairwise tests:

96 Chapter 4. Analysis of Cascading Style Sheets

1. If two selectors point to elements with syntactically different names, they will never

be contained into each other, in any of the two possible containment directions.

2. If a selector S1 refers to one or more attributes that S2 does not, S1 will never

contain S2.

4.8.7 Statistics tracking

The tool tracks some statistics about the analysis. First, while parsing it detects the

total number of rules, the number of ignored ones, the number of possible tests, and

the tests that were actually carried out. After all reasoning is done, the tool counts

the number of relations between selectors, the modified rules, the number of deleted

properties as well as the deleted bits. Finally, the time spent on each one of the analysis

parts is also shown.

4.8.8 Room for improvements

Our prototype implements the aforementioned procedures for a significant CSS sub-

set, sufficient for performing practical experiments with real-world style sheets. Our

prototype can be improved in many respects, though. In particular, the library css-

validator3, that is used for parsing the CSS file and traversing the properties of the

rules, could be improved. Some methods concerning comparisons of properties are

not implemented, and thus some potential property deletions cannot be automatically

carried out. It does not support browser specific properties yet.

Some CSS selectors’ features are not supported yet, such as grouping, pseudo-

classes, pseudo-elements, multiple class and id selectors and media queries. Conse-

quently, the concerning selectors are ignored. With their implementation, additional

refactoring might be performed.

4.8.9 Experimental Results

In order to get a representative collection of results, three different groups have been

defined. The first group involves CSS code provided by frameworks and CMS, and

is represented by Bootstrap, Joomla and JQuery. The second group consists in style

sheets from complex web applications, and features Instagram, Twitter and The Times.

Finally, we have extracted CSS files from some random web sites of medium complexity,

which are ACM DL, DocEng, and Inovallée. Table 4.2 provides detailed information

about the corresponding CSS file sizes and complexity.

After processing the aforementioned files, the tool has spotted on average 4.95%4

of unnecessary properties, modifying 4.56% of the total rules. Of the relations found,

83.38% were containment ones, and the remaining 16.62% correspond to equivalence

between selectors.

3see http://jigsaw.w3.org/css-validator/
4calculated over the properties that the tool supports.

4.9. Conclusions 97

Name # bytes # rules

Bootstrap (Framework’s CSS) 127343 805

Joomla (Template Beez20’s CSS) 30158 325

JQuery (Framework’s CSS) 32891 349

Instagram (www.instagram.com) 123815 791

The Times (www.thetimes.co.uk) 89362 469

Twitter (www.twitter.com) 245473 2402

ACM DL (dl.acm.org) 11151 97

DocEng (www.doceng2014.org) 204970 1571

Inovallée (www.inovallee.com) 29930 189

Table 4.2: Dataset for the experiments.

It is clear that the style sheets from the first and second group present a low

percentage of deleted properties (1.16% and 1.73% respectively). The same holds for

the percentage of modified rules (1.59% for the first group and 2.19% for the second

one). However, in the third group these numbers rise dramatically, reaching 11.05% of

deleted properties and 16.95% of modified rules. Although these latter sites might not

have involved as much testing as the first ones, they are not amateur web sites either.

4.8.10 Performance of the tool

The time taken to analyze each file is shown in Figure 4.13. A 34.30% of the rules

have been ignored due to unsupported selectors commented in Section 4.8.8, and an

average of 99.88%5 of the them has been discarded by the optimization mechanism

described in Section 4.8.6. Each test between selectors requires a median of 156.71 ms,

so without the optimization mechanism, each file analysis would have taken a median

of 16.60 hours, in contraposition to the 78.16 seconds that were actually required, still

guaranteeing the same results.

4.9 Conclusions

In this chapter, we introduce the concept of static analysis for CSS style sheets. To

the best of our knowledge, this is the first attempt at statically analyzing CSS style

sheets. We propose an original tool based on recent advances in tree logics. The tool

is capable of statically detecting a wide range of common errors, as well as proving

properties related to sets of documents, such as coverage of styling information, in the

presence or absence of schema information.

From a theoretical perspective, CSS selectors could be related to XPath queries,

for which an extensive static analysis has been conducted in [Genevès et al. 2007].

5calculated over considered tests, discarding ignored ones.

98 Chapter 4. Analysis of Cascading Style Sheets

1.13
Bootstrap

1.12

1.80
Joomla

3.08

0.55
JQuery

0.57

1.88
Instagram

2.15

1.56
The Times

2.56

1.76
Twitter

1.87

8.05
ACM DL

21.65

9.79
DocEng

10.69

15.33
Inovallée

18.52

0 5 10 15 20 25

% of deleted properties 4

% of modified rules

Figure 4.12: Refactoring performed.

In this chapter, we deal with the particuliar combinators and pseudo-classes found in

CSS selectors. In particular, we have extended the logical solver, initially developed

for XPath, to be able to reason about attribute values, by introducing an equality test

that compares an attribute value to a constant. This is a worthy extension since it is

sufficient for supporting CSS while preserving decidability for the extended logic (it is

known that extending the logic with equality tests with variables results in undecidable

logics, but this feature is not needed for CSS). In addition, we deal with style properties

and the propagation of values defined by the inheritance mechanism of CSS, which do

not have any XPath counterpart.

From a practical perspective, there exists a whole class of dynamic analyses. Most

of this technology relies on runtime debuggers that check the behavior of a CSS style

sheet on a particular document instance. However, the aim of CSS is to be applied to

an entire set of documents, usually defined by some schema. The existing runtime de-

bugging tools help reducing the number of bugs. However, compared to our approach,

they do not allow to prove properties over the whole set of documents to which the

style sheet is intended to be applied. Therefore, our new approach and tool can be

used in addition to debuggers to ensure a higher level of quality of CSS style sheets.

Furthermore, we presented another tool that automatically detects and removes

unnecessary property declarations in CSS files, based on the analysis of semantical

4.9. Conclusions 99

31.40Bootstrap

17.39Joomla

18.37JQuery

59.01Instagram

45.54The Times

292.21Twitter

5.21ACM

220.66DocEng

13.65Inovallée

0 50 100 150 200 250 300

Figure 4.13: Elapsed time for the analyses (s).

relations between selectors. We provided a first prototype implementation, with many

perspectives for further development. The benefit of this tool is to conduct precise

semantical analyses, that go far beyond the capabilities of purely syntactic analyses

done by current CSS optimizers. Generating equivalent but simpler CSS files not only

improves the time spent in loading and formatting a web page, but also facilitates the

debugging process of style sheets.

Despite the large number of unsupported features at this stage, the results obtained

in section 4.8.9 already validate our approach: we have been able to detect large num-

bers of unnecessary property declarations in non-amateur web pages; and we have also

found mistakes in the style sheets of some of the most popular web sites. The number

of safe modifications can easily grow as more components of CSS are supported and

more features are implemented, such as property inheritance, translation of pseudo-

classes into query languages, analysis of media queries, merging of equivalent selectors

or containment involving grouped selectors.

Chapter 5

Containment for a SPARQL

Fragment

Contents

5.1 Introduction . 102

5.2 Preliminaries . 103

5.3 SPARQL Query Containment . 115

5.4 µ-calculus . 115

5.5 RDF Graphs as Transition Systems 118

5.6 Encoding SPARQL Query Containment 123

5.7 Experimental Investigations . 132

5.8 Query Containment Solvers . 133

5.9 Benchmark Design . 134

5.10 Experimental Results . 139

5.11 Related Work . 142

5.12 Conclusions . 146

Abstract

We investigate the problem of query containment for the SPARQL language. This

problem is defined as determining whether, for any graph, the result of one SPARQL

query is included in the result of another query. Query containment is important

in many areas, including program analysis, information integration, and query opti-

mization. For instance, if we can prove that two queries are equivalent for any graph

(which reduces to two query containment checks), then we can safely substitute one

query by another more efficient query version, while preserving the initial semantics of

the program.

We address query containment for a fragment of the SPARQL language, under

expressive description logic constraints. SPARQL is interpreted over graphs, hence we

encode it in a graph logic, specifically the alternation-free fragment of the µ-calculus

[Kozen 1983] with converse and nominals [Tanabe et al. 2008] interpreted over labeled

transition systems.

102 Chapter 5. Containment for a SPARQL Fragment

We show that this logic is powerful enough to deal with query containment for

the fragment of SPARQL made of basic and union graph patterns, in the presence of

ALCH schema axioms.

In this logical encoding, RDF graphs become transition systems and queries and

schema axioms become µ-calculus formulae. Therefore, SPARQL query containment

can be reduced to unsatisfiability in the µ-calculus. This approach has several advan-

tages: it can be used to precisely characterize the expressive power and complexity

for fragments of the SPARQL language. In particular, due to the high expressive

power of the µ-calculus, such an encoding is useful to characterize not only restric-

tions but also extensions of the SPARQL language. For example, a benefit of using

a µ-calculus encoding is to take advantage of fixpoints and modalities for encoding

recursion. These operators allow to deal with natural extensions of SPARQL such as

path queries [Alkhateeb et al. 2009] or queries modulo RDF Schema. Finally, another

advantage of such an approach is that the considered logic admits exponential time

decision procedures that can be implemented in practice [Tanabe et al. 2005,Genevès

et al. 2007,Tanabe et al. 2008]. This study allows to exploit these advantages.

In order to experimentally assess implementation strengths and limitations in this

setting, we provide a first SPARQL containment test benchmark. It has been designed

with respect to both the capabilities of existing solvers and the study of typical queries.

Some solvers support optional constructs and cycles, while other solvers support pro-

jection, union of conjunctive queries and RDF Schemas. No solver currently supports

all these features. The study of query demographics on DBPedia logs shows that the

vast majority of queries are acyclic and a significant part of them uses union or projec-

tion. We thus test available solvers on their domain of applicability on three different

benchmark suites. We report on the experimental results, and discuss to which ex-

tent, in spite of its complexity, SPARQL query containment is practicable for acyclic

queries.

5.1 Introduction

Since its recommendation by the W3C, SPARQL has come to widespread use. Large

datasets are being made available due to the rapid emergence of linked data, and

queries are executed at remote endpoints. It becomes more and more important to

be able to optimize queries, which requires analyzing them before evaluating them.

We concentrate here on query containment analysis since query equivalence and query

satisfiability can be reduced to query containment. The benefits of static analysis are

well known for database query optimization and information integration. Indeed, the

static analysis of queries may reveal, without trying to evaluate it, that a query will

not return any answer. It may also be used for evaluating queries against precompiled

views, which requires to know if the answers to the query against the view are the

same as the answers to the database itself. The same benefits can apply for SPARQL

queries. It is even more important in a distributed setting when federated queries are

evaluated at different SPARQL endpoints. Before sending a query to an endpoint, it

5.2. Preliminaries 103

is useful to know if this query has any chance to receive answers: this saves not only

evaluation time but also communication time.

For all these reasons, the development of methods for the analysis of SPARQL

queries and especially query containment is of uttermost importance. This is the

problem investigated in this Chapter for the SPARQL query language interpreted over

RDF graphs.

Outline and Contributions

This Chapter is organised in three main parts, as follows:

A common introductory part, dedicated to the presentation of required prelim-

inary notions. We present RDF graphs and the SPARQL query language in

Section 5.2. We then introduce the query containment problem for SPARQL

in Section 5.3. We present the µ-calculus in which we encode this problem in

Section 5.4.

A theoretical part, where we show how RDF graphs can be encoded as transition

systems in Section 5.5. We then show how we encode SPARQL queries in terms

of logical formulas and how we reduce SPARQL query containment to logical

unsatisfiability in Section 5.6. We also characterize the computational complexity

of our approach.

An experimental part, in which we characterize to which extent our approach is

currently implementable and feasible in practice. In Section 5.7 we explain

our experimental investigations and framework. We review query containment

solvers and the state of the query landscape in Section 5.8. In order to ex-

perimentally assess implementation strengths and limitations, we provide a first

SPARQL containment test benchmark in Section 5.9. We present and discuss

the results of our experiments in Section 5.10 before discussing related works in

Section 5.11 and presenting our conclusions in Section 5.12.

5.2 Preliminaries

5.2.1 RDF

The Resource Description Framework (RDF) is a language used to express structured

information on the web as graphs. It was primarily intended for representing metadata

about WWW resources, such as the title, author, and modification date of a web page,

but it can be used for storing any other data. It is based on the concept of sets of

triples of the form “(subject, predicate, object)” that constitute a graph.

We present a compact formalization of RDF [Hayes 2004]. Let U, B, and L be

three disjoint infinite sets denoting the set of URIs (an URI identifies a resource),

blank nodes (a blank node denotes an unidentified resource) and literals (a literal

denotes a character string or some other type of data) respectively. We abbreviate any

104 Chapter 5. Containment for a SPARQL Fragment

Mallarmé

Poe

Baudelaire

:b

the raven

the gold bug

Poem

Novel

wrote

wrote

translated type

type

type

tr
an

sl
at

ed

wrote

Figure 5.1: Example RDF graph G about writers and their works.

union of these sets as, for instance, UBL = U∪B∪L. We refer to U, B, and L as terms

of the graph. A triple of the form (s, p, o) ∈ UB × U × UBL is called an RDF triple.

s is the subject, p is the predicate, and o is the object of the triple. Each triple can be

thought of as an edge between the subject and the object labelled by the predicate,

hence a set of RDF triples is often referred to as an RDF graph.

Example 1 (RDF Graph). Here are 8 triples of an RDF graph about writers and their

works: (all identifiers correspond to URIs, :b is a blank node):

{ (Poe,wrote,thegoldbug), (Baudelaire,translated,thegoldbug),

(Poe,wrote,theraven), (Mallarmé,translated,theraven),

(theraven,type,Poem), (Mallarmé,wrote, :b),

(:b,type,Poem), (thegoldbug,type,Novel) }
These triples can also be represented graphically as shown in Figure 5.1.

RDF has a model theoretic semantics [Hayes 2004], that defines the notion of

consequence between two RDF graphs, i.e., does an RDF graph G entails an RDF

graph H (known as RDF entailment). The interpretation of an RDF graph is the set

of all triples that are logically implied according to some set of axioms.

For example, let us consider an RDF graph G formed by an initial set S of triples.

The interpretation of G, denoted by JGK is a superset of S where the elements in

JGK \ S are deduced based on a chosen set of axioms. This set of axioms describes

under which circumstances and conditions new triples are deduced from the initial

ones. In practice, such a set of axioms is typically expressed using RDFS.

5.2.2 RDF Schema

RDF Schema (RDFS) [Hayes 2004] may be considered as a simple ontology lan-

guage expressing subsumption relations between classes or properties. Technically,

this is an RDF vocabulary used for expressing axioms constraining the interpreta-

tion of graphs. Hence, schemas are themselves RDF graphs. The RDFS vocabu-

lary and its semantics are given in [Hayes 2004]. The W3C specifications introduce

5.2. Preliminaries 105

two standard namespaces: the RDF namespace http://www.w3.org/1999/02/
22-rdf-syntax-ns# (prefix rdf) and the RDF Schema namespace http://www.
w3.org/2000/01/rdf-schema# (prefix rdfs). These namespaces comprise a set of

URIs with predefined meaning. Below, we present some of the predefined vocabulary

terms, the notation in the parenthesis is the vocabulary syntax used in this chapter:

• The predefined URI rdf:type (type) can be used for typing entities.

• rdfs:subClassOf (sc) and rdfs:subPropertyOf (sp) are used to describe subclass

and subproperty relationships between classes and properties, respectively.

• The two classes rdfs:Class (Class) and rdf:Property (Property) can be used to

assign a logical type to URIs.

• The URIs rdfs:domain (dom) and rdfs:range (range) can be used to specify the

domain and range of properties.

• All things described by RDF are called resources, and are instances of the class

rdfs:Resource (Resource).

In [Hayes 2004], rules are given which allow to deduce or infer new triples using RDF

Schema triples. In [Ter Horst 2005], it is shown that the standard set of entailment

rules for RDFS, is incomplete and that this can be corrected by allowing blank nodes

in predicate position. The rules shown below, taken from [Muñoz et al. 2007], fix this

problem.

• Subclass (sc)

(a, sc, b) (b, sc, c)

(a, sc, c)

(a, sc, b) (x, type, a)

(x, type, b)
(5.1)

• Subproperty (sp)

(a, sp, b) (b, sp, c)

(a, sp, c)

(a, sp, b) (x, a, y)

(x, b, y)
(5.2)

• Typing (dom, range)

(a, dom, b) (x, a, y)

(x, type, b)

(a, range, b) (x, a, y)

(y, type, b)
(5.3)

• Implicit Typing

(a, dom, b) (c, sp, a) (x, c, y)

(x, type, b)

(a, range, b) (c, sp, a) (x, c, y)

(y, type, b)
(5.4)

• Subclass reflexivity

(a, type, Class)

(a, sc, a)

(a, sc, b)

(a, sc, a) (b, sc, b)
(5.5)

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#

106 Chapter 5. Containment for a SPARQL Fragment

• Subproperty reflexivity

(a, type, Property)

(a, sp, a)

(x, a, y)

(a, sp, a)
(5.6)

• Resource

(a, b, c)

(a, type,Resource)

(a, b, c)

(c, type,Resource)

(a, type, Class)

(a, sc,Resource)
(5.7)

• Property

(a, b, c)

(b, type, Property)
(5.8)

• Class

(a, b, c)

(a, type, Class)

(a, type, c)

(c, type, Class)
(5.9)

Example 2. This example shows the usage of RDFS inference rules, consider the

graph:

G ={(john, child,mary), (child, sp, ancestor),

(ancestor, dom,Person), (ancestor, range, Person)}

By applying either both typing (2.3) and subproperty (2.2) rules or implicit typing rule

(2.5), it can be inferred that {(john,type,Person), (mary,type,Person), (john,ancestor,mary)}.
Hence, the deductive closure of the graph G, denoted as cl(G), is:

cl(G) = {(john, child,mary), (child, sp, ancestor), (ancestor, dom,Person)

(john, type, Person), (mary, type, Person),

(john, ancestor,mary)}

Note that additional triples that can be derived by reflexivity and other rules are not

displayed in cl(G), it contains only a part of the closure graph.

5.2.3 Entailment

Here we present simple entailment and RDFS entailment in RDF graphs, a more

detailed discussion can be found in [Hayes 2004,Ter Horst 2005].

Simple RDF Entailment: simple entailment depends only on the basic logical form

of RDF graphs and therefore holds for any vocabulary. Given two RDF graphs G1 and

G2, a map from G1 to G2 is a function h from terms of G1 to terms of G2, preserving

URIs and literals, such that for each triple (a, b, c) ∈ G1 we have (h(a), h(b), h(c)) ∈ G2.

5.2. Preliminaries 107

An RDF graph G1 simply entails G2, denoted G1 |=s G2, if and only if there exists a

map from G2 to G1.

RDFS entailment: RDFS entailment captures the semantics added by the RDFS

vocabulary. We write that G1 |=rule G2 if G2 can be derived from G1 by iteratively

applying rules in groups (subclass), (subproperty) and (typing). The closure of a

graph G, denoted as cl(G), is the graph obtained from it by iteratively applying the

RDFS inference rules. We have that G1 |=rule G2 if and only if G2 ∈ cl(G1). It

turns out that G1 RDFS-entails G2, written G1 |=rdfs G2, iff there is a graph G

derived from G1 by exhaustively applying the RDFS rules such that G1 |=rule G and

G |=s G2 [Ter Horst 2005]. Alternatively, G1 |=rdfs G2 iff cl(G1, G2) |=s G2 where

cl(G1, G2) is the union of the closure of G1 and G2 obtained by exhaustively applying

the RDFS inference rules.

5.2.4 Description Logics

Description Logics (DLs) are a family of knowledge representation (KR) formalisms

that represent the knowledge of an application domain by first defining the relevant

concepts of the domain (its terminology), and then using these concepts to specify

properties of objects and individuals occurring in the domain (the world description)

[Baader & Nutt 2003, Baader et al. 2007]. Alternatively, DLs are fragments of first-

order logic that model a domain of interest in terms of concepts and roles denoting

unary and binary predicates, respectivley [Baader et al. 2007]. DLs are equipped with

a feature that allow for reasoning in a knowledge base. Reasoning enables one to infer

implicitly represented knowledge from the knowledge that is explicitly contained in the

knowledge base. A knowledge base (KB) comprises two components, the TBox and

the ABox. The TBox introduces the terminology, i.e., the vocabulary for classes and

properties in an application domain, while the ABox contains assertions about named

individuals in terms of this vocabulary.

There are various types of description logics with differing expressivity, DL-Lite

and its extensions, SROIQ(D) and its fragments, and ALC and its extensions [Baader

et al. 2007,Horrocks et al. 2006]. In this chapter, we use the well-studied DL SROIQ(D)

[Horrocks et al. 2006] that underlies the foundations of the web ontology language

(OWL 2). We consider various fragments of this logic, mainly the ALCH fragment.

5.2.4.1 SROIQ(D)

We consider here the following constructs occurring in expressive description logics:

role hierarchy H, role transitivity S, role composition R, nominals O, role inverse I,

qualified number restrictions Q, and datatypes D. Recently, OWL 2 has become a

W3C recommended ontology language. The logic underlying this ontology language

is SROIQ(D). The SROIQ(D) KB satisfiability problem is 2NEXPTIME-complete

[Horrocks et al. 2006,Kazakov 2008]. The syntax and semantics of this logic is presented

108 Chapter 5. Containment for a SPARQL Fragment

in Table 5.1 and 5.2. Notice that, even though we detail here its constructs, in this

chapter we are interested in its fragments, mainly in ALCH.

Syntax In SROIQ(D) concepts and roles are formed according to the syntax pre-

sented in Table 5.1, where R denotes an atomic role or its inverse, A represents an

atomic concept, C denotes a complex concept, o refers to a nominal, and n is a non-

negative integer. Additionally, the following abbreviations are used:

C1 t C2 = ¬(¬C1 u ¬C2)

> = ¬(⊥)

∀R.C = ¬(∃R.¬C)

SROIQ(D) Axioms: The TBox is a finite set of axioms consisting of concept in-

clusions, role inclusion, role transitivity, and role chain axioms:

C1 v C2 R v S
R1 ◦ · · · ◦Rn v S

Two concepts C1 and C2 are said to be equivalent, denoted as C1 ≡ C2, if and only if

C1 v C2 and C2 v C1. Likewise, R1 ≡ R2 iff R1 v R2 and R2 v R1.

Example 3. SROIQ(D) TBox axioms modeling a university domain.

PostgradStudent v Student

UndergradStudent v Student

Department v Faculty

Faculty v University

Staff t Student v ⊥
Professor v Person

Student v Person

Chair ≡ Person u ∃headOf.Department

Student ≡ Person u ∃takesCourse.Course

Professor ≡ Person u ∃givesCourse.Course

∃headOf.> v Professor

takesCourse ≡ givesCourse−

Here, we provide a small textual explanation for some of the TBox axioms shown

above. The first axiom states that every postgraduate student is a student, the sixth

axiom defines that every professor is a person, the ninth axiom asserts that every

student is a person and takes a certain course and vice versa.

5.2. Preliminaries 109

Semantics An interpretation, I = (∆I , ·I), consists of a non-empty domain ∆I and

an interpretation function ·I that assigns to each object name o an element oI ∈ ∆I ,

to each atomic concept A a subset AI ⊆ ∆I of the domain, and to each atomic role

R a binary relation RI ⊆ ∆I ×∆I over the domain. The role and concept constructs

can be interpreted in I as depicted in Tables 5.1.

Construct Name Syntax Semantics

top concept > >I = ∆I

atomic concept A AI ⊆ ∆I

atomic role R RI v ∆I ×∆I

conjunction C uD CI ∩DI

ALC
disjunction C tD CI ∪DI

negation ¬C ∆I \ CI

exists restriction ∃R.C {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI}
concept hierarchy C v D CI ⊆ DI

role hierarchy R v S RI ⊆ SI H
inverse role R− {〈x, y〉 | 〈y, x〉 ∈ RI} I

transitive role R ∈ R+ RI = (RI)+ S
role chains R1 ◦ · · · ◦

Rn v S
RI1 ◦ · · · ◦RIn ⊆ SI R

nominal {o} {oI} O

number restriction
≥ n R {x |]{y.〈x, y〉 ∈ RI} ≥ n}

N
≤ n R {x |]{y.〈x, y〉 ∈ RI} ≤ n}

qualified number

restriction

≥ n R.C {x |]{y.〈x, y〉 ∈ RI and y ∈ CI} ≥ n}
Q

≤ n R.C {x |]{y.〈x, y〉 ∈ RI and y ∈ CI} ≤ n}

Table 5.1: Syntax and semantics of the ALC and S families of description Logics
(courtesy of [Baader et al. 2007,Horrocks & Patel-Schneider 2010]).

An interpretation I satisfies an inclusion C v D iff CI ⊆ DI , and it satisfies an

equality C ≡ D iff CI = DI . If T is a set of axioms, then I satisfies T iff I satisfies

each element of T . If I satisfies an axiom (resp. a set of axioms), then we say that it

is a model of this axiom (resp. set of axioms). Two axioms or two sets of axioms are

equivalent if they have the same models.

Description logic datatype syntax and semantics Datatypes restrict the in-

teractions between concrete and “abstract” parts of a knowledge base so as to avoid

problems of undecidability and to simplify implementation, and are widely used in on-

110 Chapter 5. Containment for a SPARQL Fragment

Construct Name Syntax Semantics

datatype D DI ⊆ ∆ID

data value v vI ∈ ∆ID

concrete role T T I ⊆ ∆I ×∆ID

enumerated datatype {v1, . . . , vn} {vI1 , . . . , vIn}
exists restriction ∃T.D {x | ∃y.〈x, y〉 ∈ T I and y ∈ DI}
value restriction ∀T.D {x | ∀y.〈x, y〉 ∈ T I implies y ∈ DI}

number restriction
≥ n T {x |]{y.〈x, y〉 ∈ T I} ≥ n}
≤ n T {x | #{y.〈x, y〉 ∈ T I} ≤ n}

qualified number

restriction

≥ n T.D {x |]{y.〈x, y〉 ∈ T I and y ∈ DI} ≥ n}
≤ n T.D {x |]{y.〈x, y〉 ∈ T I and y ∈ DI} ≤ n}

Table 5.2: Syntax and Semantics of Description Logics Datatypes (taken from [Hor-
rocks & Patel-Schneider 2010])

tology languages, including OWL and OWL 2. The syntax and semantics of datatypes

is summarised in Table 5.2, where D is a datatype name, T is a concrete role, v is a

data value and n is a non-negative integer. An interpretation, I = (∆ID, ·I), consists

of a non-empty concrete domain ∆ID and an interpretation function ·I .

Assertions about individuals In an ABox (Assertional Box), one describes a spe-

cific state of affairs of an application domain in terms of concepts and roles. Some of

the concept and role atoms in the ABox may be defined names of the TBox. In the

ABox, one introduces individuals, by giving them names, and one asserts properties of

these individuals. We denote individual names by IRIs such as o, o1, o2, . . . , on. Using

concepts C and roles R, in an ABox, one can make two kinds of assertions:

o : C (o1, o2) : R

The first one, o : C, is called concept assertion: it states that o belongs to (the

interpretation of) C, formally, oI ⊆ CI . The second one, (o1, o2) : R, is called role

assertion: it states that o1 is related by the role R with o2, formally, (oI1 , o
I
2) ⊆ RI .

An ABox, denoted as A, is a finite set of such assertions.

Example 4. This example shows a set of ABox assertions that model a university

domain.
A = {Jerome : Professor,

SemanticWeb : Course,

(Jerome, SemanticWeb) : givesCourse}

For expressive ontology languages, query entailment (and hence containment) in

DLs ranging from ALCI to SHIQ is shown to be 2EXPTIME in [Lutz 2008, Glimm

5.2. Preliminaries 111

et al. 2008, Ortiz et al. 2008a, Eiter et al. 2009]. See Table 5.3 for a partial summary

of the studies on query answering.

DL Axioms Entailment

ALC C1 v C2 ExpTime [Lutz 2008]

ALCH C1 v C2, R1 v R2 ExpTime [Ortiz et al. 2008b]

ALCI C1 v C2, R1 v R2 2ExpTime-hard [Lutz 2008]

ALCHI C1 v C2, R1 v R2 2ExpTime [Calvanese et al. 1998]

SH C1 v C2, R1 v R2 2ExpTime-hard [Eiter et al. 2009]

SHIQ C1 v C2, R1 v R2 2ExpTime-complete [Glimm et al. 2008]

SHOQ C1 v C2, R1 v R2 2ExpTime-complete [Glimm et al. 2008]

Table 5.3: The complexity of query entailment for the fragments of SHOIQ.

5.2.5 The SPARQL Query Language

SPARQL [Prud’hommeaux & Seaborne 2008] is a W3C recommended language for

querying RDF graphs. We refer the reader to [Prud’hommeaux & Seaborne 2008]

for the whole definition of the SPARQL standard, and to [Pérez et al. 2009b, Pérez

et al. 2009a] for a more formal presentation of the syntax and semantics of SPARQL.

In this Section we try to limit the introduced concepts to the minimum so that this

Chapter is self-contained; while trying to give intuitions and examples for the most

important notions.

5.2.5.1 Abstract Syntax

We consider an abstract syntax for SPARQL queries [Pérez et al. 2009a]. A triple

pattern is a tuple t ∈ UBV × UV × UBLV. We recall that U is the set of URI

references, B the set of blank nodes, L the set of literals and V a set of variables, all

disjoint.

SPARQL is based on the notion of query patterns defined inductively from triple

patterns. Triple patterns grouped together using SPARQL operators (AND, UNION,OPT1)

form query patterns (or graph patterns). We do not consider FILTER query patterns

here.

Definition 1 (Query Pattern). A query pattern q is inductively defined as follows:

q ::= t | q1 AND q2 | q1 UNION q2 | q1 OPT q2

Typical SPARQL queries are built around the classical pattern SELECT U FROM

G WHERE P such that FROM identifies an RDF graph G on which the query will be

1OPT is short for OPTIONAL.

112 Chapter 5. Containment for a SPARQL Fragment

evaluated, WHERE contains a graph pattern P that the query answers should satisfy

and SELECT singles out the distinguished variables U ⊆ V in the graph pattern (see

Example 8).

Definition 2. A SPARQL SELECT query is a query of the form q{−→w } where −→w is a

tuple of variables that appear in q which are called distinguished variables, and q is a

query pattern.

Example 5 (SPARQL queries). Consider the following queries q1{?x} and q2{?x} on

the graph of Example 1. q1 selects all those who translated or wrote a poem whereas q2

finds those who translated a poem or wrote anything else.
q1

SELECT ?x WHERE {
{ {?x ex:translated ?l} UNION {?x ex:wrote ?l} }
?l rdf:type ex:Poem .

}

q2

SELECT ?x WHERE {
{?x ex:translated ?l . ?l rdf:type ex:Poem .} UNION
{?x ex:wrote ?l }

}

q1 finds all those authors who either translated or wrote a poem whereas q2 selects those

authors who translated a poem or wrote something.

Example 6. This query selects, author names’, where they live in, and the population

of the city they live in, for those who wrote a poem and live in the same city they were

born in.
q3

SELECT ?n ?loc ?p WHERE {
?x ex:wrote ?l .
?x ex: hasName ?n
?l rdf:type ex:Poem .
?x ex:livesIn ?loc .
?x ex:bornIn ?loc .
?loc ex:population ?p .

}

5.2.5.2 Semantics

Intuitively, an answer for a SPARQL query is an assignment of values to the distin-

guished variables such that the query pattern is satisfied. One classical interpretation

5.2. Preliminaries 113

of a SPARQL query is thus the set of all answers2. For a query q, we denote the set

of answers with respect to a graph G as ANS(q,G).

Example 7 (Answers to SPARQL queries). The answers to query q1{?x} and q2{?x}
of Example 5 on graph G of Example 1 are respectively {〈Poe〉, 〈Mallarme〉} and

{〈Baudelaire〉, 〈Poe〉, 〈Mallarme〉}. Hence, Jq1{?x}KG ⊆ Jq2{?x}KG.

Formally, the semantics of SPARQL queries is given by a partial mapping function ρ

from V to UBL. The domain of ρ, dom(ρ), is the subset of V on which ρ is defined. Two

mappings ρ1 and ρ2 are said to be compatible if ∀x ∈ dom(ρ1)∩dom(ρ2), ρ1(x) = ρ2(x).

ρ1 ∪ ρ2 is also a mapping (we use] when ρ1 ∩ ρ2 = ∅). This allows for defining the

join, union, and difference operations between two sets of mappings M1, and M2:

M1 1M2 = {ρ1 ∪ ρ2 | ρ1 ∈M1, ρ2 ∈M2 are compatible mappings}
M1 ∪M2 = {ρ | ρ ∈M1 or ρ ∈M2}
M1 \M2 = {ρ ∈M1 | ∀ρ2 ∈M2, ρ and ρ2 are not compatible}

The evaluation of query patterns over an RDF graph G is inductively defined:

J.KG : q → 2V×UBL

JtKG = {ρ| dom(ρ) = var(t) and ρ(t) ∈ G}
where var(t) is the set of variables occurring in t.

Jq1 AND q2KG = Jq1KG 1 Jq2KG
Jq1 UNION q2KG = Jq1KG ∪ Jq2KG

Jq1 OPT q2KG = (Jq1KG 1 Jq2KG) ∪ (Jq1KG \ Jq2KG)

Jq1 MINUS q2KG = Jq1KG \ Jq2KG
Jq{−→w }KG = π−→w (JqKG)

The projection operator π−→w selects only those part of the mappings relevant to vari-

ables in −→w . The semantics of FILTER expressions is defined as: given a mapping ρ

and a SPARQL constraint C, we say that ρ satisfies C, denoted by ρ(C) = >, if:

- C = BOUND(x) with x ∈ dom(ρ),

- C = (x = c) with x ∈ dom(ρ) and ρ(x) = c,

- C = (x = y) with x, y ∈ dom(ρ) and ρ(x) = ρ(y),

- C = (x! = c) with x ∈ dom(ρ) and ρ(x) 6= c,

- C = (x! = y) with x, y ∈ dom(ρ) and ρ(x) 6= ρ(y),

- C = (x < c) with x ∈ dom(ρ) and ρ(x) < c,

2We consider SPARQL under set semantics which is practical in most cases and for which we show
that query containment is decidable.

114 Chapter 5. Containment for a SPARQL Fragment

- C = (x < y) with x, y ∈ dom(ρ) and ρ(x) < ρ(y),

- C = (!C1) with ρ does not satisfy C1, in the following, we use ρ(C) = ⊥ to

denote this,

- C = (C1 || C2) with ρ(C1) = > or ρ(C2) = >,

- C = (C1 && C2) with ρ(C1) = > and ρ(C2) = >

It should be noted that there are semantic differences between the standard SPARQL

semantics [Prud’hommeaux & Seaborne 2008] and the semantics that we use here

(from [Pérez et al. 2009a]), e.g. for FILTERs within OPTIONALs, or with respect to

the 3 valued semantics of FILTER expressions i.e., when evaluating FILTER expres-

sions the answers can be either true, false, or error. For more details on the differences,

we refer the reader to [Polleres 2012].

Definition 3 (Answers to a SPARQL query). Let q{−→w } be a SPARQL query, P its

graph pattern, and G be an RDF graph, the set of answers to this query is defined as

follows:

Jq{−→w }KG = {ρ | ρ ∈ π−→w (JP KG)}

5.2.5.3 Acyclic SPARQL queries.

Following the tradition from databases, we consider SPARQL queries as graphs. More

specifically, a SPARQL query is represented as a bipartite graph, with two kinds of

nodes: triple nodes and term nodes (representing URIs, blank nodes, and literals), as

in Figure 5.2. If this graph contains a cycle going uniquely through variable and triple

nodes, then the query is cyclic.

SELECT ?x WHERE {
?x :married ?y . ?y :knows ?z .
?z :knows ?r . ?r :knows ?y .

}

x

y

married

z

knows

r

Figure 5.2: Cyclic query.

5.2.5.4 Query Arity

A unary SPARQL query is a query with one distinguished variable. Queries of Exam-

ple 5 above are unary. In the general case, SPARQL queries are n-ary : they have n

distinguished variables. The query of example 6 above is a 3-ary (ternary) query.

The arity of a query corresponds to the arity of the query answers. When there is

an outer projection (i.e. a non-empty SELECT clause) it is defined by the number of

distinguished variables, otherwise, it is defined by all free variables of the query. This

is analogous to the arity of a predicate in logic.

5.3. SPARQL Query Containment 115

5.3 SPARQL Query Containment

Intuitively, we say that a query is contained into another if, for any RDF graph, its

answers are included in those of the other query.

Definition 4 (SPARQL query containment). Given queries q and q′ with the same

arity, q is contained in q′, denoted q v q′, if and only if ANS(q,G) ⊆ ANS(q′, G) for

every RDF graph G.

Example 8. Consider the queries of Figure 5.3 that retrieve student information from

a university dataset. We have Qb v Qa and Qa 6v Qb.

Select the URI and name of all stu-
dents taking a course in either com-
puter science or mathematics.

SELECT ?x ?y
WHERE { Qa

?x a :Student . ?x :name ?y .
?x :takesCourse ?c .
{ ?c rdf:type :CsCourse . }
UNION
{ ?c rdf:type :MathCourse . }

}

Select the URI and name of all mas-
ter students taking a course in com-
puter science.

SELECT ?x ?y
WHERE { Qb

?x a :Student . ?x :name ?y .
?x :masterDegreeFrom ?master .
?x :takesCourse ?c .
?c rdf:type :CsCourse .

}

Figure 5.3: Two sample queries for which a containment relation holds.

The definitions of SPARQL query answers and of query containment exclude testing

containment of query of differing arities. Indeed, it makes little sense in practice to

replace a query with another query of a different arity. Projection can be used for

making queries comparable.

When the queried graph is assumed to satisfy a particular ontology or schema, it

is useful to take this schema into account because two queries may not be contained

in each other without the schema, but they may under the schema constraints.

Definition 5 (SPARQL query containment with respect to a schema). Given a set

of RDFS axioms S and two queries q and q′ with the same arity, q is contained in q′

with respect to S, denoted q vS q′, if and only if ANS(q,G) ⊆ ANS(q′, G) for every

RDF graph G satisfying S.

5.4 µ-calculus

In this section, we present the µ-calculus that we use to encode the containment

problem for a SPARQL fragment. The µ-calculus is a logic obtained by adding fixpoint

operators to ordinary modal logic, or Hennessy-Milner logic [Kozen 1983]. The result

is a very expressive logic, sufficient to subsume many other temporal logics such as

CTL and CTL* [Blackburn et al. 2007]. The modal µ-calculus is easy to model-check,

116 Chapter 5. Containment for a SPARQL Fragment

and so makes a good ‘back-end’ logic for tools. In this chapter, we mainly use the

µ-calculus with nominals and converse modalities.

The syntax of the µ-calculus is composed of countable sets of atomic proposi-

tions and nominals AP , a set of variables Var, a set of programs and their respective

converses Prog for navigating in graphs. A µ-calculus formula, ϕ, can be defined

inductively as follows:

ϕ ::= > | ⊥ | q | X | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ | µXϕ | νXϕ

where q ∈ AP,X ∈ V ar and a ∈ Prog is a transition program or its converse ā. The

greatest and least fixpoint operators (ν and µ) respectively introduce general and finite

recursion in graphs [Kozen 1983]. A sentence is a formula with no free variable, i.e.,

each variable in the formula appears within the scope of µ or ν. Besides, we use the

following syntactic sugars:

⊥ = ¬>
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)

[a]ϕ = ¬〈a〉¬ϕ
νX.ϕ(X) = ¬µX.¬ϕ(¬X/X)

ϕ⇒ ψ = ¬ϕ ∨ ψ
ϕ⇔ ψ = (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

The semantics of the µ-calculus is given over a transition system, K = (S,R,L) where

S is a non-empty set of nodes, R : Prog → 2S×S is the transition function, and

L : AP → 2S assigns a set of nodes to each atomic proposition or nominal where it

holds, such that L(p) is a singleton for each nominal p. For converse programs, R can

be extended as R(ā) = {(s′, s) | (s, s′) ∈ R(a)}. The valuation function V : Var→ 2S

maps each variable into a set of nodes. For a valuation V , variable X, and a set of

nodes S′ ⊆ S, V [X/S′] is the valuation that is obtained from V by assigning S′ to X.

The semantics of a formula in terms of a transition system K (a.k.a. Kripke structure)

and a valuation function is represented by JϕKKV ⊆ S. The semantics of basic µ-calculus

5.4. µ-calculus 117

formulae is defined as follows:

J>KKV = S

J⊥KKV = ∅
JqKKV = L(q), q ∈ AP, L(q) is singleton if q is a nominal

JXKKV = V (X), X ∈ V ar
J¬ϕKKV = S\JϕKKV

Jϕ ∧ ψKKV = JϕKKV ∩ JψKKV
Jϕ ∨ ψKKV = JϕKKV ∪ JψKKV
J〈a〉ϕKKV = {s ∈ S | ∃s′ ∈ S.(s, s′) ∈ R(a) ∧ s′ ∈ JϕKKV }
J[a]ϕKKV = {s ∈ S | ∀s′ ∈ S.(s, s′) ∈ R(a)⇒ s′ ∈ JϕKKV }

JµXϕKKV =
⋂
{S′ ⊆ S | JϕKKV [X/S′] ⊆ S

′}

JνXϕKKV =
⋃
{S′ ⊆ S | S′ ⊆ JϕKKV [X/S′]}

Note that the evaluation of sentences is independent of valuations and hence we define

the following. For a sentence ϕ, a Kripke structure K = (S,R,L), and s ∈ S, we

denote K, s |= ϕ if and only if s ∈ JϕKK , henceforth K is considered as a model of

ϕ. In other words, K is considered as a model of φ if there exists an s ∈ S such that

K, s |= φ. If a sentence has a model, then it is called satisfiable.

Another variety of the µ-calculus is the µ-calculus with graded modalities. Given

a transition program or its converse a and a non-negative integer n, graded modal-

ities generalize standard existential 〈n, a〉 and universal [n, a] modalities [Kupferman

et al. 2002]. For instance, 〈n, a〉 expresses that there exist at least n accessible states

satisfying a certain formula and [n, a] = ¬〈n, a〉¬. The full µ-calculus, with graded

modalities, converse modalities, and nominals, is undecidable [Bonatti et al. 2006]

whereas its fragments are well-behaved as shown in Table 5.4, where O denotes nomi-

nals, N is for number restrictions (graded modalities), and I denotes converse modal-

ities.

µ fragments Complexity Source

µ ExpTime [Kozen 1983]

+ N ExpTime [Kupferman et al. 2002]

+ O + N ExpTime [Bonatti et al. 2006]

+I + N ExpTime [Bonatti et al. 2006]

+ O + I ExpTime [Sattler & Vardi 2001]

+ O + I + N Undecidable [Bonatti & Peron 2004]

Table 5.4: Fragments of the full modal µ-calculus

118 Chapter 5. Containment for a SPARQL Fragment

To study SPARQL query containment, only a specific subset of the µ-calculus pre-

sented above, namely the alternation-free modal µ-calculus with nominals and converse

[Tanabe et al. 2008], is of interest. A µ-calculus formula ϕ is alternation-free if µX.ϕ1

(respectively νX.ϕ1) is a subformula of ϕ and νY.ϕ2 (respectively µY.ϕ2) is a subfor-

mula of ϕ1 then X does not occur freely in ϕ2. For instance, νX.µY.〈s〉Y ∧ a) ∨ 〈p〉X
is alternation-free but νX.µY.〈s〉Y ∧X) ∨ a is not since X bound by ν appears freely

in the scope of µY.

5.5 RDF Graphs as Transition Systems

In this section, we show how to translate RDF graphs into labeled transition systems.

First of all, translating RDF graphs into transition systems is necessary in order to

restrict the models of the µ-calculus formula obtained from the translation of queries.

Additionally, if RDF graphs can be translated into transition systems, then model

checking can be used to evaluate SPARQL queries. In fact, in this regard, there is

already some progress as presented in the literature [Mateescu et al. 2009] where it is

possible to extend and encode SPARQL queries in a logic and use model checking to

evaluate the result of the query.

There are several ways of encoding RDF graphs as transition systems, for instance,

consider the following:

• for each triple (s, p, o) ∈ G, s and o become nodes of the transition system and

p is a transition program, there is an edge 〈s, o〉 where transition from node s

to o and vice versa can be done using program p and its converse p̄ respectively.

While this approach is simple and intuitive, it does not work in the general case,

i.e., in an RDF graph predicates or properties can also be nodes in an RDF graph

as shown in Figure 5.4, thus, p cannot be a transition program.

:b john
hasFather mary

childOf

ancestor

sp
person

dom

range

Figure 5.4: An RDF graph where a predicate appears as a node

• for each triple (s, p, o) ∈ G, s, p, and o become atomic propositions that are true

in the states ns, np, and no respectively of a transition system, there are are

edges 〈ns, np〉 and 〈np, no〉 that are accessible through transition programs 1 and

2 respectively. Similar to the above approach, this translation procedure does

5.5. RDF Graphs as Transition Systems 119

not work in the general case when encoding RDF schema graphs. For example,

consider an RDF graph that contains the triple (subPropertyOf, subPropertyOf,

subPropertyOf).

• the last approach considers encoding RDF graphs as bipartite graphs, i.e., for

each t = (s, p, o) ∈ G introduce two sets of nodes in the transition system: one

set for each triple nt and another set for each element of the triple ns, np, and no
where atomic propositions s, p and o are set to be true respectively. Additionally,

there are edges 〈ns, nt〉, 〈nt, np〉, and 〈nt, no〉 in the transitions system that are

accessible through programs s, p, o and their converses respectively. The idea of

representing RDF triples as other types of graphs (for instance, hypergraphs) was

first introduced in [Baget 2005], in fact, this translation coincides with the notion

of reification of n-ary relations [Calvanese et al. 2008] that is one edge from the

triple node to subject, predicate, and object nodes of the triple in this case. This

approach overcomes the limitations of the other two approaches. Thus, in the

following, we discuss in detail how this technique works.

5.5.1 Encoding of RDF graphs

An RDF graph is encoded as a transition system in which nodes correspond to RDF

entities and RDF triples. Edges relate entities to the triples they occur in. Different

edges are used for distinguishing the functions (subject, object, predicate). Expressing

predicates as nodes, instead of atomic programs, makes it possible to deal with full RDF

expressiveness in which a predicate may also be the subject or object of a statement.

Definition 6 (Transition system associated to an RDF graph). Given an RDF graph,

G ⊆ UB × U × UBL, the transition system associated to G, σ(G) = (S,R, L) over

AP = UGBGLG ∪ {s′, s′′}, is such that:

• S = S′ ∪ S′′ with S′ and S′′ the smallest sets such that ∀u ∈ UG,∃nu ∈ S′,

∀b ∈ BG,∃nb ∈ S′, ∀l ∈ LG, ∃nl ∈ S′, and ∀t ∈ G, ∃nt ∈ S′′,

• ∀t = (s, p, o) ∈ G, 〈ns, nt〉 ∈ R(s), 〈nt, np〉 ∈ R(p), and 〈nt, no〉 ∈ R(o),

• L : AP → 2S ; ∀u ∈ UG, L(u) = {nu}, ∀b ∈ BG, L(b) = S′, L(s′) = S′, ∀l ∈
LG, L(l) = {nl} and L(s′′) = S′′,

• ∀nt, nt′ ∈ S′′, 〈nt, nt′〉 ∈ R(d).

The program d is introduced to render each triple accessible to the others and thus

facilitate the encoding of queries. The function σ associates what we call a restricted

transition system to any RDF graph. Formally, we say that a transition system K is

a restricted transition system iff there exists an RDF graph G such that K = σ(G).

A restricted transition system is thus a bipartite graph composed of two sets of

nodes: S′, those corresponding to RDF entities, and S′′, those corresponding to RDF

triples. For example, Figure 5.5 shows the restricted transition system associated with

the graph of Example 1.

120 Chapter 5. Containment for a SPARQL Fragment

:b john

hasFather

s

p

o mary

childOf

s

p

o

sp

ancestor
s

p

o

dom

person
s

p
o

range

s

p

o

Figure 5.5: Transition system encoding the RDF graph of Example 1. Nodes in S′′

are black anonymous nodes; nodes in S′ are the other nodes (d-transitions are not
displayed).

Given that the logic chosen to determine containment is µ-calculus with nominals

(lacking functionality or number restrictions), one cannot impose that each triple node

is connected to exactly one node for each of the three triple-components (subject,

predicate, and object). However, we can impose a lighter restriction to achieve this by

taking advantage of the technique introduced in [Genevès & Layäıda 2006]. Since it is

not possible to ensure that there is only one successor, then we restrict all the successors

to bear the same constraints. They thus become interchangeable (bisimulation). To do

this, we introduce a rewriting function f such that all occurrences of 〈a〉ϕ (existential

formulas) are replaced by 〈a〉>∧[a]ϕ. As such, f is inductively defined on the structure

of a µ-calculus formula as follows:

f(>) = >
f(q) = q q ∈ AP ∪Nom
f(X) = X X ∈ V ar
f(¬ϕ) = ¬f(ϕ)

f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ)

f(ϕ ∨ ψ) = f(ϕ) ∨ f(ψ)

f(〈a〉ϕ) = 〈a〉> ∧ [a]f(ϕ) a ∈ {s̄, p, o}
f(〈a〉ϕ) = 〈a〉f(ϕ) a ∈ {d, s, p̄, ō}
f([a]ϕ) = [a]f(ϕ) a ∈ Prog

f(µX.ϕ) = µX.f(ϕ)

f(νX.ϕ) = νX.f(ϕ)

Thus, when checking for query containment, we assume that the formulas are

rewritten using function f . Along with that, we also consider the following restrictions:

• The set of programs is fixed: Prog = {s, p, o, d, s̄, p̄, ō, d̄}.

• A model must be a restricted transition system.

5.5. RDF Graphs as Transition Systems 121

The last constraint can be expressed in the µ-calculus as follows:

Proposition 1 (RDF restriction on transition systems). Let ϕ be a formula that can

be stated over a restricted transition system, ϕ is satisfied by some restricted transition

system if and only if f(ϕ) ∧ ϕr is satisfied by some transition system over Prog, i.e.

∃Kr.JϕKKr 6= ∅ ⇐⇒ ∃K.Jf(ϕ) ∧ ϕrKK 6= ∅, where:

ϕr = νX. θ ∧ κ ∧ (¬〈d〉> ∨ 〈d〉X)

in which θ = 〈s̄〉s′ ∧ 〈p〉s′ ∧ 〈o〉s′ ∧ ¬〈s〉> ∧ ¬〈p̄〉> ∧ ¬〈ō〉>, and

κ = [s̄]ξ ∧ [p]ξ ∧ [o]ξ with

ξ = ¬〈s̄〉> ∧ ¬〈o〉> ∧ ¬〈p〉> ∧ ¬〈d〉> ∧ ¬〈d̄〉> ∧ ¬〈s〉s′ ∧ ¬〈ō〉s′ ∧ ¬〈p̄〉s′

The formula ϕr ensures that θ and κ hold in every node reachable by a d edge,

i.e., in every s′′ node. The formula θ forces each s′′ node to have a subject, predicate

and object. The formula f(ϕ) enforces reification (makes sure that each s′′ node

is connected to one subject, one predicate, and one object node). The formula κ

navigates from a s′′ node to every reachable s′ node, and forces the latter not to be

directly connected to other subject, predicate or object nodes.

Proof. (⇒) Assume that ∃KrJf(ϕ)KKr 6= ∅, since ϕr is satisfied by any restricted tran-

sition system, one gets JϕrKKr 6= ∅. Hence it follows that, ∃KrJf(ϕ)KKr 6= ∅ and

JϕrKKr 6= ∅ which imply ∃KrJf(ϕ)KKr ∧ JϕrKKr 6= ∅. From this, using the semantics

of µ-calculus formula, one obtains ∃KrJf(ϕ)∧ϕrKKr 6= ∅. Since a restricted transition

system is also a transition system, Kr ⊆ K, it follows that ∃K.Jf(ϕ) ∧ ϕrKK 6= ∅.
(⇐) Assume that ∃KJf(ϕ) ∧ ϕrKK 6= ∅. We construct a restricted transition system

model Kr = (Sr = S
′
r ∪ S

′′
r , Rr, Lr) and a function g : Kr → K from K = (S,R,L).

Add a node n′0 to Sr with g(n′0) = n0 where f(ϕ) ∧ ϕr is satisfied in K. Suppose

we have constructed a node nr of Sr. For j ∈ {s, p, o}, if there is n ∈ S with

(g(nr), n) ∈ R(j), then pick one such n and add a node n′r to Sr with g(n′r) = n.

In such construction, if there are concurrent s̄, p, o transitions from an S
′′
r node, we

retain one transition for each modality. This is because, if such transitions are part

of the model that satisfy f(ϕ) ∧ ϕr, then they will be under the influence of the con-

straints f(.) and ϕr, and will bear these constraints. However, if they belong to K

that does not satisfy the aforementioned formula, then cutting them will not affect the

capacity of the model to be a model for the formula. Finally, for an atomic proposition

p, Lr(p) = {nr ∈ Sr | g(nr) ∈ L(p)}.
The RDF triple structure is maintained in Kr i.e. 〈(s, s′′), (s′′, p), (s′′, o)〉 is valid

throughout the graph. If there were node pairs outside of this structure, then ϕr
will not be satisfied. Throughout the graph, θ, f(.) and κ ensure that for each triple

node s′′ ∈ Sr, there exists an incoming subject edge, an outgoing property edge, and

an outgoing object edge. Hence, JϕrKKr 6= ∅.
To verify that Jf(ϕ)KKr 6= ∅, it is enough to show that Jf(ϕ)KK 6= ∅ ⇒ Jf(ϕ)KKr 6= ∅
by induction on the structure of f(ϕ).

122 Chapter 5. Containment for a SPARQL Fragment

If a µ-calculus formula ψ appears under the scope of a least µ or greatest ν fixed

point operator over all the programs {s, p, o, d, s̄, p̄, ō, d̄} as, µX.ψ ∨ 〈s〉X ∨ 〈p〉X ∨ · · ·
or νX.ψ ∧ 〈s〉X ∧ 〈p〉X ∧ · · · , then, for the sake of legibility, we denote the formulae

by lfp(X,ψ) and gfp(X,ψ), respectively.

So far we have showed how RDF graphs can be translated into transition systems

over which the µ-calculus formulas are translated. In the following, we propose meth-

ods that are used to encode schema axioms and queries as µ-calculus formulas. Thus,

at a later point, we use these encodings to reduce containment test into the validity

problem.

5.5.2 Encoding ALCH Schemas

In this section, we provide the encoding of ALCH axioms. These encodings are used

together with query encodings to determine if any two queries are contained in each

other.

Definition 7 (µ-calculus encoding of an ALCH schema). Given a set of axioms

c1, c2, ..., cn of a schema C, the µ-calculus encoding of C is:

η(C) = η(c1) ∧ η(c2) ∧ ... ∧ η(cn).

Where η translates each axiom into an equivalent formula using ω which recursively

encodes concepts and roles:

• Concept Inclusion

η(C1 v C2) = gfp
(
X,ω(C1)⇒ ω(C2)

)
ω(⊥) = ⊥
ω(A) = A

ω(¬C) = ¬ω(C)

ω(C1 u C2) = ω(C1) ∧ ω(C2)

ω(∃R.C) = 〈s〉
(
〈p〉R ∧ 〈o〉(〈s〉〈o〉ω(C))

)
ω(∀R.C) = [s]

(
[p]R⇒ [o]([s][o]ω(C))

)
ω(∃R−.C) = 〈ō〉

(
〈p〉R ∧ 〈s̄〉(〈s〉〈o〉ω(C))

)
ω(∀R−.C) = [ō]

(
[p]R⇒ [s̄]([s][o]ω(C))

)
• Role Inclusion

η(R1 v R2) = gfp
(
X,R1 ⇒ R2

)

Next, we provide procedures to translate unions of conjunctive SPARQL queries,

i.e., SPARQL queries that only use UNION and AND, into µ-calculus formulas.

5.6. Encoding SPARQL Query Containment 123

5.6 Encoding SPARQL Query Containment

In this section, we encode queries as µ-calculus formulas. Then, we reduce query

containment under schemas to µ-calculus unsatisfiability test and prove the correctness

of this reduction.

5.6.1 Encoding Queries as µ-calculus Formulae

In this section, we discuss the encoding of the containment problem q1{−→w } v q2{−→w }.
For any query q{−→w }, we call the variables in −→w distinguished or answer variables.

Furthermore, we denote the non-distinguished or existential variables in q by ndvar(q),

the URIs/constants by uris(q), and the distinguished variables by dvar(q). When

encoding q1 v q2, we call q1 left-hand side query and q2 right-hand side query. q1 is a

union of conjunctive SPARQL query whereas q2 is a union of conjunctive SPARQLcdfc

query (cf. Definition 10).

Queries are translated into µ-calculus formulas. The principle of the translation is

that each triple pattern is associated with a sub-formula stating the existence of the

triple somewhere in the graph. Hence, they are quantified by µ so as to put them out of

the context of a state. In this translation, variables are replaced by nominals or some

formula that are satisfied when they are at the corresponding position in such triple

relations. A function called A is used to encode queries inductively on the structure

of query patterns. AND and UNION are translated into boolean connectives ∧ and ∨
respectively.

Encoding left-hand side query:

The encoding of the left hand side query is done by freezing all the terms in the query.

In other words, q is frozen: every term in q becomes a nominal in the µ-calculus.

The function A computes recursively a µ-calculus formula corresponding to q. The

encoding of the SPARQL query is A(q) such that:

A((x, y, z)) = lfp
(
X, 〈s̄〉x ∧ 〈p〉y ∧ 〈o〉z

)
A(q1 AND q2) = A(q1) ∧ A(q2)

A(q1 UNION q2) = A(q1) ∨ A(q2)

In order to encode the right-hand side query, we need to define the notion of cyclic

queries.

Definition 8 (Cyclic Query). A SPARQL query is referred to as cyclic if a transition

graph induced from the query patterns is cyclic. The transition graph3 is constructed

in the same way as the transition system of Definition 6.

3The transition graph is similar to the tuple-graph used in [Calvanese et al. 2008] to detect the
dependency among variables.

124 Chapter 5. Containment for a SPARQL Fragment

Example 9. Let q be the query q{x} = (x, a, y), (y, b, z), (z, c, r), (r, d, y) where ndvar(q) =

{y, z, r} and dvar(q) = {x}. q is cyclic, as shown graphically,

x y

a

s

p

o
z

b

s o

p

r

c

s o

p

d

spo

In this example, the cyclic component involves non-distinguished variables and con-

stants {b, c, d}.

Example 10. Consider the following cyclic query:

q{} = (x, r, y)(y, r, z)(z, r, x)

a graph obtained from the graph patterns is shown below:

x

r

ys o

p

z
s o

p

spo

We can identify various features from this example:

• cyclicity: the query contains a cycle,

• distinguished variable-free: the query does not refer to any distinguished variable,

• constant-free: the query does not refer to any constant.

We refer to such cycles as constant and distinguished variable-free cycles (cdfc) and

denote such queries as SPARQLcdfc.

Definition 9. A cdfc component of a query is a connected component of the query

graph that:

• contains no constants,

• contains no distinguished variables,

• contains a cycle.

Definition 10. SPARQLcdfc is the set of SPARQL queries which do not contain any

cdfc component.

5.6. Encoding SPARQL Query Containment 125

Encoding right-hand side query:

the encoding of the right-hand side query q′ is different from that of the left due to the

non-distinguished variables that appear in cycles in the query. The distinguished vari-

ables and constants are encoded as nominals whereas the non-distinguished variables

ndvar(q′) are encoded as follows:

• If a non-distinguished variable x occurs only once in q′, x is encoded as >.

• If a non-distinguished variable appears multiple times in q′, then we produce a set

of mappings m = {m1, . . . ,mn} such that each mi contains formula assignments

to the non-distinguished variables. m is produced as follows:

– we denote the union of the set of distinguished variables and constants of

q′ by X, i.e., X = uris(q′) ∪ dvar(q′),

– for any triple t = (s, p, o), functions fs, fp, and fo return the subject,

predicate, and object of t respectively,

fs((s, p, o)) = s

fp((s, p, o)) = p

fo((s, p, o)) = o

– for each multiply occurring non-distinguished variable xl, given that {x1, . . . , xk} ∈
ndvar(q′), assign it one of the triple patterns tj ∈ q′ where it appears in,

i.e., xl appears in the triple pattern tj , from that we obtain mi’s as:

mi =
k⋃
l=1

{xl 7→ α(xl, tj) | xl ∈ tj}

α(x, t) =



〈s〉〈p〉fp(t) if x = fs(t) and fp(t) ∈ X

〈s〉〈o〉fo(t) if x = fs(t) and fo(t) ∈ X

〈p̄〉〈s̄〉fs(t) if x = fp(t) and fs(t) ∈ X

〈ō〉〈o〉fo(t) if x = fp(t) and fo(t) ∈ X

〈ō〉〈p〉fp(t) if x = fo(t) and fp(t) ∈ X

〈ō〉〈s̄〉fs(t) if x = fo(t) and fs(t) ∈ X

Note that there is an exponential number of mi’s in terms of the number of

non-distinguished variables. More precisely, there are at most O(nk) map-

pings, where n is the number of triples where non-distinguished variables

appear, and k is the number of non-distinguished variables.

126 Chapter 5. Containment for a SPARQL Fragment

• Finally, the function A uses m to encode the query inductively:

A(q,m) =

|m|∨
i=1

A(q,mi)

A((x, y, z),m) = lfp
(
X, 〈s̄〉d(m,x) ∧ 〈p〉d(m, y) ∧ 〈o〉d(m, z)

)
A(q1 AND q2,m) = A(q1,m) ∧ A(q2,m)

A(q1 UNION q2,m) = A(q1,m) ∨ A(q2,m)

d(m,x) =


ϕ if (x 7→ ϕ) ∈ m
> if unique(x)

x otherwise

The disjuncts in the encoding guarantee that possible set of substitutions m capture

the intended semantics of a cyclic query that contains distinguished variables and

constants in its cyclic component.

Example 11 (SPARQL query encoding). Consider the encoding of q1 v q2 of Exam-

ple 5. To encode q1, we freeze the variables and constants and proceed with A such

that A(q1) = (
lfp
(
X, 〈s̄〉x ∧ 〈p〉translated ∧ 〈o〉l

)
∨ lfp

(
X, 〈s̄〉x ∧ 〈p〉wrote ∧ 〈o〉l

))
∧

lfp
(
X, 〈s̄〉l ∧ 〈p〉type ∧ 〈o〉Poem

)
To encode q2, one first computes m = {m1, . . . ,mn}. Given a multiply appearing

non-distinguished variable l ∈ ndvar(q2), we produce m as follows:

m1 = {l 7→ α(l, (x, translated, l))} = {l 7→ 〈ō〉〈p〉translated}
m2 = {l 7→ α(l, (l, type, Poem))} = {l 7→ 〈s〉〈p〉type}
m3 = {l 7→ α(l, (x,wrote, l))} = {l 7→ 〈ō〉〈p〉wrote}

5.6. Encoding SPARQL Query Containment 127

Using m = {m1,m2,m3}, the encoding of q2 is produced inductively:

A(q2,m) =

|m|∨
i=1

A(q2,mi) = A(q2,m1) ∨ A(q2,m2) ∨ A(q2,m3)

=
(
lfp
(
X, 〈s̄〉x ∧ 〈p〉translated ∧ 〈o〉〈ō〉〈p〉translated

)
∧ lfp

(
X, 〈s̄〉〈ō〉〈p〉translated ∧ 〈p〉type ∧ 〈o〉Poem

)
∨ lfp

(
X, 〈s̄〉x ∧ 〈p〉wrote ∧ 〈o〉〈ō〉〈p〉translated

))
∨(

lfp
(
X, 〈s̄〉x ∧ 〈p〉translated ∧ 〈o〉〈s〉〈p〉type

)
∧ lfp

(
X, 〈s̄〉〈s〉〈p〉type ∧ 〈p〉type ∧ 〈o〉Poem

)
∨ lfp

(
X, 〈s̄〉x ∧ 〈p〉wrote ∧ 〈o〉〈s〉〈p〉type

))
∨(

lfp
(
X, 〈s̄〉x ∧ 〈p〉translated ∧ 〈o〉〈ō〉〈p〉wrote

)
∧ lfp

(
X, 〈s̄〉〈ō〉〈p〉wrote ∧ 〈p〉type ∧ 〈o〉Poem

)
∨ lfp

(
X, 〈s̄〉x ∧ 〈p〉wrote ∧ 〈o〉〈ō〉〈p〉wrote

))
So far we offered various functions to produce formulas corresponding to the en-

codings of queries and schema axioms. Hence, the problem of containment under a

schema can be reduced to formula unsatisfiability in the µ-calculus as:

q vC q′ ⇔ η(C) ∧ A(q) ∧ ¬A(q′,m) ∧ ϕr is unsatisfiable.

For the sake of legibility in writing, we use Φ(C, q, q′) to denote η(C)∧A(q)∧¬A(q′,m)∧
ϕr.

5.6.2 Reducing Containment to Unsatisfiability

We prove the correctness of reducing query containment to unsatisfiability test.

Lemma 3. Given a set of ALCH schema axioms C, C has a model iff η(C) is satisfiable.

Proof. (⇒) assume that there exists a model I = (∆I , .I) of C such that I |= C. We

build a restricted transition system K = (S,R,L) from I using the following:

• for each element of the domain e ∈ ∆I , we create a node ne ∈ S′,

• for each atomic concept A, if a ∈ AI , then (na, t) ∈ R(s), (t, ntype) ∈ R(p),

(t, nA) ∈ R(o), L(type),= ntype, L(A) = nA and L(a) = na where t ∈ S′′,

• for each atomic role R, if (x, y) ∈ RI , then (nx, t) ∈ R(s), (t, nR) ∈ R(p), and

(t, ny) ∈ R(o) such that nx, ny, nR ∈ S′, t ∈ S′′, and L(x) = nx, L(R) = nR,

L(y) = ny,

• S = S′ ∪ S′′

To show that η(C) is satisfiable in K. We proceed inductively on the construction of

the formula. Since the axioms, {c1, . . . , cn}, are made of role or concept inclusions or

transitivity, we consider the following cases:

128 Chapter 5. Containment for a SPARQL Fragment

− when η(ci) = gfp
(
X,ω(C1)⇒ ω(C2)

)
. Since CI1 ⊆ CI2 , we get that Jω(C1)KK ⊆

Jω(C2)KK . And hence, ω(C1) ⇒ ω(C2) is satisfiable in K. Besides, the gen-

eral recursion ν guarantees that the constraint is satisfied in each state of the

transition system. Therefore, η(ci) is satisfiable.

− when η(ci) = gfp
(
X,ω(r1)⇒ ω(r2)

)
. From rI1 ⊆ rI2 we have that ∃nr1 ∈ L(r1)

implies ∃nr2 ∈ L(r2) in K. Thus, ∃s ∈ Jω(r1)⇒ ω(r2)KK . As K is a construction

of I, η(ci) is satisfiable in K.

Since K is a model of each η(ci), then η(C) is satisfiable.

(⇐) consider a transition system model K for η(C). From K, we construct an inter-

pretation I = (∆I , .I) and show that it is a model of C.

• ∆I = S, AI = JAKK for each atomic concept A,

• >I = J>KK , for a top concept,

• rI = {(s, s′) | ∀t ∈ JrKK ∧ t′ ∈ S ∧ (s, t′) ∈ R(s) ∧ (t′, t) ∈ R(p) ∧ (t′, s′) ∈ R(o)}
for each atomic role r,

Consequently, formulas such as gfp
(
X,ω(r1)⇒ ω(r2)

)
and gfp

(
X,ω(C1)⇒ ω(C2)

)
are

true in I. The first formula expresses that there is no node in the transition system

where ω(r1) holds and ω(r2) does not hold. This is equivalent to ω(r1) ⇒ ω(r2)

and Jr1KK ⊆ Jr2KK since r1 and r2 are basic roles. Thus, we obtain rI1 ⊆ rI2 and

I |= r1 v r2.

On the other hand, for the latter formula from above, one can exploit its construc-

tion. Note however that, similar justifications as above can be worked out to arrive

at I |= C1 v C2 if C1 and C2 are basic concepts. Nonetheless, if they are complex

concepts, we proceed as below. Consider the case when C1 = A u B and C2 = ∃R.C,

Jω(C1)⇒ ω(C2)KK

⇔ Jω(A uB)KK ⊆ Jω(∃R.C)KK

⇔ JA ∧BKK ⊆ J〈s〉
(
〈p〉R ∧ 〈o〉(〈s〉〈o〉C)

)
KK

⇔ JAKK ∧ JBKK ⊆ {s | ∃s′.s ∈ J〈s〉〈p〉RKK ∧ s′ ∈ J〈s〉〈o〉CKK}
⇔ AI ∩BI ⊆ {s | ∃s′.(s, s′) ∈ RI ∧ s′ ∈ CI}
⇔ (A uB)I ⊆ (∃R.C)I

⇔ I |= C1 v C2

Accordingly, from I |= c1 ∧ · · · ∧ I |= cn, it follows that I |= C.

Theorem 2 ([Hayes 2004]). Given a query q{−→w }, there exists an RDF graph G such

that Jq{−→w }KG 6= ∅.

Proof. (Sketch) From any query it is possible to build an homomorphic graph by

collecting all triples connected by AND and only those at the left of UNION (replacing

variables by blanks). This graph is consistent as all RDF graphs. It is thus a graph

satisfying the query.

5.6. Encoding SPARQL Query Containment 129

Lemma 4. Let q be a SPARQLcdfc query, for every restricted transition system K

whose associated RDF graph is G, we have that JqKG 6= ∅ iff JA(q,m) ∧ ϕrKK 6= ∅.

Proof. (⇒) Assume that JqKG 6= ∅ and consider that G is a canonical instance of q (cf.

Theorem 2). Using G, we construct a restricted transition system σ(G) = (S,R,L) in

the same way as it is done in Definition 6. To prove that σ(G) is a model of A(q,m),

we consider two cases:

(i) when q is cyclic-free, and

(ii) when q contains a cyclic component among its non-distinguished variables which

is not distinguished variable-free or constant-free

Firstly, (i) if q is cycle-free, then encoding the non-distinguished variables with >
suffices to justify that σ(G) is a model of its encoding.

Secondly, (ii) let us consider when q is cyclic, in this case, its encoding is

|m|∨
i=1

A(q,mi).

This disjunctive formula can encode multiply occurring non-distinguished variables

using the distinguished variables and constants of q. Henceforth, creating a formula

that is satisfiable in cyclic models.

It can be verified that σ(G) is a model for one of the disjuncts A(q,mi), this is

because nominals encoding the constants and distinguished variables are true in σ(G)

as they exist already in G. In addition, the formulae encoding the non-distinguished

variables are satisfied in σ(G), since these variables are encoded in terms of the dis-

tinguished variables and constants of the query which are already shown to be true in

σ(G). Therefore, A(q,m) is satisfiable in σ(G). To elaborate, if (x, y, z) ∈ q and l is

either x or y or z,

• for l either a distinguished variable or constant, the translation of l is satisfiable

in σ(G) since JlKσ(G) ∈ L(l),

• for l a uniquely appearing non-distinguished variable, the translation of l is true

in σ(G) since its encoding > is true everywhere in the transition system,

• the translation l of a multiply occurring non-distinguished variable is true in

σ(G) since ∃t ∈ S′. t ∈ L(c) ∧ t ∈ JcKσ(G), where c is a constant or distinguished

variable in the triple (x, y, z).

Thus, since σ(G) is a restricted transition system, we obtain that JA(q,m)ϕrKG 6= ∅.
(⇐) Assume that JA(q,m) ∧ ϕrKK 6= ∅. From this we can derive that, K = (S,R,L)

is restricted transition system that satisfies A(q,m) ∧ ϕr. We build an RDF graph G

from K as follows:

• ∀s1, s2, s3 ∈ S′ ∧ t ∈ S′′.(s1, t) ∈ R(s) ∧ (t, s2) ∈ R(p) ∧ (t, s3) ∈ R(o) and for

each triple ti = (xi, yi, zi) ∈ q if s1 ∈ L(xi)∧ s2 ∈ L(yi)∧ s3 ∈ L(zi)∧ zi ∈ J>KK ,

then (xi, yi, zi) ∈ G. This case holds if xi, yi and zi are either distinguished

variables or constants. Note here that if xi or yi or zi appear in another triple

130 Chapter 5. Containment for a SPARQL Fragment

tj = (xj , yj , zj) ∈ q, then the equivalent item in tj is replaced with the value of

the corresponding entry in ti.

• ∀s1, s2, s3 ∈ S′ ∧ t ∈ S′′.(s1, t) ∈ R(s) ∧ (t, s2) ∈ R(p) ∧ (t, s3) ∈ R(o) and for

each triple ti = (xi, yi, zi) ∈ q if s1 ∈ L(xi) ∧ s2 ∈ L(yi), then (xi, yi, ci) ∈ G

where ci is a fresh constant. This case holds if zi is a non-distinguished variable.

Similarly, the case when xi or yi or both are variables can be worked out.

• ∀s1, s2, s3 ∈ S′∧ t ∈ S′′.(s1, t) ∈ R(s)∧ (t, s2) ∈ R(p)∧ (t, s3) ∈ R(o) and for each

triple ti = (xi, yi, zi) ∈ q and xi is a non-distinguished variable that appears in a

cycle and if s1 ∈ J>KK ∧ s2 ∈ L(yi) ∧ s3 ∈ L(zi), then (ci, yi, zi) ∈ G. Where ci
is a fresh constant and all such occurrences of the variable xi in other triples are

replaced by ci’s.

Since G is a technical construction obtained from a restricted transition system that

associated with q, then it holds that JqKG 6= ∅.

In the following, for the sake of legibility, we denote η(C)∧A(q1)∧¬A(q2,m)∧ϕr
by Φ(C, q1, q2).

Theorem 3 (Soundness). Given a SPARQL query q1{−→w }, a SPARQLcdfc query q2{−→w },
and a set of ALCH axioms C, if Φ(C, q1, q2) is unsatisfiable, then q1{−→w } vC q2{−→w }.

Proof. We show the contrapositive. If q1 6vC q2, then Φ(C, q1, q2) is satisfiable. One

can verify that every model G of C in which there is at least one tuple satisfying

q1 but not q2 can be turned into a transition system model for Φ(C, q1, q2). To do

so, consider a graph G that satisfies schema axioms C. Assume also that there is

a tuple −→a ∈ Jq1KG and −→a 6∈ Jq2KG. Let us construct a transition system K from

G. From Lemma 3, we obtain that Jη(C)KK 6= ∅. Further, since K is a restricted

transition system (cf. Definition 6), JϕrKK 6= ∅. At this point, it remains to verify that

JA(q1)KK 6= ∅ and JA(q2,m)KK = ∅.
Let us construct the formulas A(q1) and A(q2,m) by first skolemizing the distin-

guished variables using the answer tuple −→a . Consequently, from Lemma 4 one obtains,

JA(q1)KK 6= ∅. However, JA(q2,m)KK = ∅, this is because the nominals in the formula

corresponding to the constants and non-distinguished variables are not satisfied in K.

This implies that J¬A(q2,m)KK 6= ∅. This is justified by the fact that if a formula ϕ is

satisfiable in a restricted transition system, then JϕKK = S thus J¬ϕKK = ∅. So far we

have: Jη(C)KK 6= ∅ and JϕrKK 6= ∅ and JA(q1)KK 6= ∅ and J¬A(q2,m)KK 6= ∅. Without

loss of generality, JΦ(C, q1, q2)KK 6= ∅. Therefore, Φ(C, q1, q2) is satisfiable.

Theorem 4 (Completeness). Given a SPARQL query q1{−→w }, a SPARQLcdfc query

q2{−→w }, and a set of ALCH axioms C, if Φ(C, q1, q2) is satisfiable, then q1{−→w } 6vC
q2{−→w }.

Proof. Φ(C, q, q′) is satisfiable ⇒ ∃K.JΦ(C, q, q′)KK 6= ∅. Consequently, K is a re-

stricted transition system due to JϕrKK 6= ∅ (cf. Proposition 1). Using K = (S′ ∪
S′′, R, L) we construct a model I = (∆I , ·I) of C such that q 6v q′ holds:

5.6. Encoding SPARQL Query Containment 131

• ∆I = S′, AI = JAKK for each atomic concept A,

• >I = J>KK , for a top concept,

• rI = {(s, s′) | ∀t ∈ JrKK ∧ t′ ∈ S′′ ∧ (s, t′) ∈ R(s) ∧ (t′, t) ∈ R(p) ∧ (t′, s′) ∈ R(o)}
for each atomic role r,

• for each constant c in q and q′, cI = JcKK ,

• for each distinguished and non-distinguished variable v in q, vI = JvKK , and

• for each distinguished variable v in q′, vI = JvKK .

One can utilize Lemma 3 to verify that indeed I is a model of C. Thus, it remains to

show that JqKI 6⊆ Jq′KI . From our assumption, one anticipates the following:

JA(q) ∧ ¬A(q′)KK 6= ∅ ⇒ JA(q)KK 6= ∅ and J¬A(q′,m)KK 6= ∅
⇒ JA(q)KK 6= ∅ and JA(q′,m)KK = ∅

Note here that, if a formula ϕ is satisfiable in a restricted transition system Kr, then

JϕKKr = S. We use a function f to construct an RDF graph G from the interpretation

I. f uses assertions in I to form triples:

f(a ∈ AI) = (a, type, A) ∈ G
f((a, b) ∈ rI) = (a, r, b) ∈ G

f((a, b) ∈ (r−)I) = (b, r, a) ∈ G
f((x, y, z)) = (x, y, z) ∈ G, ∀(x, y, z) ∈ q

As a consequence, JqKG 6= ∅ and Jq′KG = ∅ because G contains all those triples that

satisfy q and not q′. Therefore, we get JqKG 6⊆ Jq′KG. Fundamentally, there are two

issues to be addressed (i) when q′ is not cyclic and (ii) when q′ contains a cycle. (i)

if there are no cycles in q′, then replacing non-distinguished variables with > suffices

(cf. the proof of Lemma 4). On the other hand, (ii) can be dealt with nominals, i.e.,

since cycles can be expressed by a formula in a µ-calculus extended with nominals

and inverse, cyclic queries can be encoded by such a formula. Hence, the constraints

expressed by ¬A(q′,m) are satisfied in a transition system containing cycles

5.6.3 Complexity

In the following, we establish the complexity of the containment problem under schema

axioms. The schema axioms can be formed using the fragments of ALCH. The ex-

pressiveness of the schema language is limited as such due to the expressive power

of the logic used for the encoding: µ-calculus with nominals and converse becomes

undecidable when extended with graded modalities [Bonatti et al. 2006].

Proposition 2 (Query satisfiability). Given an ALCH schema C and a query q, the

complexity of satisfiability of q with respect to C is 2O(|C|+|q|).

132 Chapter 5. Containment for a SPARQL Fragment

Proposition 3. SPARQL query containment under the fragments of ALCH schema

axioms can be determined in a time of 2O(n2log n) where n = O(|η(C)|+|A(q1)|+|A(q2)|)
is the size of the formula, and η(C), A(q1) and A(q2) denote the encodings of schema

axioms C, and queries q1 and q2.

Note that due to duplication in the encoding of q2, the size of |A(q2)| is exponential

in terms of the non-distinguished variables that appear in cycles in the query. Hence,

we obtain a 2EXPTIME upper bound for containment. As pointed out in [Calvanese

et al. 2008], the problem is solvable in EXPTIME if there is no cycle on the right hand

side query.

5.7 Experimental Investigations

To the best of our knowledge, no experimental evaluation of SPARQL query con-

tainment has been performed so far. Due to the relatively high complexity of this

problem, it is important to know if the proposed solutions can be applied in practice.

Moreover, well established benchmarks for query containment would help fostering the

development and improvement of solvers.

The overall purpose of the remaining sections is to design a benchmark suite for

testing SPARQL query containment and to evaluate the performance of current solvers.

For that purpose, we analyze state-of-the-art solver capabilities as well as actual queries

being asked on the web. This allows us to identify two classes of solvers addressing

different types of problems: some solvers [Letelier et al. 2012] are restricted to conjunc-

tive queries without projections, some other techniques based on query translations

into the µ-calculus [Chekol et al. 2012b] are so far restricted to acyclic queries without

OPTIONAL. The analysis of DBPedia query logs show that more than 90% of correct

queries are acyclic, queries being distributed in large sets of DAG and tree queries. In

the sequel, our experiments focus exclusively on acyclic queries.

We designed three test sets involving: conjunctive queries without projection, union

of conjunctive queries with projection and union of conjunctive queries to be analyzed

with respect to an RDF Schema. We also provide an evaluation protocol allowing

to run the exact same queries through a specific interface and wrapped the three

considered tools. We run these tests and observe the capabilities of different solvers in

the different categories of tests.

Hence the contribution of this experimental part is threefold: (i) the analysis of

the demographics of SPARQL queries actually produced on the web, (ii) the design of

benchmark suites for evaluating query containment solver capabilities, (iii) the eval-

uation of three different solvers through these benchmarks. The proposed benchmark

suites as well as our testing and analysis tools are available on the web and we expect

that this will motivate others to produce even better query containment solvers.

Outline of the sequel: we present the state of the art in SPARQL query con-

tainment solvers and analyze the query landscape (§5.8). From this, we design our

5.8. Query Containment Solvers 133

benchmark suite (§5.9). Finally, we report evaluation experiments for the three avail-

able systems and discuss the results (§5.10).

5.8 Query Containment Solvers

We briefly present three state-of-the-art query containment solvers used in the exper-

iments. Our goal is to characterize their capabilities in order to design appropriate

benchmarks. In order to do so, we also analyze actual queries used on the semantic

web.

Out of the three systems, SPARQL-Algebra is self contained whereas the other

two are µ-calculus satisfiability solvers that need an intermediate query translation

into formulas to determine containment.

5.8.1 SPARQL-Algebra

SPARQL-Algebra is an implementation of SPARQL query subsumption and equiva-

lence based on the theoretical results in [Letelier et al. 2012]. This implementation

supports AND and OPTIONAL queries with no projection. An on-line version of the

solver is available at http://db.ing.puc.cl/sparql-algebra/.

5.8.2 AFMU

AFMU (Alternation Free two-way µ-calculus) [Tanabe et al. 2005] is a satisfiability

solver for the alternation-free fragment of the µ-calculus [Kozen 1983]. It is a pro-

totype implementation which determines the satisfiability of a µ-calculus formula by

producing a yes-or-no answer.

To turn it into a query containment solver, it is necessary to turn the problem into

a µ-calculus satisfiability problem.

We developed techniques for encoding queries into the µ-calculus (A) in order to de-

termine the containment of SPARQL queries [Chekol et al. 2012a,Chekol et al. 2012b].

Of the three approaches introduced in [Chekol et al. 2012a] to deal with RDFS, we

have chosen the encoding of the schema (η) into the µ-calculus. We use these encoding

schemes for deciding q vS q′: it is necessary to check if the encoding of its negation,

η(S)∧A(q)∧¬A(q′), is satisfiable. If this is the case, then containment does not hold,

otherwise, it is established.

5.8.3 TreeSolver

The XML tree logic solver TreeSolver4 performs static analysis of XPath queries which

comprise containment, equivalence and satisfiability. To perform these tasks, the solver

translates XPath queries into µ-calculus formulas and then tests the unsatisfiability

of the formula. Unlike AFMU, the unsatisfiability test is performed in time of 2O(n)

whereas it is 2O(n logn) for AFMU, such that n is the size of the formula.

4http://wam.inrialpes.fr/websolver/

http://db.ing.puc.cl/sparql-algebra/
http://wam.inrialpes.fr/websolver/

134 Chapter 5. Containment for a SPARQL Fragment

System projection UCQ optional blanks cycles RDFS

SPARQL-Algebra
√ √

AFMU
√ √ √ √

TreeSolver
√ √ √ √

Table 5.5: Comparison of features supported by current systems.

5.8.4 Features supported by solvers

A summary of the features supported by actual implementations of query containment

solvers is presented in Table 5.5.

Part of the query structures can be transformed into concept expressions in de-

scription logics and submitted to satisfiability (or subsumption) tests as well. So,

in principle, query containment solvers based on description logic reasoners could be

designed. However, we do not know any such solver.

5.8.5 State of the query landscape

To the best of our knowledge, no experimental work has been conducted to verify how

many of real world queries are acyclic or cyclic. To answer this question, we analyzed

DBpedia query logs5. We report on two log sets because there is a lot of variation

between them. 2 905 035 queries from the logs were syntactically correct (90%). The

results are given in Table 5.6. We tested the cyclicness of queries and found out that

more than 90% of these queries are acyclic (94% of the small sample and 99% on the

total). This justifies designing and evaluating acyclic queries. Projection is used in

11% of the large log and 22% of the smaller one, but such figures more than double if

only ”SELECT *” queries are counted as projection-free queries.

OPTIONAL are used in around 30% of queries, whereas UNION is used in 18% of

those in the full log and 43% in the large one. Union of conjunctive queries with

optional are 15 to 30% of the logs. This make them operators to be supported in

query containment.

5.9 Benchmark Design

We first present the design of containment benchmark suites. Each test suite is made

of elementary test cases asking for the containment of one query into another. We

then introduce the principles and software used for evaluating containment solvers.

The benchmark and software is available on-line at http://sparql-qc-bench.
inrialpes.fr/.

5DBpedia 3.5.1 logs (ftp://download.openlinksw.com/support/dbpedia/) contain 3 210 368
queries between 30/04/2010 and 20/07/2010 and 378 530 queries of 13/07/2010 only.

http://sparql-qc-bench.inrialpes.fr/
http://sparql-qc-bench.inrialpes.fr/
ftp://download.openlinksw.com/support/dbpedia/

5.9. Benchmark Design 135

projection no projection

operator tree dag cycle tree dag cycle

none 175 220 562 1 1 534 150 1 761 1 748

union 9 26 625 547 24 29 629 1 166

opt 2 052 685 0 311 608 722 1

filter 7 912 711 6 264 821 340 1

un-opt 0 306 0 0 12 659 1

opt-filt 7 991 779 0 4 933 52 401 0

filt-un 2 183 0 23 802 12 286 0

un-opt-filt 0 102 765 0 0 302 657 23 969

Table 5.6: Query characteristics of the full DBPedia logs.

5.9.1 Structure of the benchmark

There are three qualitative dimensions along which tests can be designed: the type of

graph pattern connectors (AND, UNION, MINUS, Projection, OPTIONAL, FILTER etc.),

the type of ontology: (no schema, RDFS, SHI, OWL, etc.) and the query structure

(tree, DAG, cyclic). In addition to these dimensions, quantitative measures are:

• the number of triple patterns,

• the number of variables,

• the number of triple patterns involving more than one variable (Tjoins),

• the size of the ontology.

We designed test suites of homogeneous qualitative dimensions selected with re-

spect to the capacity of the current state-of-the-art solvers. The benchmark contains

three test suites:

• Conjunctive Queries with No Projection (CQNoProj)

• Union of Conjunctive Queries with Projection (UCQProj)

• Union of Conjunctive Queries under RDFS reasoning (UCQrdfs)

The test suites are designed to model increasing expected difficulty by using more

constructors. We did not provide tests of cyclic queries since only one solver is currently

able to deal with them. However, this would be a natural addition to these tests.

Each test suite contains tests of different quantitative measures. Most of them are

used for conformance testing, i.e., testing that solvers return the correct answer, but

we also identify some stress tests trying to evaluate solvers at or beyond their limits.

We discuss these test suites below.

5.9.1.1 CQNoProj

This test suite is designed for containment of basic graph patterns. It contains conjunc-

tive queries with no projection. We have identified 20 different test cases (nop1–nop20),

136 Chapter 5. Containment for a SPARQL Fragment

Test case Problem A
N

D

V
ar

s

T
jo

in

nop1 Q1a v Q1b 1
1

0

nop2 Q1b v Q1a 0 0

nop3 Q2a v Q2b 5
3

3

nop4 Q2b v Q2a 5 3

nop5 Q3a v Q3b 2
2

2

nop6 Q3b v Q3a 1 1

nop7 Q4c v Q4b 5
3

2

nop8 Q4b v Q4c 3 2

nop9 Q6a v Q6b 2
3

1

nop10 Q6b v Q6a 2 1

Test case Problem A
N

D

V
ar

s

T
jo

in

nop11 Q6a v Q6c 2
3

1

nop12 Q6c v Q6a 0 1

nop13 Q6b v Q6c 2
3

1

nop14 Q6c v Q6b 0 1

nop15 Q7a v Q7b 9
10

9

nop16 Q7b v Q7a 10 9

nop17 Q8a v Q8b 3
4

3

nop18 Q8b v Q8a 2 3

nop19 Q9a v Q9b 4
3

2

nop20 Q9b v Q9a 4 2

Table 5.7: The CQNoProj testsuite. In the AND column, figures correspond to the
number of AND in the left-hand side query of the test. Vars is the number of variables
in each queries and Tjoin the number of triples in which occurs at least two variables.

each one testing containment between two queries. All the cases in this setting are

shown in Table 5.7, along with the number of connectives and variables in the queries.

The more difficult test used for stress testing are nop3, nop4, nop15, and nop16. The

two former ones have a larger number of conjunction (and of Tjoin), while the two lat-

ter ones have an even larger number of conjunctions and variables. We have selected

Tjoins (triples having two variables) as a measure of difficulty because simple triple

joins may be compiled efficiently as tuples.

The worse case complexity of CQ without projection containment is PTime [Chekuri

& Rajaraman 1997].

5.9.1.2 UCQProj

This test suite is made of 28 test cases, each comprising two acyclic union of conjunctive

queries with projection. In fact, 14 tests contain projection only, 6 tests contains union

only and 2 tests contains both (see Table 5.8). The test cases differ in the number

of distinguished variables (Dvars) and connectives (conjunction or union). Particular

stress tests are p3, p4 (without union nor projection), p15, p16, p23, and p24.

The worse case complexity of UCQ with projection containment is NP-complete

with cycles [Chandra & Merlin 1977], it is unknown for acyclic queries.

5.9.1.3 UCQrdfs

In query containment under RDFS reasoning, there are 28 test cases (Table 5.9). In

comparison to the test cases in UCQProj and CQNoProj setting, the size of the queries

is small. Each test case is composed of two acyclic UCQs and a schema. There are

4 different small schemas, C1–C4 whose characteristics, with respect to the type and

number of axioms, are presented in Table 5.9. These small schemas are used for testing

5.9. Benchmark Design 137

T
es

t
ca

se

Problem A
N

D

U
N

IO
N

D
va

rs

V
ar

s

T
jo

in

p1 Q11a v Q11b 1 0
1

1 0

p2 Q11b v Q11a 0 0 1 0

p3 Q12a v Q12b 5 0
3

3 3

p4 Q12b v Q12a 5 0 3 3

p5 Q13a v Q13b 2 0
2

2 2

p6 Q13b v Q13a 1 0 2 1

p7 Q14c v Q14b 3 0
1

3 2

p8 Q14b v Q14c 5 0 3 2*

p9 Q15a v Q15b 0 0
2

3 1

p10 Q15b v Q15a 0 0 2 1

p11 Q16a v Q16b 2 0
1

3 1

p12 Q16b v Q16a 2 0 3 1

p13 Q16a v Q16c 2 0
1

3 1

p14 Q16c v Q16a 0 0 3 1

T
es

t
ca

se

Problem A
N

D

U
N

IO
N

D
va

rs

V
ar

s

T
jo

in

p15 Q17a v Q17b 9 0
10

10 9

p16 Q17b v Q17a 10 0 11 10

p17 Q18a v Q18b 3 0
4

4 3

p18 Q18b v Q18a 2 0 4 3

p19 Q19a v Q19b 4 0
2

3 2

p20 Q19b v Q19a 4 0 3 2

p21 Q19c v Q19b 4 0
2

4 3

p22 Q19b v Q19c 4 0 3 2

p23 Q20a v Q20b 2 7
10

10 9

p24 Q20b v Q20a 8 1 10 9

p25 Q21a v Q21b 6 2
2

4-6 5

p26 Q21b v Q21a 8 0 6 5

p27 Q22a v Q22b 3 1
2

2 2

p28 Q22b v Q22a 3 1 2 2

Table 5.8: The UCQProj test suite.

the correctness of solvers and are not realistic schemas. The most difficult tests are

supposed to be rdfs23, rdfs24, rdfs25, rdfs26, rdfs27 and rdfs28 with both projection

and union.

The worse case complexity of UCQ under RDFS has an ExpTime upper bound

[Chekol et al. 2012a].

5.9.2 Benchmarking software architecture

For testing containment solvers, we designed an experimental setup which comprises

several software components. This setup is illustrated in Figure 5.6. It simply considers

a containment checker as a software module taking as input two SPARQL queries (q

and q′), eventually an RDF Schema (S), and returning true or false depending if q′ is

entailed by q (under the constraints of S).

This has been provided as a Java interface using Jena to express queries and RDF

Schema. We have developed three wrappers implementing this interface for the three

tested systems. Other systems may be wrapped in the same interface (dashed rectan-

gles in Figure 5.6) and tested in the same conditions. This platform may also be used

for providing non regression tests for containment solvers.

Tests proceeds by providing test cases to the interface, timing the execution of the

containment test around this common interface call. So timing occurs at the frontier

of the dashed box of Figure 5.6, i.e., after query and schema parsing. This advantages

138 Chapter 5. Containment for a SPARQL Fragment

Schema Axiom types

C1 subclass (2)
C2 domain (1) and range (1)
C3 subclass (1), subproperty (2) and domain (1)
C4 subclass (1)

Test O
n
to

lo
gy

Problem A
N

D

U
N

IO
N

D
va

rs

V
a
rs

T
jo

in

rdfs1
C1

Q39a v Q39c 0 0
1

1 0

rdfs2 Q39c v Q39a 0 1 1 0

rdfs3
C1

Q39a v Q39b 0 0
1

1 0

rdfs4 Q39b v Q39a 0 0 1 0

rdfs5
C1

Q39b v Q39c 0 0
1

1 0

rdfs6 Q39c v Q39b 0 1 1 0

rdfs7
C1

Q39d v Q39e 4 0
1

3 2

rdfs8 Q39e v Q39d 4 0 3 2

rdfs9
C2

Q40b v Q40d 0 0
1

2 1

rdfs10 Q40d v Q40b 0 0 1 0

rdfs11
C2

Q40e v Q40b 1 0
1

2 2

rdfs12 Q40b v Q40e 0 0 1 0

rdfs13
C3

Q41b v Q41c 0 0
1

2 1

rdfs14 Q41c v Q41b 0 0 2 1

rdfs15
C3

Q41b v Q41d 0 0
1

2 1

rdfs16 Q41d v Q41b 0 0 2 1

rdfs17
C3

Q41c v Q41d 0 0
1

2 1

rdfs18 Q41d v Q41c 0 0 2 1

rdfs19
C3

Q41b v Q41a 0 0
1

2 1

rdfs20 Q41a v Q41b 0 0 1 0

rdfs21
C3

Q41e v Q41a 0 1
1

2 2

rdfs22 Q41a v Q41e 0 0 1 0

rdfs23
C4

Q43a v Q43b 3 1
2

2 2

rdfs24 Q43b v Q43a 3 1 2 2

rdfs25
C4

Q43a v Q43c 3 1
2

2 2

rdfs26 Q43c v Q43a 3 1 2 2

rdfs27
C4

Q43b v Q43c 3 3
2

2 2

rdfs28 Q43c v Q43b 3 1 2 2

Table 5.9: The UCQrdfs test suite.

SPARQL-Algebra, because it works directly on the ARQ representation, whereas the

two other solvers have first to translate the ARQ representation into a µ-calculus

5.10. Experimental Results 139

q q′ S

ARQ Parser ARQ Parser Jena parser

µ-calculus
Encoder 1

µ-calculus
Encoder 2SPARQL-

Algebra
AFMU TreeSolver

q vS q′?

Figure 5.6: Experimental setup for testing query containment. The tester (plain rect-
angle) parses queries and schemas and passes them to a solver wrapper (dashed rect-
angle).

formula which is then parsed and transformed in each solver’s internal representation.

5.10 Experimental Results

We evaluated the three identified query containment solvers with the three test suites.

Rather than a definitive assessment of these solvers, our goal is to give first insights

into the state-of-the-art and highlight deficiencies of engines based on the benchmark

outcome. None of these systems is sharply optimized. However, their behavior is

sufficient for highlighting test difficulty.

We run the experiments with an ordinary laptop computer running Mac OS X

(specifically a 2.7 Ghz MacBook Pro with 16GB RAM).

The solvers were not genuinely reentrant. Hence, each test case has been run in a

separate process after that the first case of each suite has been run as a warm up.

All solvers are Java programs. The Java virtual machines were run with maximum

heap size of 2024MB and a timeout at 20s (20000ms). Raising memory size to 1GB and

timeout to 40s does not change timeout results. The µ-calculus solvers take advantage

of a native BDD library. Using the native implementation doubles the speed of these

solvers, however, it also brings large initialization time (in spite of warm-up set up).

Reported figures are the average of 5 runs (we run the tests 7 times and ruled out

each time the best and worse performance).

5.10.1 CQNoProj Results

On the conjunctive queries without projection, the SPARQL Algebra implementation

is at least 10 times faster than the µ-calculus implementations (Figure 5.7). This comes

as no surprise, since the latter are exponential time solvers whereas the former is a

polynomial time solver.

140 Chapter 5. Containment for a SPARQL Fragment

AFMU times out on stress tests (nop3, nop4, nop15 and nop16). This happens

whenever containment is determined between queries that contain more than 10 joins,

such as in test cases nop15 and nop16. TreeSolver is able to deal with such cases albeit

at the price of long response times. Overall, TreeSolver outperforms AFMU.

The fact that SPARQL-Algebra does not suffer from these sets, shows that the

encoding of the µ-calculus solvers can be improved for such practical cases.

SPARQL-Algebra responded incorrectly, in test case nop7 (cf. Table 5.7), when

blank nodes are used in the queries. It is not expected to deal with blank nodes. The

other solvers are able to take them into account.

ms

n
op

1
n
op

2
n
op

3
n
op

4
n
op

5
n
op

6
n
op

7
n
op

8
n
op

9
n
op

10
n
op

11
n
op

12
n
op

13
n
op

14
n
op

15
n
op

16
n
op

17
n
op

18
n
op

19
n
op

20

100

101

102

103

SPARQL-Algebra TreeSolver AFMU

Figure 5.7: Results for the CQNoProj test suite (logarithmic scale).

5.10.2 UCQProj Results

On the UCQProj test suite (see Section 5.9.1.2), we compared the two systems able

to deal with UNION: TreeSolver and AFMU. Figure 5.8 shows that the performances

of AFMU and TreeSolvers are roughly comparable with the notable exception that

TreeSolver answers for cases where AFMU fails. Specifically, TreeSolver times out

only on test p24, while AFMU cannot deal with all stress tests: p3-p4, p15-p16, p23-

p26. For this test suite, the necessary run time tends to be far longer as it often ends

up in filling the available heap. For some of these tests (p15-16), performances could

certainly be improved by adopting a better encoding of triples.

ms

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

p
11

p
12

p
13

p
14

p
15

p
16

p
17

p
18

p
19

p
20

p
21

p
22

p
23

p
24

p
25

p
26

p
27

p
28

102

103

104
TreeSolver AFMU

Figure 5.8: Results for the UCQProj test suite (logarithmic scale).

5.10. Experimental Results 141

5.10.3 UCQrdfs Results

The results for containment of acyclic UCQs under RDFS (cf. Section 5.9.1.3) are

given in Figure 5.9. They show that both solvers answer containment queries within

a few hundreds of milliseconds. In this tests, TreeSolver clearly outperforms AFMU.

Out of 28 tests, TreeSolver is much faster than AFMU in 23 tests, whereas AFMU is

slightly faster than TreeSolver in 5 tests.

For both solvers, tests rdfs7 and rdfs8 as well as tests rdfs23-28 have been signifi-

cantly more difficult than the other tests. This should not be due to the C4 ontology

which is reduced to only one subsumption assertion, but rather to the presence of

UNION and projection.

AFMU returns an incorrect answer for rdfs9 which seems to be a bug in the solver.

ms

rd
fs

1
rd

fs
2

rd
fs

3
rd

fs
4

rd
fs

5
rd

fs
6

rd
fs

7
rd

fs
8

rd
fs

9
rd

fs
10

rd
fs

11
rd

fs
12

rd
fs

13
rd

fs
14

rd
fs

15
rd

fs
16

rd
fs

17
rd

fs
18

rd
fs

19
rd

fs
20

rd
fs

21
rd

fs
22

rd
fs

23
rd

fs
24

rd
fs

25
rd

fs
26

rd
fs

27
rd

fs
28

0

1,000

2,000 TreeSolver AFMU

Figure 5.9: Results for the UCQrdfs test suite.

5.10.4 Discussion

In summary, all solvers under all experimental settings responded positively i.e., they

all determined containment correctly under their stated application limits (we tested

this independently). However, from these experiments, a lot remains to be done in

order to alleviate the shortcomings of the current systems.

SPARQL-Algebra is faster on its domain of application. The advantages of this

solver compared to the others are that it supports subsumption of OPTIONAL

query patterns and also cyclic CQs. However, blank nodes are not supported.

AFMU is able to determine containment of acyclic UCQs under ontological axioms.

For queries of reasonable size, the solver determined their containment correctly.

The problem is that when queries have a larger size, e.g., more than 8 joins,

the solver saturates memory. This is shown for test cases nop15 and nop16

(Figure 5.7) as well as for test cases p15 and p16 (Figure 5.8). However, the

implementation of this solver is not optimal: the authors have documented im-

provements. Moreover, determining containment of general UCQs (beyond the

acyclic ones) will require extending the solver.

TreeSolver has globally similar limitations as AFMU: no support for cyclic queries

and difficulty with queries of large size (as we can expect from worse case com-

142 Chapter 5. Containment for a SPARQL Fragment

plexity), such as nop16. However, TreeSolver globally outperforms AFMU: Tree-

Solver is most often much faster, and, moreover capable of successfully dealing

with more tests. This can probably be explained by the fact that the Tree-

Solver’s algorithm [Genevès et al. 2007] is based on a least-fixpoint computation,

whereas AFMU’s algorithm is based on a greatest-fixpoint computation [Tanabe

et al. 2005]. By nature, AFMU’s algorithm starts from all possibilities and re-

peatedly removes inconsistencies until a fixpoint is reached. In sharp contrast,

TreeSolver’s algorithm basically starts from the emptyset and repeatedly tries to

prove new relevant branches until it finds a fully proved model. A major conse-

quence is that AFMU is required to compute a whole fixpoint each time before

concluding about the existence (or inexistence) of a model. The situation is very

different with TreeSolver, that can conclude as soon as it finds a (fully proved)

satisfying model, without necessarily having to build a fixpoint completely before

concluding about satisfiable formulas.

Determining the type of queries to compare (cyclic, disjunctive, with blank nodes,

with projections, etc.) is easy. Hence, it is possible to build a system assembling these

solvers and providing the best possible performances for each case.

5.11 Related Work

Query optimization has been the subject of an important research effort for many

types of query languages, with the common goal of speeding up query processing. The

works found in [Stocker et al. 2008,Groppe et al. 2009,Schmidt et al. 2010] considered

the problem of SPARQL query optimization. Results presented in this Chapter can

be used to prove the correctness of query rewriting techniques. In the following we

briefly review works that previously established closely related results for related query

languages.

An early formalization of RDF(S) graphs has been presented in [Gutierrez et al. 2004],

in which the complexity of query evaluation and containment is also studied. The au-

thors investigate a datalog-style, rule-based query language for RDF(S) graphs. In

particular, they establish the NP-completeness of query containment over simple RDF

graphs, this result is also published in the RDF semantics document [Hayes 2004].

The query language is rather simple compared to SPARQL and no constraints were

assumed for the problem. [Serfiotis et al. 2005] provides algorithms for the containment

and minimization of RDF(S) query patterns utilizing concept and property hierarchies

for the query language RQL (RDF Query Language). The NP-completeness is estab-

lished for query containment concerning conjunctive and union of conjunctive queries.

In line with this, a recent work in [Polleres 2007] shows how to translate SPARQL

queries into non-recursive Datalog with negation. The paper does focus on query

evaluation (not on query containment).

The work in [Groppe et al. 2009], investigated static analysis of SPARQL queries

that are embedded in a Java program. It checks the correctness of the syntaxes of

RDF data, SPARQL queries, and SPARUL update queries. Beyond this, their system

5.11. Related Work 143

called SWOBE (Semantic Web Objects Database Programming Language), detects if

a query has a non-empty result set. Most recently, static analysis and optimization of

OPTIONAL graph patterns is studied in [Letelier et al. 2012] where they proved the

Πp
2-completeness of query subsumption and NP-completeness of query equivalence.

Besides works that focus on querying RDF graphs, in the following, we explore the

relations and containment problem between SPARQL and query languages from other

domains.

SPARQL vs. Relational Algebra It has been shown that SPARQL is equally

expressive as relational algebra (RA) [Angles & Gutierrez 2008]. It is easy to see

that relational algebra with SPJUD (Selection, Projection, Join, Union and Differ-

ence) [Abiteboul et al. 1995] operators is equivalent to that of SPARQL with SELECT,

AND, UNION, OPTIONAL and FILTER. The algebraic operators that are defined in

SPARQL resemble the algebraic operators defined in relational algebra; in particular,

AND is mapped to the algebraic join, FILTER is mapped to the algebraic selection

operator, UNION is mapped to the union operator, OPTIONAL is mapped to the

left outer join (which allows for the optional padding of information), and SELECT is

mapped to the projection operator. As opposed to the operators in relational algebra,

which are defined on top of relations with fixed schema, the algebraic SPARQL opera-

tors are defined over so called mapping sets, obtained when evaluating triple patterns.

In contrast to the fixed schema in relational algebra, the “schema” of mappings in

SPARQL algebra is loose in the sense that such mappings may bind an arbitrary set

of variables. This means that in the general case we cannot give guarantees about

which variables are bound or unbound in mappings that are obtained during query

evaluation.

Studies on the translation of SPARQL into relational algebra and SQL [Cyga-

niak 2005,Chebotko et al. 2006] indicate a close connection between SPARQL and re-

lational algebra in terms of expressiveness. In [Polleres 2007], a translation of SPARQL

queries into a datalog fragment (non-recursive datalog with negation) that is known

to be equally expressive as relational algebra was presented. This translation makes

the close connection between SPARQL and rule-based languages explicit and shows

that RA is at least as expressive as SPARQL. Tackling the opposite direction, it was

recently shown in [Angles & Gutierrez 2008] that SPARQL is relationally complete,

by providing a translation of the above-mentioned datalog fragment into SPARQL. As

argued in [Angles & Gutierrez 2008], the results from [Polleres 2007] and [Angles &

Gutierrez 2008] taken together imply that SPARQL has the same expressive power

as relational algebra. From early results on query containment in relational algebra

and first-order logic, one can infer that containment in relational algebra is undecid-

able. Therefore, containment of SPARQL queries is also undecidable. Hence, in this

Chapter, we considered various fragments of SPARQL to study containment.

Query Entailment is the decision problem associated with query answering. For

CQs, query answering and containment are equivalent problems. In fact, query con-

144 Chapter 5. Containment for a SPARQL Fragment

tainment can be reduced to query answering [Calvanese et al. 1998]. In this regard,

conjunctive query containment under the description logic DLR is studied in [Cal-

vanese et al. 2008]. CQ query answering in the presence of simple ontologies (fragments

of DL-Lite) has been studied [Calvanese et al. 2007, Lutz et al. 2009]. For expressive

ontology languages, query entailment (and hence containment) in DLs ranging from

ALCI to SHIQ is shown to be 2EXPTIME in [Lutz 2008, Glimm et al. 2008, Ortiz

et al. 2008a,Eiter et al. 2009]. See Table 5.3 of Section 5.2.4 for a partial summary of

the studies on query answering.

In this study we do not deal with the same query language as the one dealt with

in [Glimm et al. 2008]. In fact, the supported SPARQL fragment is strictly larger than

the one studied in [Glimm et al. 2008]. Specifically, UCQs in [Glimm et al. 2008] are

made of C(x), R(x, y) for an atom C, a role R, and variables x and y, whereas we do

also support queries capable of querying concept and role names at the same time, such

as q(x) = (x, y, z). Further, the purpose of reducing the problem to the µ-calculus is

exactly about extending query containment to even more features (such as SPARQL

1.1 paths with recursion, entailment regimes, and negation). For instance, it is known

that recursive paths can be easily supported in µ-calculus (using fixpoints). Beyond

this, the novelty of the study is the reduction of the SPARQL containment problem

to µ-calculus satisfiability, and the advantages of using such a logic: expressivity, good

computational properties, extensibility. The main focus of the contribution is not the

complexity bound by itself but rather a new approach with a broader logic, paving the

way for future extensions as it was never done before.

Finally, with an implicit goal of minimizing query evaluation costs, in [Pichler

et al. 2010] comprehensive complexity results were obtained for the problem of redun-

dancy elimination on RDF graphs in the presence of rules (RDFS or OWL), constraints

(tuple-generating dependencies) and with respect to SPARQL queries.

Semistructured data In line with CQs in databases and description logic worlds,

we have regular path queries— languages that are used to query arbitrary length

paths in graph databases — in semi structured data. Like CQs, they have been used

and studied widely. They are different from CQs in that, they allow recursion by

using regular expression patterns. The problem of containment has been addressed

for extensions of this language. In this regard, a prominent language used in semi-

structured data is XPath. This language has been studied extensively over the last

decade. These studies range from extending or reducing to static analysis. Static

analysis of XPath queries has been studied in [Genevès et al. 2007], encompassing

containment, equivalence, coverage, and satisfiability of XPath queries. In fact, this

Chapter is motivated by [Genevès et al. 2007] in that the approach to study these

problems uses a graph logic and provides a working implementation.

Other notable results come from the study of Regular Path Queries (RPQs). RPQs

are extremely useful for expressing complex navigations in a graph. In particular, union

and transitive closure are crucial when we do not have a complete knowledge of the

structure of the knowledge base where this is the case for RDF graphs. Containment

5.11. Related Work 145

of (two-way) regular path queries (2RPQs) have been studied extensively [Calvanese

et al. 2000,Calvanese et al. 2003,Barceló et al. 2010]. These languages are used to query

graph databases and containment has been shown to be PSPACE-complete, this com-

plexity bound jumps to EXPTIME-hard under the presence of functionality constraints.

On the other hand, the containment of conjunctive 2RPQs is EXPSPACE-complete, this

bound jumps to 2EXPTIME when considered under expressive description logic (DL)

constraints [Calvanese et al. 2011]. However, it is exponential if the query on the right

hand side has a tree structure (cf. for example, [Calvanese et al. 2008]). Further, paths

are being included in the new version of SPARQL, thus this work can be used to test

containment of path SPARQL queries under the RDFS entailment regime.

Containment under constraints Query containment has also been studied under

different kinds of constraints. Results in this setting include, decidability of conjunctive

query containment under functional and inclusion dependencies is studied in [Johnson

& Klug 1984], also [Aho et al. 1979] proved decidability of this problem under functional

and multi-valued dependencies. Further, decidability and undecidability results are

proved in [Calvanese et al. 2008] for non-recursive datalog queries under expressive

description logic constraints. Moreover, the undecidability is proved in [Calvanese &

Rosati 2003] for recursive queries under inclusion dependencies.

The most closely related work is [Calvanese et al. 2008] in which query containment

under description logic constraints is studied based on an encoding in propositional

dynamic logic with converse (CPDL). They establish 2EXPTIME upper bound complex-

ity for containment of queries consisting of union of conjunctive queries under DLR
schema axioms. Our work is similar in spirit, in the sense that the µ-calculus is a logic

that subsumes CPDL, and may open the way for extensions of the query languages

and ontologies (for instance OWL-DL). Besides, the two languages are different since

SPARQL allows for predicates to be used as subject or object of other triple patterns

and can be in the scope of a variable. This is not directly allowed in DLR (union) of

conjunctive queries. Our encoding of RDF graphs and SPARQL queries preserves this

capability.

The evaluation of SPARQL queries under schema constraints is considered by W3C

under the entailment regime principle. In this case, SPARQL queries are evaluated

by taking into account the semantics of a schema language [Kollia et al. 2011]. It is

possible to define query containment under such entailment regimes. We show how

this can be done in this Chapter.

Benchmarking Recently, static analysis and optimization of SPARQL queries has

attracted widespread attention, notably [Chekol et al. 2011,Letelier et al. 2012,Chekol

et al. 2012a, Chekol et al. 2012b] for static analysis and [Stocker et al. 2008, Groppe

et al. 2009, Schmidt et al. 2010, Letelier et al. 2012] for optimization. These studies

have grounded the theoretical aspects of these fundamental problems. However, to the

best of our knowledge, there is only one implementation from [Letelier et al. 2012] and

it supports only conjunction and OPTIONAL queries with no projection (containment

146 Chapter 5. Containment for a SPARQL Fragment

of basic and optional graph patterns).

On the other hand, in databases, containment of union conjunctive queries (UCQs)

is well studied and has a well know NP-complete complexity. The importance of the

study of this problem goes beyond the field of databases, it has its fair share from the

description logic community. Many of the works, from description logics, concentrated

on the problem of query answering as containment follows from it. These works, have

sound theoretical proofs, algorithms, and mathematical explanations. However, they

lack an implementation (or experimentation) of their approaches.

Finally, various SPARQL query evaluation performance benchmarks have been

proposed [Bizer & Schultz 2008, Bizer & Schultz 2009, Schmidt et al. 2009], but no

SPARQL query containment benchmark to our knowledge.

5.12 Conclusions

We have introduced a mapping from RDF graphs into transition systems and the

encodings of queries and schema axioms in the µ-calculus. We proved that this en-

coding is correct and can be used for checking query containment. We have provided

implementable algorithms, as a consequence, this work opens a way to use available

implementations of µ-calculus satisfiability solvers from [Genevès et al. 2007] and [Tan-

abe et al. 2008] as introduced in [Chekol et al. 2013]. Beyond this, we have established

a double exponential upper bound for containment test under ALCH axioms. The

presented encoding is sound (in the sense that whenever the algorithm detects that

q1 is contained in q2, the containment holds), however it is not complete (i.e., it may

happen that the algorithm fails to detect an existing containment relationship) if q2 is

not a SPARQLcdfc query (Definition 10). Interestingly, the cases where the algorithm

might be incomplete can be detected, since those cases correspond to the queries of

type SPARQLcdfc , hence the user can be warned about such a potential risk. These

cases have been dealt with in Chapter 6 of [Chekol 2012]. We would like to emphasize

that, in addition to the complexity bound we provide, no implementation has been

reported in previous works.

The evaluation of SPARQL query containment should help developers to produce

more and better solvers. Our experiments contributed to the evaluation of SPARQL

query containment in several ways:

• We have studied the demographics of SPARQL queries on a large example and

found that (1) a large part of these queries are acyclic, and (2) those parts that

either contain projections (effective SELECT) or not, are significant;

• From this study and the state of the art in query containment solvers, we have de-

signed a benchmark suite made of three suites testing conjunctive queries without

projection, union of conjunctive queries with projection and with RDFS reason-

ing;

• We have proposed and implemented a methodology for evaluating this problem;

• Finally, we have applied these to existing containment solvers (SPARQL-Algebra,

AFMU and TreeSolver) and we can report the following lessons:

5.12. Conclusions 147

– All tested solutions perform correctly with respect to their declared appli-

cability limits (which are easily testable);

– SPARQL query containment can be practically performed, in spite of its

complexity, in a reasonable time with respect to network communication

costs,

– the current state-of-the-art is at its early stage and requires improvement

and new ways to determine containment and equivalence of queries, in order

to become a useful tool for query optimizers.

These benchmark suites are well-suited for pinpointing the theoretical shortcomings of

containment solvers.

Chapter 6

Conclusion and Perspectives

6.1 Summary of Contributions

This document presents an excerpt from the research results that I have obtained since

I received a PhD in December 2006. I chose to focus on a few contributions. While

all of them aim at building safer and more efficient web applications, each one deals

with a different particularity of web applications. These contributions thus concern

4 subtopics: (i) the evolution of schemas, (ii) functions and polymorphism, (iii) au-

tomated analysis of layouts, and (iv) containment for queries over graphs. Chapter 1

explains the originality of my research approach and summarises these contributions.

Each contribution is presented in further details in a dedicated Chapter of this docu-

ment.

6.2 Perspectives

Perspectives of my research are drawn here under the form of a summary of the research

program of the Tyrex team-project, in which I lead the activities on modeling and static

analysis for web applications.

6.2.1 Motivations: social and economic challenges

The web represents the biggest mass of information that mankind has ever gathered.

Furthermore, during the last two decades, the web became crucial in our daily life

activities (work, banking, shopping, education, administration, leisure, social network-

ing). This revolution is continuing its path toward a more compelling user experience

through richer content (such in HTML5, multimedia, 3D audio and graphics) and ever

increasing web applications via their reconversion through services. The future of the

web will be influenced by our ability to leverage this unprecedented potential and to

accomplish the successful synergy of applications and content.

This proposal aims at developing a vision of a web where content is enhanced and

protected, applications made easier to build, maintain and secure. We seek at opening

new horizons for the development of the web, enhancing its potential, effectiveness,

and dependability.

6.2.2 Scientific goals and research directions

The main open problem that we can observe today is a lack of formalisms, concepts and

tools for reasoning simultaneously over documents, data and communication aspects

150 Chapter 6. Conclusion and Perspectives

in programs. The scientific challenge that we face is to establish such a unifying

framework in the context of the web. This is a difficult problem that we propose to

address along two main directions:

• modeling, which consists in capturing various aspects of document, data and

communication in a unifying model, and whose hard part consists in taking into

account the peculiarities of the web that require new theoretical tools that do

not exist today.

• analysis, verification and optimization, which consist in guaranteeing safety

and efficiency properties of information systems, and whose hard part consists

in dealing with very complex problems close to the frontier of decidability, and

therefore in finding useful balances between expressivity, complexity, succinct-

ness, algorithmic techniques and effective implementations.

This research proposal aims at developing formalisms, languages, concepts, algorithms,

and tools for building a unifying framework, along the two above interconnected di-

rections. The overall goal is to enable more reliable, secure, and efficient systems. We

give more details on each direction below.

6.2.2.1 Modeling documents, data and communications

Specificity of web documents Web documents provide a new field of study, for

which it is not possible to use already existing techniques without substantial modifica-

tions. The peculiarity of web documents originates from their ordered tree structure.

These structures can for example be seen as a relaxation of the classical relational

model, one of the foundations of traditional databases, where less rigid and homoge-

neous “data fields” are allowed. This data model has proven to be very useful for

representing various families of documents: multimedia, hypertext, news articles, sci-

entific documents, etc. It is therefore necessary to develop new theoretical foundations,

possibly drawing on methods used in other domains of computer science.

One essential concept consists in describing classes of documents that share the

same requirements (e.g. web pages through XHTML, or mathematical formulas through

MathML). Mastering such representations is also crucial for reasoning over sets of doc-

uments. From a theoretical point of view, this modeling task constitutes a renewal for

the study of tree automata and logical theories introduced in the late 1960’s. These

theories are currently rapidly evolving to support the new features provided by web

documents, requiring more and more expressiveness and succinctness. We intend to

contribute to this modeling effort, especially through contributions on modal logics

such as the modal µ-calculus, introduced more recently.

Universal content models and formats Models and formats used for sharing mul-

timedia content on the web must represent the many facets of multimedia documents.

Their richness and versatility determine how multimedia content can be processed and

used in various contexts. During the last decade, content has shifted from mainly static

6.2. Perspectives 151

pages to highly dynamic and programmable ones. However, content was massively pro-

duced in a hackish manner and very basic document features have been subcontracted

to scripting which became the “Jack of all Trades” technology in browsers. In addition,

a huge portion of the content on the web is today not well-formed, nor valid, severely

compromising their long-term access and their automatic processing.

We believe that it is vital to design rigorously documents to outlive any particular

piece of hardware or system where they may reside. Furthermore, we seek to build

advanced document models that allow describing the increasing variety of modalities

such as 3D sound, augmented reality and dynamic content (e.g. data streams) which

are becoming a commodity on mobile platforms and applications. The difficulty here

is to be able to create models and formats that combine these aspects by declarative

means in a consistent manner both at syntactic and semantic level. They should be

able to both enhance user experience and facilitate their manipulation by programs.

Specificity of the web: integrating documents, data and communication

aspects The web is traditionally composed of resources (data and documents) and

services (applications) that exchange resources. The frontier between the two becomes

fuzzy as more and more scripting occurs in web pages. However, scripting is cur-

rently done at very low level (e.g. similar to an assembly language) and this prevents

many sorts of analysis and processing. If we consider XML programming at a higher

level then, in the same way as XML documents are twofolds — the raw content and

its type — we can consider two aspects of a programming language, with respect to

XML: whether or not it provides syntactic support to process XML documents (con-

tent side), whether or not it can enforce document constraints (type side) and finally,

whether or not it offers the means to integrate smoothly with external services (com-

munication side). We believe that there is a need for higher level abstractions, that

make machine processing possible or easier, and that integrate/encompass all these

aspects. Current programming technology is still very limited from this perspective.

For example, XQuery, which represents a good candidate for a uniform and high level

language, has a very imprecise type system and has no communication facilities.

More generally, representing in a uniform way data and programs is a first step

toward higher order programming, as noticed by Luca Cardelli in his work on semi-

structured computation when he remarks: “if we can take advantage of the similarities

[between mobile computation and semi-structured data] and generalize them, we may

obtain a broader model of data and computation on the Internet.” 1 We believe that

this important step can be investigated along several directions. One direction consists

in extending expressive modal logics with, for instance, function types for representing

programs. Another direction consists in considering process calculi as the missing part

for, e.g., extending the XQuery data model with a broader computation model.

1Luca Cardelli. ”Semistructured Computation”. In Research Issues in Structured and Semistructured
Database Programming. Lecture Notes in Computer Science, Volume 1949, 2000.

152 Chapter 6. Conclusion and Perspectives

6.2.2.2 Analysis by Reasoning

Type-checking web applications Developing safer web applications depends on

the quality of the methods, that we will be able to produce in order to enable the

correct manipulation of data in applications. Classical program verification techniques

fail to extend to rich data manipulations which are the core of web programming. We

propose to develop web program analysis techniques (verification and optimization)

which allow detecting errors and enhancing performance in data manipulation. We

will concentrate on techniques based on type checking by introducing appropriate type

systems and reasoning techniques on programs. The main challenge here is to find

decidable methods whose complexity do not preclude their practical applicability. To

reach this goal we intend to use logical methods such as modal logics and satisfiability

solvers where we gained significant experience.

Global verification of data manipulation and exchange We seek to build global

analysis and verification techniques encompassing errors in data manipulation, data

exchanges in communication protocols and the interactions between application com-

ponents. The type systems approach seems particularly appropriate since they allow,

by construction, to ensure global properties of a web application by a local and mod-

ular verification of its components. As such, they will constitute an important object

of investigation. Specifically, we will focus on type systems based on the modeling

described in Section 6.2.2.1 (modal logics extended with higher order capabilities such

as polymorphism, or process calculi, etc). The expected benefit of such a formalization

is to leverage on the extension of the large tool box of proof methods and theoretical

results that equip existing calculi. Ideas, concepts, and techniques from lambda-calculi

and from process calculi have been successfully applied to the study of behavioral prop-

erties of distributed systems, and of type systems for concurrent (functional and/or

object-oriented) languages. Overall, we seek to integrate all these aspects in a uniform

and soundly based type system.

Designing for evolution In the ever-changing context of the web, XML schemas

continuously change in order to cope with the natural evolution of the entities they

describe. A change in the schema may require updates of programs that must cope with

the newly described set of valid documents. We propose to introduce new methods and

tools for determining and facilitating program updates resulting from these changes.

Similarly, web services evolve over time, through the modifications of their interfaces.

We intend to develop reasoning techniques capable of analyzing programs, schemas and

communications in order to automate and efficiently guide these unavoidable updates.

Such methods are crucial to enforce quality assurance in web applications and to help

tackling forward/backward compatibilities issues.

Supporting integrated, rich, dynamic and augmented content Until now,

content rendering on the web was mainly based on supporting media formats sepa-

rately. It is still notably the case in HTML5 where vector graphics, MathML content,

6.2. Perspectives 153

audio and video are supported as isolated media types. With their increasing support

in browsers together with others such as 3D audio and graphics, we need more than

ever methods to integrate them tightly in applications and in particular in browsers.

In addition, with the increasing use of web content in mobile terminals, we need to take

into account highly dynamic information flowing from sensors (positioning and orien-

tation) and camera. These information need to be captured and efficiently combined

with content in web browsers. To reach that goal, we need to ease the manipulation of

such content with carefully designed programming interfaces and by developing sup-

porting integrative methods. The challenge is to find appropriate abstractions while

hiding the increasing complexity of such content.

Bibliography

[Abiteboul et al. 1995] S. Abiteboul, R. Hull and V. Vianu. Foundations of databases,

volume 8. Addison-Wesley, 1995. (Cited on page 143.)

[Aho et al. 1979] A. V. Aho, Y. Sagiv and J. D. Ullman. Equivalences Among Re-

lational Expressions. SIAM J. Comput., vol. 8, no. 2, pages 218–246, 1979.

(Cited on page 145.)

[Alkhateeb et al. 2009] F. Alkhateeb, J.F. Baget and J. Euzenat. Extending SPARQL

with regular expression patterns (for querying RDF). J. Web Semantics, vol. 7,

no. 2, pages 57–73, 2009. (Cited on pages 9 and 102.)

[Angles & Gutierrez 2008] R. Angles and C. Gutierrez. The Expressive Power of

SPARQL. The Semantic Web-ISWC 2008, pages 114–129, 2008. (Cited on

page 143.)

[Baader & Nutt 2003] F. Baader and W. Nutt. The description logic handbook. pages

43–95. Cambridge University Press, New York, NY, USA, 2003. (Cited on

page 107.)

[Baader et al. 2007] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. F.

Patel-Schneider, editeurs. The description logic handbook: Theory, im-

plementation, and applications. Cambridge University Press, 2007. ISBN

9780511717383. (Cited on pages 107 and 109.)

[Baget 2005] J.F. Baget. RDF Entailment as a Graph Homomorphism. The Semantic

Web–ISWC 2005, pages 82–96, 2005. (Cited on page 119.)

[Barceló et al. 2010] P. Barceló, C. Hurtado, L. Libkin and P. Wood. Expressive lan-

guages for path queries over graph-structured data. In PODS’10, pages 3–14.

ACM, 2010. (Cited on page 145.)

[Barcenas et al. 2011] Everardo Barcenas, Pierre Genevès, Nabil Layäıda and Alan

Schmitt. Query reasoning on trees with types, interleaving and counting. In

IJCAI’11 : Proceedings of the 22nd International Joint Conference on Artificial

Intelligence, pages 718–723, 2011. (Cited on page 10.)

[Barton & Odvarko 2010] John J. Barton and Jan Odvarko. Dynamic and graphical

web page breakpoints. In Proceedings of the 19th international conference on

World wide web, WWW ’10, pages 81–90, New York, NY, USA, 2010. ACM.

(Cited on page 75.)

[Benedikt & Cheney 2010] Michael Benedikt and James Cheney. Destabilizers and

Independence of XML Updates. Proceedings of the VLDB Endowment, vol. 3,

no. 1, pages 906–917, 2010. (Cited on pages 44 and 45.)

156 Bibliography

[Benedikt & Koch 2009] Michael Benedikt and Christoph Koch. XPath leashed. ACM

Comput. Surv., vol. 41, pages 3:1–3:54, January 2009. (Cited on page 39.)

[Benedikt et al. 2005] Michael Benedikt, Wenfei Fan and Floris Geerts. XPath satisfi-

ability in the presence of DTDs. In PODS ’05, pages 25–36. ACM Press, 2005.

(Cited on page 39.)

[Benzaken et al. 2003] Véronique Benzaken, Giuseppe Castagna and Alain Frisch.

CDuce: an XML-centric general-purpose language. In Proceedings of the 8th

international conference on functional programming (ICFP ’03), pages 51–63,

Uppsala, Sweden, 2003. (Cited on pages 7, 39, 42, 45 and 70.)

[Beyer et al. 2005] Kevin Beyer, Fatma Özcan, Sundar Saiprasad and Bert Van der

Linden. DB2/XML: designing for evolution. In SIGMOD ’05: Proceedings

of the 2005 ACM SIGMOD international conference on Management of data,

pages 948–952. ACM, 2005. (Cited on page 38.)

[Bierman et al. 2010] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu and

David Langworthy. Semantic subtyping with an SMT solver. In Proceedings of

the 15th international conference on functional programming (ICFP ’10), pages

105–116, Baltimore, MD, USA, 2010. (Cited on pages 44, 45 and 71.)

[Bizer & Schultz 2008] C. Bizer and A. Schultz. Benchmarking the performance of

storage systems that expose SPARQL endpoints. In Proc. 4 th International

Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS), 2008.

(Cited on page 146.)

[Bizer & Schultz 2009] C. Bizer and A. Schultz. The Berlin SPARQL benchmark.

International Journal on Semantic Web and Information Systems (IJSWIS),

vol. 5, no. 2, pages 1–24, 2009. (Cited on page 146.)

[Blackburn et al. 2007] P. Blackburn, J. van Benthem and F. Wolter. Handbook of

Modal Logic. Elsevier, 2007. (Cited on page 115.)

[Boag et al. 2007] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,

Jonathan Robie and Jérôme Siméon. XQuery 1.0: An XML Query Language,

W3C Recommendation, January 2007. (Cited on page 43.)

[Bonatti & Peron 2004] P.A. Bonatti and A. Peron. On the undecidability of logics with

converse, nominals, recursion and counting. Artificial Intelligence, vol. 158,

no. 1, pages 75–96, 2004. (Cited on page 117.)

[Bonatti et al. 2006] P. A. Bonatti, C. Lutz, A. Murano and M. Y. Vardi. The Com-

plexity of Enriched µ-calculi. Automata, Languages and Programming, pages

540–551, 2006. (Cited on pages 117 and 131.)

[Bos et al. 2011] Bert Bos, Tantek Çelik, Ian Hickson and H̊akon Wium Lie. Cascading

Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C recommendation,

World Wide Web Consortium, June 2011. (Cited on pages 78 and 86.)

Bibliography 157

[Bosch et al. 2014] Mart́ı Bosch, Pierre Genevès and Nabil Layäıda. Automated Refac-

toring for Size Reduction of CSS Style Sheets. In Proceedings of the 2014 ACM

symposium on Document engineering (to appear), DocEng ’14. ACM, 2014.

(Cited on page 8.)

[Bryant 1986] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Ma-

nipulation. IEEE Trans. on Computers, vol. 35, no. 8, pages 677–691, 1986.

(Cited on page 64.)

[Calvanese & Rosati 2003] D. Calvanese and R. Rosati. Answering Recursive Queries

under Keys and Foreign Keys is Undecidable. In Proc. of the 10th Int. Workshop

on Knowledge Representation meets Databases (KRDB 2003), volume 79, pages

3–14, 2003. (Cited on page 145.)

[Calvanese et al. 1998] D. Calvanese, G. De Giacomo and M. Lenzerini. On the decid-

ability of query containment under constraints. In Proceedings of PODS, pages

149–158. ACM, 1998. (Cited on pages 111 and 144.)

[Calvanese et al. 2000] D. Calvanese, G. De Giacomo, M. Lenzerini and M. Y. Vardi.

Containment of Conjunctive Regular Path Queries with Inverse. In Proc. of the

7th Int. Conf. on the Principles of Knowledge Representation and Reasoning

(KR 2000), pages 176–185, 2000. (Cited on page 145.)

[Calvanese et al. 2003] D. Calvanese, G. De Giacomo, M. Lenzerini and M. Y. Vardi.

Reasoning on Regular Path Queries. SIGMOD Record, vol. 32, no. 4, pages

83–92, 2003. (Cited on page 145.)

[Calvanese et al. 2007] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini and

R. Rosati. Tractable Reasoning and Efficient Query Answering in Description

Logics: The DL-Lite Family. Journal of Automated Reasoning, vol. 39, no. 3,

pages 385–429, 2007. (Cited on page 144.)

[Calvanese et al. 2008] D. Calvanese, G. De Giacomo and M. Lenzerini. Conjunc-

tive Query Containment and Answering under Description Logics Constraints.

ACM Trans. on Computational Logic, vol. 9, no. 3, pages 22.1–22.31, 2008.

(Cited on pages 119, 123, 132, 144 and 145.)

[Calvanese et al. 2011] D. Calvanese, M. Ortiz and M. Simkus. Containment of Regu-

lar Path Queries under Description Logic Constraints. In Proc. of the 22nd Int.

Joint Conf. on Artificial Intelligence (IJCAI 2011), 2011. (Cited on page 145.)

[Castagna & Nguyen 2008] Giuseppe Castagna and Kim Nguyen. Typed iterators for

XML. In ICFP ’08: Proceedings of the ACM SIGPLAN international confer-

ence on Functional programming, pages 15–26, 2008. (Cited on page 39.)

[Castagna & Xu 2011] G. Castagna and Z. Xu. Set-theoretic Foundation of Parametric

Polymorphism and Subtyping. In Proceedings of the 16th international confer-

ence on functional programming (ICFP ’11), Tokyo, september 2011. (Cited

on pages 7, 42, 43, 45, 55, 57, 58, 60, 68, 70 and 71.)

158 Bibliography

[Çelik et al. 2011] Tantek Çelik, Elika J. Etemad, Daniel Glazman, Ian Hickson, Peter

Linss and John Williams. Selectors Level 3. W3C recommendation, World

Wide Web Consortium, September 2011. (Cited on pages 76 and 83.)

[Chandra & Merlin 1977] A. K. Chandra and P. M. Merlin. Optimal Implementation

of Conjunctive Queries in Relational Data Bases. In Proceedings of the ninth

annual ACM symposium on Theory of computing, pages 77–90. ACM, 1977.

(Cited on page 136.)

[Chebotko et al. 2006] A. Chebotko, S. Lu, H.M. Jamil and F. Fotouhi. Semantics pre-

serving SPARQL-to-SQL query translation for optional graph patterns. Rapport

technique, Technical Report TR-DB-052006-CLJF, 2006. (Cited on page 143.)

[Chekol et al. 2011] M. W. Chekol, J. Euzenat, P. Genevès and N. Layäıda. PSPARQL

Query Containment. In DBPL’11, August 2011. (Cited on pages 9 and 145.)

[Chekol et al. 2012a] M. W. Chekol, J. Euzenat, P. Genevès and N. Layäıda. SPARQL

Query Containment under RDFS Entailment Regime. In IJCAR’12, pages 134–

148. Springer, 2012. (Cited on pages 9, 133, 137 and 145.)

[Chekol et al. 2012b] M. W. Chekol, J. Euzenat, P. Genevès and N. Layäıda. SPARQL

Query Containment under SHI Axioms. In AAAI’12, volume 1, pages 10–16,

2012. (Cited on pages 9, 132, 133 and 145.)

[Chekol et al. 2013] Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès and

Nabil Layäıda. Evaluating and Benchmarking SPARQL Query Containment

Solvers. In ISWC’13: Proceedings of the 12th International Semantic Web

Conference, pages 408–423, 2013. (Cited on pages 9 and 146.)

[Chekol 2012] Melisachew Wudage Chekol. Static Analysis of Semantic Web Queries.

Phd, Université de Grenoble, Dec 2012. (Cited on page 146.)

[Chekuri & Rajaraman 1997] C. Chekuri and A. Rajaraman. Conjunctive query con-

tainment revisited. Database Theory–ICDT’97, pages 56–70, 1997. (Cited on

page 136.)

[Clark & DeRose 1999] James Clark and Steve DeRose. XML Path Language (XPath)

Version 1.0, W3C Recommendation, November 1999. (Cited on pages 16

and 45.)

[Colazzo et al. 2004] Dario Colazzo, Giorgio Ghelli, Paolo Manghi and Carlo Sartiani.

Types for path correctness of XML queries. In ICFP ’04: Proceedings of the

ninth ACM SIGPLAN international conference on Functional programming,

pages 126–137, New York, NY, USA, 2004. ACM Press. (Cited on page 39.)

[Colazzo et al. 2006] Dario Colazzo, Giorgio Ghelli, Paolo Manghi and Carlo Sartiani.

Static analysis for path correctness of XML queries. J. Funct. Program., vol. 16,

no. 4-5, pages 621–661, 2006. (Cited on page 39.)

Bibliography 159

[Cyganiak 2005] R. Cyganiak. A relational algebra for SPARQL. Digital Media Sys-

tems Laboratory HP Laboratories Bristol. HPL-2005-170, 2005. (Cited on

page 143.)

[de Moura & Bjørner 2008] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3:

An Efficient SMT Solver. In Proceedings of the 14th international conference

on tools and algorithms for the construction and analysis of systems (TACAS

’08), pages 337–340, Budapest, 2008. (Cited on pages 44 and 45.)

[Eberlein et al. 2010] Kristen James Eberlein, Robert D. Anderson and Gershon

Joseph. Darwin Information Typing Architecture (DITA) Version 1.2. Oa-

sis standard, OASIS, December 2010. (Cited on page 90.)

[Edmund M. Clarke et al. 1999] Jr. Edmund M. Clarke, Orna Grumberg and Doron A.

Peled. Model checking. MIT Press, Cambridge, MA, USA, 1999. (Cited on

page 64.)

[Eiter et al. 2009] T. Eiter, C. Lutz, M. Ortiz and M. Šimkus. Query answering in

description logics with transitive roles. In Proc. of IJCAI, pages 759–764, 2009.

(Cited on pages 110, 111 and 144.)

[Engovatov & Robie 2010] Daniel Engovatov and Jonathan Robie. XQuery 3.0 Re-

quirements, W3C Working Draft, September 2010. (Cited on pages 7 and 43.)

[Frisch et al. 2008] A. Frisch, G. Castagna and V. Benzaken. Semantic Subtyping:

dealing set-theoretically with function, union, intersection, and negation types.

Journal of the ACM, vol. 55, no. 4, pages 1–64, 2008. (Cited on pages 42, 43,

44, 46, 47, 48, 55 and 70.)

[Gapeyev et al. 2006] Vladimir Gapeyev, François Garillot and Benjamin C. Pierce.

Statically Typed Document Transformation: An Xtatic Experience. In PLAN-X

2006: Proceedings of the International Workshop on Programming Language

Technologies for XML, volume NS-05-6 of BRICS Notes Series, pages 2–13,

Aarhus, Denmark, January 2006. BRICS. (Cited on page 39.)

[Genevès & Layäıda 2006] Pierre Genevès and Nabil Layäıda. A system for the static

analysis of XPath. ACM Trans. Inf. Syst., vol. 24, no. 4, pages 475–502, 2006.

(Cited on pages 4 and 120.)

[Genevès & Layäıda 2010] Pierre Genevès and Nabil Layäıda. Eliminating dead-code

from XQuery programs. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - Volume 2, ICSE ’10, pages 305–306, New

York, NY, USA, 2010. ACM. (Cited on page 10.)

[Genevès & Layäıda 2011] Pierre Genevès and Nabil Layäıda. Inconsistent path de-

tection for XML IDEs. In Proceeding of the 33rd international conference on

Software engineering, ICSE ’11, pages 983–985, New York, NY, USA, 2011.

ACM. (Cited on page 10.)

160 Bibliography

[Genevès & Layäıda 2014a] Pierre Genevès and Nabil Layäıda. Equipping IDEs with

XML Path Reasoning Capabilities. ACM Trans. Internet Technol., 2014. (Cited

on page 10.)

[Genevès & Layäıda 2014b] Pierre Genevès and Nabil Layäıda. The XML Reasoning

Solver Project, June 2014. http://wam.inrialpes.fr/xml. (Cited on pages 14, 16

and 38.)

[Genevès et al. 2007] Pierre Genevès, Nabil Layäıda and Alan Schmitt. Efficient Static

Analysis of XML Paths and Types. In Proceedings of the 28th conference on

programming language design and implementation (PLDI ’07), pages 342–351,

San Diego, CA, USA, 2007. (Cited on pages 7, 8, 9, 16, 17, 19, 21, 22, 29, 39,

44, 45, 50, 52, 55, 61, 62, 63, 71, 81, 83, 91, 97, 102, 142, 144, 146 and 160.)

[Genevès et al. 2009] Pierre Genevès, Nabil Layäıda and Vincent Quint. Identifying

query incompatibilities with evolving XML schemas. In ICFP ’09: Proceedings

of the 14th ACM SIGPLAN international conference on Functional program-

ming, pages 221–230, New York, NY, USA, 2009. ACM. (Cited on pages 6, 13

and 64.)

[Genevès et al. 2011] Pierre Genevès, Nabil Layäıda and Vincent Quint. Impact of

XML Schema Evolution. ACM Trans. Internet Technol., vol. 11, pages 4:1–

4:27, July 2011. (Cited on page 6.)

[Genevès et al. 2012] Pierre Genevès, Nabil Layäıda and Vincent Quint. On the anal-

ysis of cascading style sheets. In WWW’12: Proceedings of the 21st World

Wide Web Conference, pages 809–818, April 2012. (Cited on page 8.)

[Genevès et al. 2014] Pierre Genevès, Nabil Layäıda, Alan Schmitt and Nils Gesbert.

Efficiently Deciding µ-Calculus with Converse over Finite Trees. Long version

of [Genevès et al. 2007], Research Report hal-00868722, CNRS & Inria, June

2014. http://hal.inria.fr/hal-00868722/en/. (Cited on pages 14, 23 and 86.)

[Genevès 2006] Pierre Genevès. Logics for XML. PhD thesis, Institut National Poly-

technique de Grenoble, December 2006. (Cited on pages 22, 62, 63, 81 and 83.)

[Gesbert et al. 2011] Nils Gesbert, Pierre Genevès and Nabil Layäıda. Parametric

Polymorphism and Semantic Subtyping: the Logical Connection. In ICFP ’11:

Proceedings of the 16th ACM SIGPLAN international conference on Functional

programming, pages 107–116, 2011. (Cited on page 7.)

[Glimm et al. 2008] B. Glimm, I. Horrocks, C. Lutz and U. Sattler. Conjunctive query

answering for the description logic SHIQ. J Artif Intell Res, vol. 31, pages

157–204, 2008. (Cited on pages 110, 111 and 144.)

[Groppe & Groppe 2008] Jinghua Groppe and Sven Groppe. Filtering unsatisfiable

XPath queries. Data Knowl. Eng., vol. 64, no. 1, pages 134–169, 2008. (Cited

on page 39.)

http://hal.inria.fr/hal-00868722/en/

Bibliography 161

[Groppe et al. 2006] Sven Groppe, Stefan Bottcher and Jinghua Groppe. XPath Query

Simplification with regard to the Elimination of Intersect and Except Operators.

In ICDEW ’06: Proceedings of the 22nd International Conference on Data

Engineering Workshops, page 86, Washington, DC, USA, 2006. IEEE Computer

Society. (Cited on page 39.)

[Groppe et al. 2009] J. Groppe, S. Groppe and J. Kolbaum. Optimization of SPARQL

by using coreSPARQL. In ICEIS (1), pages 107–112, 2009. (Cited on pages 142

and 145.)

[Gutierrez et al. 2004] C. Gutierrez, C. Hurtado and A. O. Mendelzon. Foundations

of Semantic Web Databases. PODS ’04, pages 95–106, New York, NY, USA,

2004. (Cited on page 142.)

[Hayes 2004] P. Hayes. RDF Semantics. W3C Recommendation, 2004. (Cited on

pages 103, 104, 105, 106, 128 and 142.)

[Horrocks & Patel-Schneider 2010] I. Horrocks and P.F. Patel-Schneider. Knowl-

edge Representation and Reasoning on the Semantic Web: OWL,

2010. http://www.cs.ox.ac.uk/ian.horrocks/Publications/
download/2010/HoPa10a.pdf. (Cited on pages 109 and 110.)

[Horrocks et al. 2006] I. Horrocks, O. Kutz and U. Sattler. The even more irresistible

SROIQ. In Proc. of KR 2006, pages 57–67, 2006. (Cited on page 107.)

[Hosoya & Pierce 2003] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically

typed XML processing language. ACM Transactions on Internet Technology,

vol. 3, no. 2, pages 117–148, 2003. (Cited on pages 39, 42, 45 and 70.)

[Hosoya et al. 2005] Haruo Hosoya, Jérôme Vouillon and Benjamin C. Pierce. Regular

expression types for XML. ACM Transactions on Programming Languages and

Systems, vol. 27, pages 46–90, January 2005. (Cited on pages 14, 16, 45 and 70.)

[Hosoya et al. 2009] H. Hosoya, A. Frisch and G. Castagna. Parametric Polymorphism

for XML. ACM Transactions on Programming Languages and Systems, vol. 32,

no. 1, pages 1–56, 2009. (Cited on pages 42, 56, 57 and 70.)

[Johnson & Klug 1984] D. S. Johnson and A. C. Klug. Testing Containment of Con-

junctive Queries under Functional and Inclusion Dependencies. Journal of

Computer and System Sciences, vol. 28, no. 1, pages 167–189, 1984. (Cited

on page 145.)

[Kazakov 2008] Y. Kazakov. SRIQ and SROIQ are Harder than SHOIQ. In Descrip-

tion Logics, 2008. (Cited on page 107.)

[Keller & Nussbaumer 2009] Matthias Keller and Martin Nussbaumer. Cascading style

sheets: a novel approach towards productive styling with today’s standards. In

Proceedings of the 18th international conference on World wide web, WWW

’09, pages 1161–1162, New York, NY, USA, 2009. ACM. (Cited on page 75.)

http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2010/HoPa10a.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2010/HoPa10a.pdf

162 Bibliography

[Keller & Nussbaumer 2010] Matthias Keller and Martin Nussbaumer. CSS Code

Quality: A Metric for Abstractness. In Seventh International Conference on

the Quality of Information and Communications Technology (QUATIC), pages

116–121, October 2010. (Cited on page 75.)

[Kollia et al. 2011] I. Kollia, B. Glimm and I. Horrocks. SPARQL Query Answering

over OWL Ontologies. In Proc. 8th ESWC, Heraklion (GR), volume 6643 of

LNCS, pages 382–396, 2011. (Cited on page 145.)

[Kozen 1983] D. Kozen. Results on the propositional µ-calculus. Theor. Comp. Sci.,

vol. 27, pages 333–354, 1983. (Cited on pages 9, 101, 115, 116, 117 and 133.)

[Kupferman et al. 2002] O. Kupferman, U. Sattler and M. Vardi. The complexity of

the graded µ-calculus. Automated Deduction—CADE-18, pages 173–206, 2002.

(Cited on page 117.)

[Letelier et al. 2012] A. Letelier, J. Pérez, R. Pichler and S. Skritek. Static analysis

and optimization of semantic web queries. In PODS’12, pages 89–100. ACM,

2012. (Cited on pages 132, 133, 143 and 145.)

[Lie 2005] H̊akon Wium Lie. Cascading style sheets. Phd thesis, Faculty of Mathe-

matics and Natural Sciences, University of Oslo, 2005. (Cited on page 74.)

[Lutz et al. 2009] C. Lutz, D. Toman and F. Wolter. Conjunctive Query Answering

in the Description Logic EL Using a Relational Database System. In IJCAI,

pages 2070–2075, 2009. (Cited on page 144.)

[Lutz 2008] C. Lutz. The complexity of conjunctive query answering in expressive

description logics. Automated Reasoning, pages 179–193, 2008. (Cited on

pages 110, 111 and 144.)

[Marden & Munson 1999] Philip M. Marden and Ethan V. Munson. Today’s style

sheet standards: the great vision blinded. Computer, vol. 32, no. 11, pages

123–125, nov 1999. (Cited on page 74.)

[Mateescu et al. 2009] R. Mateescu, S. Meriot and S. Rampacek. Extending SPARQL

with Temporal Logic. INRIA Research Report, RR-7056, 2009. (Cited on

page 118.)

[Møller & Schwartzbach 2005] Anders Møller and Michael I. Schwartzbach. The De-

sign Space of Type Checkers for XML Transformation Languages. In Proc.

Tenth International Conference on Database Theory, ICDT ’05, volume 3363

of LNCS, pages 17–36, London, UK, January 2005. Springer-Verlag. (Cited on

page 39.)

[Moon et al. 2008] Hyun J. Moon, Carlo A. Curino, Alin Deutsch and Chien-Yi Hou.

Managing and Querying Transaction-time Databases under Schema Evolution.

In VLDB ’08: Proceedings of the 34nd international conference on Very large

data bases, pages 882–895. VLDB Endowment, 2008. (Cited on page 39.)

Bibliography 163

[Moro et al. 2007] Mirella M. Moro, Susan Malaika and Lipyeow Lim. Preserving XML

queries during schema evolution. In WWW ’07: Proceedings of the 16th inter-

national conference on World Wide Web, pages 1341–1342. ACM, 2007. (Cited

on page 39.)

[Muñoz et al. 2007] S. Muñoz, J. Pérez and C. Gutierrez. Minimal Deductive Systems

for RDF. volume 4519 of LNCS, pages 53–67, 2007. (Cited on page 105.)

[Murata et al. 2005] Makoto Murata, Dongwon Lee, Murali Mani and Kohsuke

Kawaguchi. Taxonomy of XML schema languages using formal language the-

ory. ACM TOIT, vol. 5, no. 4, pages 660–704, 2005. (Cited on pages 12, 15

and 30.)

[Ortiz et al. 2008a] M. Ortiz, D. Calvanese and T. Eiter. Data Complexity of Query

Answering in Expressive Description Logics via Tableaux. Journal of Auto-

mated Reasoning, vol. 41, no. 1, pages 61–98, 2008. (Cited on pages 110

and 144.)

[Ortiz et al. 2008b] M. Ortiz, M. Šimkus and T. Eiter. Worst-case optimal conjunctive

query answering for an expressive description logic without inverses. In Proc.

of AAAI, volume 8, 2008. (Cited on page 111.)

[Pan et al. 2006] Guoqiang Pan, Ulrike Sattler and Moshe Y. Vardi. BDD-Based Deci-

sion Procedures for the modal logic K. Journal of Applied Non-classical Logics,

vol. 16, no. 1-2, pages 169–208, 2006. (Cited on page 64.)

[Pérez et al. 2009a] J. Pérez, M. Arenas and C. Gutierrez. Semantics and complexity

of SPARQL. ACM Transactions on Database Systems (TODS), vol. 34, no. 3,

page 16, 2009. (Cited on pages 111 and 114.)

[Pérez et al. 2009b] J. Pérez, M. Arenas and C. Gutierrez. Semantics of SPARQL.

Unpublished Manuscript, 2009. (Cited on page 111.)

[Pichler et al. 2010] R. Pichler, A. Polleres, S. Skritek and S. Woltran. Redundancy

elimination on rdf graphs in the presence of rules, constraints, and queries.

Web Reasoning and Rule Systems, pages 133–148, 2010. (Cited on page 144.)

[Pietriga 2005] Emmanuel Pietriga. MathML Content2Presentation Transformation,

May 2005.

http://www.lri.fr/˜pietriga/mathmlc2p/mathmlc2p.html. (Cited on page 36.)

[Polleres 2007] A. Polleres. From SPARQL to rules (and back). In WWW ’07, pages

787–796, 2007. (Cited on pages 142 and 143.)

[Polleres 2012] A. Polleres. How (well) do Datalog, SPARQL and RIF interplay? Dat-

alog in Academia and Industry, pages 27–30, 2012. (Cited on page 114.)

[Prud’hommeaux & Seaborne 2008] E. Prud’hommeaux and A. Seaborne. SPARQL

Query Language for RDF. W3C Rec., 2008. (Cited on pages 111 and 114.)

164 Bibliography

[Quint & Vatton 2007] Vincent Quint and Irène Vatton. Editing with style. In Pro-

ceedings of the 2007 ACM symposium on Document engineering, DocEng ’07,

pages 151–160, New York, NY, USA, 2007. ACM. (Cited on page 75.)

[Reynolds 1983] John C. Reynolds. Types, Abstraction and Parametric Polymorphism.

In IFIP Congress, pages 513–523, 1983. (Cited on page 57.)

[Rose 2004] Kristoffer H. Rose. The XML world view. In DocEng ’04: Proceedings of

the 2004 ACM symposium on Document engineering, pages 34–34, New York,

NY, USA, 2004. ACM. (Cited on page 39.)

[Sattler & Vardi 2001] U. Sattler and M. Y. Vardi. The Hybrid µ-Calculus. In IJCAR,

pages 76–91, 2001. (Cited on page 117.)

[Schmidt et al. 2009] M. Schmidt, T. Hornung, G. Lausen and C. Pinkel. SPˆ 2Bench:

A SPARQL Performance Benchmark. In ICDE’09, pages 222–233. Ieee, 2009.

(Cited on page 146.)

[Schmidt et al. 2010] M. Schmidt, M. Meier and G. Lausen. Foundations of SPARQL

Query Optimization. In ICDT ’10, pages 4–33, New York, NY, USA, 2010.

ACM. (Cited on pages 142 and 145.)

[Sedlar 2005] Eric Sedlar. Managing structure in bits & pieces: the killer use case for

XML. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, pages 818–821. ACM, 2005. (Cited on

page 39.)

[Serfiotis et al. 2005] G. Serfiotis, I. Koffina, V. Christophides and V. Tannen. Con-

tainment and Minimization of RDF/S Query Patterns. In The Semantic Web -

ISWC 2005, volume 3729 of LNCS, pages 607–623, 2005. (Cited on page 142.)

[Serrano 2010] Manuel Serrano. HSS: a compiler for cascading style sheets. In Temur

Kutsia, Wolfgang Schreiner and Maribel Fernández, editeurs, PPDP, pages

109–118. ACM, 2010. (Cited on page 75.)

[Stocker et al. 2008] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer and

D. Reynolds. SPARQL Basic Graph Pattern Optimization Using Selectivity

Estimation. In Proceeding of the 17th international conference on World Wide

Web, WWW ’08, pages 595–604, New York, NY, USA, 2008. ACM. (Cited on

pages 142 and 145.)

[Tanabe et al. 2005] Y. Tanabe, K. Takahashi, M. Yamamoto, A. Tozawa and

M. Hagiya. A Decision Procedure for the Alternation-Free Two-Way Modal

µ-calculus. In TABLEAUX, pages 277–291, 2005. (Cited on pages 9, 102, 133

and 142.)

[Tanabe et al. 2008] Y. Tanabe, K. Takahashi and M. Hagiya. A Decision Procedure

for Alternation-Free Modal µ-calculi. In Advances in Modal Logic, pages 341–

362, 2008. (Cited on pages 9, 101, 102, 118 and 146.)

Bibliography 165

[Ter Horst 2005] H.J. Ter Horst. Completeness, decidability and complexity of entail-

ment for RDF Schema and a semantic extension involving the OWL vocabulary.

Web Semantics: Science, Services and Agents on the World Wide Web, vol. 3,

no. 2-3, pages 79–115, 2005. (Cited on pages 105, 106 and 107.)

[Thomas 1990] Wolfgang Thomas. Automata on infinite objects. In Handbook of

theoretical computer science (vol. B): formal models and semantics, pages 133–

191. MIT Press, Cambridge, MA, USA, 1990. (Cited on page 16.)

[Vouillon 2006] Jérôme Vouillon. Polymorphic regular tree types and patterns. In Pro-

ceedings of the 33rd symposium on principles of programming languages (POPL

’06), pages 103–114, Charleston, SC, USA, 2006. (Cited on pages 67 and 70.)

[Wadler 1989] Philip Wadler. Theorems for free! In Proceedings of the 4th interna-

tional conference on functional programming languages and computer architec-

ture (FPCA ’89), pages 347–359, London, 1989. (Cited on page 60.)

[Walsh 1999] Leonard Muellner Norman Walsh. Docbook: The definitive guide.

O’Reilly & Associates, 1999. (Cited on page 90.)

[Werntges 2011] Heinz Werntges. A CSS for DocBook, November 2011.

http://www.cs.hs-rm.de/ werntges/proj/wysiwyg-dbk01.html. (Cited on

page 90.)

[Yu & Popa 2005] Cong Yu and Lucian Popa. Semantic adaptation of schema map-

pings when schemas evolve. In VLDB ’05: Proceedings of the 31st international

conference on Very large data bases, pages 1006–1017. VLDB Endowment,

2005. (Cited on page 39.)

	Introduction
	Outline
	Societal Stakes and Scientific Challenges
	Original Research Approach Developed
	Contributions
	Evolution of Schemas
	Functions and Polymorphism
	Automated Analysis of Layouts
	Containment for Graph Queries
	Pointers to Other Related Results

	Evolution of Types
	Introduction
	Analysis Framework
	Logical Setting
	Analysis Predicates
	Impact of Standards' Evolution on Valid Documents
	Impact on Queries
	System Implementation
	Related Work
	Conclusion

	Functions and Polymorphism
	Introduction
	Semantic Subtyping Framework
	Tree Logic Framework
	Logical Encoding
	Polymorphism: Supporting Type Variables
	Implementation and Practical Experiments
	Related Work
	Conclusion

	Analysis of Cascading Style Sheets
	Introduction
	Current Practice
	CSS: An Overview
	Theoretical Foundations
	A Logical Modeling of CSS
	Prototype Implementation
	Reasoning with Style
	Automated CSS Size Reduction
	Conclusions

	Containment for a SPARQL Fragment
	Introduction
	Preliminaries
	SPARQL Query Containment
	-calculus
	RDF Graphs as Transition Systems
	Encoding SPARQL Query Containment
	Experimental Investigations
	Query Containment Solvers
	Benchmark Design
	Experimental Results
	Related Work
	Conclusions

	Conclusion and Perspectives
	Summary of Contributions
	Perspectives

	Bibliography

