N

N

Dynamic Software Update for Production and Live
Programming Environments
Pablo Tesone

» To cite this version:

Pablo Tesone. Dynamic Software Update for Production and Live Programming Environments. Soft-
ware Engineering [cs.SE]. IMT Lille Douai, 2018. English. NNT: . tel-02025442

HAL Id: tel-02025442
https://inria.hal.science/tel-02025442
Submitted on 19 Feb 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/tel-02025442
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Numéro d’ordre : XXX

4. d

IMT Lille Douai
Ecole Mines-Télécom
IMT-Université de Lille

Université L

de Llue : informatiques g mathématiques
SCIENCES ’ Z ‘ ‘!
ET TECHNOLOGIES

THESE

présentée en vue d’obtenir le grade de

Docteur

Discipline: Informatique

par

Pablo Tesone

Doctorat de I’Université de Lille
Délivré par IMT Lille Douai

Dynamic Software Update
for Production and Live Programming
Environments

Soutenue le 17 décembre 2018 devant le jury d’examen :

Président : Elisa GONZALEZ Professeur — Vrije Universiteit Brussel (VUB)

Rapporteurs : Christophe DONY Professeur — LIRMM — Université de Montpellier
Oscar NIERSTRASZ Professeur — University of Bern

Ezaminatrice : Elisa GONZALEZ BOIX Professeur — Vrije Universiteit Brussel (VUB)

Stéphane DUCASSE
Luc FABRESSE

Directeurs de these :

Co-Encadrants : Guillermo POLITO

Fabien DAGNAT
Noury BOURAQADI

Invités :

Directeur de Recherche — INRIA Lille
Professeur — IMT Lille Douai

Docteur, Ingénieur de Recherche — CNRS

Professeur — IMT Atlantique
Professeur — IMT Lille Douai

Ecole Doctorale SPI 072 (Lille I, Lille III, Artois, ULCO, UVHC, Centrale Lille, IMT Lille Douali)

Copyright © 2018 by Pablo Tesone

This work is licensed under a Creative Com-
mons “Attribution-NonCommercial-ShareAlike @ ® @ @
3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Abstract

Updating applications during their execution is used both in production
to minimize application downtime and in integrated development envi-
ronments to provide live programming support. Nevertheless, these two
scenarios present different challenges making Dynamic Software Update
(DSU) solutions to be specifically designed for only one of these use cases.
For example, DSUs for live programming typically do not implement safe
point detection or instance migration, while production DSUs require man-
ual generation of patches and lack IDE integration. These solutions also have
a limited ability to update themselves or the language core libraries and
some of them present execution penalties outside the update window.

In this PhD, we propose a unified DSU named ¢gDSU for both live pro-
gramming and production environments. gDSU provides safe update point
detection using call stack manipulation and a reusable instance migration
mechanism to minimize manual intervention in patch generation. It also sup-
ports updating the core language libraries as well as the update mechanism
itself thanks to its incremental copy of the modified objects and its atomic
commit operation.

gDSU does not affect the global performance of the application and it
presents only a run-time penalty during the update window. For example,
gDSU is able to apply an update impacting 100,000 instances in 1 second
making the application not responsive for only 250 milliseconds. The rest
of the time the application runs normally while ¢gDSU is looking for a safe
update point during which modified elements will be copied.

We also present extensions of gDSU to support transactional live pro-
gramming and atomic automatic refactorings which increase the usability of
live programming environments.

Keywords: dynamic software update, live programming, long running ap-
plications, transactional modifications, automatic refactorings.

Résumé

Mettre a jour des applications durant leur exécution est utilisé aussi bien
en production pour réduire les temps d’arrét des applications que dans des
environnements de développement interactifs (IDE pour live programming).
Toutefois, ces deux scénarios présentent des défis différents qui font que les
solutions de mise a jour dynamique (DSU pour Dynamic Software Updating)
existantes sont souvent spécifiques a 1'un des deux. Par exemple, les DSUs
pour la programmation interactive ne supportent généralement pas la détec-
tion automatique de points stirs de mise a jour ni la migration d’instances,
alors que les DSUs pour la production nécessitent une génération manuelle
de I'ensemble des modifications et manquent d’intégration avec I'IDE. Les
solutions existantes ont également une capacité limitée a se mettre a jour
elles-mémes ou a mettre a jour les bibliotheques de base du langage; et cer-
taines d’entre elles introduisent méme une dégradation des performances
d’exécution en dehors du processus de mise a jour.

Dans cette these, nous proposons un DSU (nommé ¢gDSU) unifié qui fonc-
tionne a la fois pour la programmation interactive et les environnements de
production. gDSU permet la détection automatique des points stirs de mise
a jour en analysant et manipulant la pile d’exécution, et offre un mécan-
isme réutilisable de migration d’instances afin de minimiser les interventions
manuelles lors de 'application d"une migration. gDSU supporte également
la mise a jour des bibliothéques du noyau du langage et du mécanisme de
mise a jour lui-méme. Ceci est réalisé par une copie incrémentale des objets
a modifier et une application atomique de ces modifications.

gDSU n’affecte pas les performances globales de l'application et ne
présente qu'une pénalité d’exécution lors processus de mise a jour. Par
exemple, gDSU est capable d’appliquer une mise a jour sur 100 000 instances
en 1 seconde. Durant cette seconde, 1’application ne répond pas pendant
250 milli-secondes seulement. Le reste du temps, 1'application s’exécute
normalement pendant que gDSU recherche un point stir de mise a jour qui
consiste alors uniquement a copier les éléments modifiés.

Nous présentons également deux extensions de gDSU permettant un
meilleur support du développement interactif dans les IDEs : la program-
mation interactive transactionnelle et I’application atomique de reusinages
(refactorings).

Mots clés: mise a jour dynamique, programmation interactive, applications
de longue durée, modifications transactionnelles, réusinage de code

Contents

I__Introductionl 1
LI _Confexlo 1
[(L.1.1 Live Programming Environments| 1
12 DSUSolutions. 2
[L.I.3 Automatic Refactorings| 3

.14 Reflective Languages| 3
1.1.5 DSU Scenarios and their Challenges| 4
[[2_Problem Statemenfl 5
(1.3 _Contributionsl 6
(1.4 Thesis Outlinel 7
(141 Partl:Stateofthe Artl 7
142 PartII: DSU for Production| 7
[1.4.3 Part lII: DSU for Live Programming| 8
M44 PartV.-Conclusion] 8
IL_State of the Art 9
2 Comparing Existing Solutions| 11
21 RequirementsforDSU| 11
.11 Change Challenges Mustrated] 11
212 DSUPractical Concerns 14
[2.1.3 OState Inconsistency]o 14
214 Change Interdependency|] 15
.15 Concurrency And Execution Inconsistency] 16
216 Performancel. 16
17 FHaseoftUsel 17
I8 Versatility] 17
219 Requirements fora General DSU| 18

2.2 Existing DSU Solutions| 19
221 DUSCIo 20

22 Jvolvel. . ..o 21

223 DCEVMI ... 0.0 oo 21
24 DuSTMI.ot 21
............................ 22

2.6 Javeleon| 22
227 Javadaptor] 23
............................ 23
229 Pymoult] oo 23

2.3 Categories of Existing Solutions] 24
3.1 Classical Live Programming Environments| 24

ionDSUs|o 25

233 DevelopmentDSUs|. 25

2.4 Related Techniques| 27
D41 Safe Point Defection]

vi

Contents

2.4.2 Migration Logic Generation| 27

2.43 Benchmark and Validations| 28

4.4 Architectural Solutions|. 28

[2.4.5 Isolation and Atomicity| 28

2.5 Analysis of Existing Solutions| 29
ILI__DSU for Productionl 31
3 Design Principles of gDSU| 33
......................... 33
B2 PatchConfenfl 35
B.3 Patch Generation| 35
B.4 Dynamic Patch Analysis| 36
B.5 Thread Management and Safe Point Detection] 37
.6 EnvironmentCopy| oL 39
B.7 Application of Changes and Instance Migration| 40
B.8 Validation and Commit of Changes|. 41
B.9 gDSU Platform Requirements| 43
BI0 Conclusion] oot 44

@4 Designing Techniques for an efficient gDSU| 45
41 Automatic Safe Update Point Detection] 45
4.2 Efficient Partial Copy of the Original Environment| 49
421 Detection of Modified Classesl. 50

.22 Detection of Instances to Migrate| 50

.3 Reusable Instance State Migrations| 51
M4 Reusable Validationsl 52
@.5 Bulk Instance Replacement|. 54
4.6 Extensible Class Building Process|. 55
47 Conclusionl 57

|5 Validation of gDSU for production related requirements| 59
b.I ValidationSet-up| 60
b.2 Validation 1: Application Update| 61
p.3~ Validation 2: Update of the DSUJ. 62
p.4 Validation 3: Update of Language Core Libraries| 62
idation 4: Benchmarks| 63

P.6 Requirement Assessment]. o0 65

ionl 66

III__DSU for Live Environments| 69
|6 Atomic State Preserving Refactorings| 71
6.1 ass Refactorings that break Instances|. 72
[6.1.1 Challenges in refactorings: Two examples of corrupting |

| refactoring| Lo Lo L 73
6.1.2 Refactoring Impact Categories| 75

6.1.3 Ubiquity of the problem| 77

Contents vii

6.2

Our Solution: Atomic Refactorings for Live Programming N4

6.3 Preserving Instance State when Applying Refactorings with |

[8DSU . -« oo 80

0.3.1 Pull Up Instance Variable| 80

6.3.2 Split Class Refactoring| 81

0.4 Using ¢DSU to preserve instance state] 82
6.5 Application of the Refactoring step by step| 83
0.6 Validation| o L. 86
[6.6.1 Validation 1: Refactorings without Corruption| 86
[6.6.2 Validation 2: Refactorings with Internal Corruption| . . 87
[6.6.3 Validation 3: Refactorings with Complex Corruption| . 88

6.7 Conclusionl. L o 89
[7 State-aware Transactional Live Programming| 91
[7.1 Changes Corrupting Instances|. 92
7.2 Transactional Changes| 95
7.3 Implementing PTm|, 96
3.1 Scoped Enwironment 9%
732 _GlobalStatel 97
(733 State Contflicts Detection| 98
[7.3.4 Applying Changes| 98
[/.3.5 State-Migration|o oo 98
[73.6 Aborting the Transaction] 99

[74 Using PI'm to safely apply changes| 99
[741 Transactional Changes| 99
[/.4.2 Custom Migration| 100

(2.5 Transactional Modifications Validationl. 101
[7.5.1 Validation 1: Manual Refactorings| 101
[7.5.2 Validation 2: Detection of Custom Migration Needing|. 102

[7.6 Design Decisions| 103
|77 _Requirements Assessment|o 105
onl 106
ILV__Conclusion| 109
8__Conclusion| 111
8.1 Contributions| 112
8.1.1 gDSU and its techniques|. 112
.12 Atomic Automatic Refactoring] 113
[.1.3 State-Aware Transactional Live Programming| 113

B2 FutureWorkl 114
821 Distributed DSUl 114
8.2.2 Isolation and Virtualization 114
[8.2.3 AnalysisofChanges 114
2.4 TanguageEvolution] 115

8.2.5 evelopment Experiencel 115

Bibliography 117

viii

|A" Published Papers|

A1 Journals|.

[A3 Workshops| 00

|B_Instructions to Reproduce Validations and Benchmarks|

|§.2 Executing Validations|
B2T Preparation|

[B2.2 Running Validations|
[B.3 Executing Benchmarks|

|B.3.1 Memorz ConsumEtior_1|
|B.3.Z Server Response lime|

|C Detailed Analysis of Automatic Refactorings|

C.1 Refactoring without Corruption|.
C.2 Refactoring with Complex Corruption]
C.3 Refactoring with Class Corruption|
C.4 Refactoring with Internal Corruptionf.

Contents

List of Figures

2.1 Window of the rendering application in action| 12
.2 Original version using cartesian coordinates| 12
2.3 New version using spherical coordinates|. 12
2.4 Static Transformation performed by DUSC to enable dynamic |
| updateof theclass.| o000 20
B.1 Steps to apply an atomicupdate].o 34
B.2 Reusable Migration Policy: it migrates all the instance vari-
ables” values by name. It is used when the instance variable
orderchanges|. 36
B.3 Threads Management during the update window| 38
B.4 Migration Policy interface] 40
B.5 Example of a manual migration] 41
B.6 Validationsasobjects| 41
B.7 Validating that all classes have a proper package and the pack- |
| ageincludestheclass|, 42
B.8 Validating that all the students have the required information] 42

4.1 Modification of call stack for the detection of Sate Update Points.| 47
4.2 Example of a modification requiring safe point detection| . . . 48
4.3 Example of a Programming Pattern that does not allow the
program to reach a sate update points if this method is up-
dated inthepatch.| 49
.4 Update introducing an instance migration for a business-logic |
[change.| o 51
4.5 Migration Policy interface| 51
4.6 Migrating instance variables per name: an example of applica- |
| tion independent change| 52
M7 Migrating Vector3D: an example of application dependent |
change.|. 53
.8 This validation is used to guarantee the correct migration of |
[the Vector3D from one coordinate system to the other.| 54
4.9 Class Building and Installing Process|. 55
4.10 Shift Builder Enhancers|. 56
.1 Original design. All the messages are instances of a single
class ChatMessage. This implementation has conditional code
to handle the differences in messages from the system and
fromusers]. o oo 61
.2 The application is refactored to extract the different behavior
in the messages in two subclasses (InfoMessage and UserMes-
sage) to represent the messages sent by the system and by a
| USELl. . .. 61
.3 Impact in memory space and execution time depending the |
| number of instances to migrate.| 63

X List of Figures

p.4 The response time is only affected briefly during a small up-

I datewindow. oL 64
[6.1 Step by Step of appliying the Pull Up Instance Variable refac-
toring to the idNumber instance variable present in Student and
leacher classes. o . 74
6.2 The Split Class refactoring corrupts its instances.| 75
6.3 The Atomic Refactoring process] 79
6.4 State before refactoring] L. 83
6.5 A new environmentiscreated| 0L 84
0.6 All the modifications to the classes are applied| 84
6.7 Liveinstancesaremigrated| 86
6.8 The New environment replaces the old environmenf] 86
6.9 Before applying the protect variable refactoring| 87
0.10 After applying the protect variable refactoring.| 87
0.11 Before applying the Pull Up variable refactoring.| 88
0.12 After applying the Pull Up variable refactoring|. 88
6.13 Before applying the Split Class refactoring.| 89
0.14 After applying the Split Class refactoring.| 89
[7.1 Step by Step of applying the Pull Up Instance Variable refac-
toring to the idNumber instance variable present in Student and
Teacher classes) 93
[7.2 Example of changes requiring migration of instances with cus- |
| tomlogic|. oo oo 94
[Z3_Overview of theSolufion] 95
|74 State before executing the changes| 102
[7.5 State after executing the changes| 102
[7.6 Changes requiring a custom migration| 103

List of Tables

[I.1 How different DSU solutions face the challenges.|. 5
2.1 Requirement mapping to the problems and concerns of a DSU.| 18
2.2 Requirement vs. DSU Categories|. 29
p.1 gDSU vs. ProductionDSU|. 66
[6.1 Results of the analysis of existing refactoring engines.| 78

[7.1 gDSU vs. Development DSU & Live Programming Environ-

mentsl. 107

INTRODUCTION

Contents
LI _Contextl . -« . v o v e e e e 1
[[.2_ Problem Statementl 5
3 _CONIHBULONG . « « « « o e oot e e e e e 6
[4 ThesisOutlinel e 7

1.1 Context

Software needs to evolve to keep up with the requirements of real-world
applications, otherwise it becomes obsolete [LB85,DDN02]. During software
lifetime, most of the effort is spent during the maintenance phase which con-
sists in adapting existing software to new requirements [DRG™05, KLT03].
Examples of such evolution are: adding new features, improving perfor-
mance or fixing bugs and security failures.

In the following sections, we present different tools used during the de-
velopment and maintenance phase of an application. These tools improve the
productivity of the developers and minimize the effort spent in those phases.

1.1.1 Live Programming Environments

Live programming environments [San78|] such as Lisp [Ste90], Smalltalk
[GR83] or Javascript [Dav06], allow developers to modify the code while
the program is running. Live programming allows a faster development
cycle if we compare it with the edit-compile-debug process. Live program-
ming provides a continuous flow of interaction between the developer
and the program [BFdH"13, Han03]. This continuous flow of interaction
provides an excellent framework for the development of behaviour driven
applications [BFL™ 14, CF17,Lim14},|AS14].

Live instances represent the state of an application in an object-oriented
programming language. Live Programming environments allow the ma-
nipulation of running program’s state, through the manipulation of live
instances [CNSG15].

Existing live programming tools allow hot update of running code, mod-
ifying the structure of live instances as classes change. During code modifi-
cation, the program is still running. The user of the running application is

the programmer itself or other users (e.g., a web application is still serving

2 Chapter 1. Introduction

content during a live programming session). The programmer modifies the
application, debug it and re-execute different parts of the application without
the need of restarting the whole application.

The use of live programming is not limited to Smalltalk or Lisp environ-
ments. Nowadays, there are different efforts to integrate live programming
features in professional programming environments and languages such as
Java [WWS10, Zer12,PKC 13|, Python [MDB15] and Javascript [nod|/fir,/chr,
ORHO2|]. This new attempt to integrate live programming in professional
IDEs demonstrates the increased interest in the benefits of live program-
ming [BFdH 13, McD07, Tan90, Shn83].

Live programming environments have a limited support to migrate a running ap-
plication from one version to another. Current solutions are fragile because they
mainly consist in applying modifications one at the time and in a non-atomic way.
This is even more fragile for the stability and coherence of the running application

when applying interdependent modifications sequentially.

1.1.2 DSU Solutions

A Dynamic Software Update (DSU) [HNO5,PH13|| engine is a tool that man-
ages the migration of a piece of software from version 1 to version 2 while it
is running. Its basic idea is to turn the stop, install, restart cycle into a simple
update action [PDFT15]. DSU engines perform such migrations minimizing
downtime and guaranteeing that the software will continue working as ex-
pected.

DSU solutions (from now on DSUs) are typically used in two scenarios:
a production DSU is designed to update long running applications e.g., Web
application servers; a development DSU is integrated within a development
environment to provide live programming support. Each of these scenarios
presents different requirements, making existing solutions to be specialized
for only one of them. For example, a production DSU requires safer guaran-
tees while a development DSU requires incremental updates and IDE inte-
gration. Not having a single DSU tool limits the benefits of using a DSU solu-
tion. The developers need to use different tools with different requirements
in both scenarios. The expertise of using a tool in development scenarios is
not applicable when updating the application in production.

Current DSU solutions are too specific to either the production or the development
scenario. There is a lack of general-purpose DSU. This lack limits the usability of
the tools.

1.1. Context 3

1.1.3 Automatic Refactorings

Refactorings are behaviour preserving operations that help developers
to improve the design of the application [Fow99, RBJ97, DHL96]. Refac-
torings modify the implementation of the application keeping its fea-
tures. This modification of the implementation improves the quality of the
code [RBJ97,[Rob99].

Nowadays, refactoring tools are present in the majority of Integrated De-
velopment Environments (IDE) used in the industry [MT04], but with differ-
ent degrees of refactoring support.

A refactoring is composed of pre and post-conditions as well as a number
of ordered elementary steps. Each step modifies classes and methods. These
modifications are performed automatically by the IDE. Automatic refactor-
ings constitute a daily tool used by programmers to improve the quality of
its code [KZN12,XS06,[DJ05,KZN14,BDLDP"15|.

Automatic refactoring tools do not guarantee that live instances’ state is preserved

after applying the changes.

1.1.4 Reflective Languages

A Reflective language has the ability to reason about itself and react upon
it [Mae87]]. There exists two different forms of reflective access: structural and
behavioural [MDC92,M]JD96]. The first form inquires on the static structure
of a program, and the later inquires on the dynamic running of a program.

Also, the reflective abilities of a system are categorized if the system is
able to modify the program structure or its runtime. Introspection is the ability
to access to the reflective information and intercession is the ability to modify
the program.

Different degrees of these abilities are required to update running appli-
cation while it is running. The reflective capacities of a system constraints
the ability of update solutions to update a given application running in such
systems.

Reflective systems present a Meta-Object Protocol. A Meta-Object Pro-
tocol is the set of messages and operations to access and modify reflective
systems [KdRB91]. This protocol presents a set of first class citizen object to
access the structure of the program and its execution.

A reflective language is structured in two levels:

¢ The first level includes all the objects and classes that form part of the
running application (they describe the business logic that is executing).

4 Chapter 1. Introduction

¢ The second level includes a set of objects and classes that describes the
running application (they describe the classes in the first level), these
objects are the so called meta-objects and meta-classes.

Both set of objects are accessible and manipulable during the execution
of the program. Reflective languages present a common environment for ob-
jects, classes, meta-objects and meta-classes. An environment is the set of ob-
jects, classes and references that are accessible and able to interact with each
other. Also, a reflective language presents reification of the concepts used in
a program, such as Classes, Methods and Call Stack entries [Riv96a].

Reflective languages are limited in the amount of changes they are able to apply
to themselves. They are not designed to apply the changes in an atomic fashion
limiting the level of updatability to the core languages and reflective tools [PDFB15|,
PDF"15].

1.1.5 DSU Scenarios and their Challenges

Updating an application without the need to restart it should guarantee that
all the changes are performed and the state of the running application is not
altered.

In the scope of an object-oriented application, the state of the application
is formed by the live instances in the environment. Guaranteeing the appli-
cation state in OOP means that live instances should be preserved from one
version to the other.

Dynamically updating an application is performed in two different sce-
narios: Live programming during Development (Development DSUs) and
updating a long running application (Production DSU).

Both kinds of DSUs share the challenges listed below. However, each of
the families of DSUs present different approaches to solve these challenges.
The different approaches focus on improving the results in one of the target

scenarios.

¢ State Migration. Migrating the state of an application between versions
is not a trivial activity. On the one hand, it requires a technique to re-
place old values by new values (e.g., pointer swapping, lazy proxies).
On the other hand, it requires a way to express value transformations
which are usually application dependent and cannot be produced auto-
matically. The migration of state is required to minimize the corruption
of instances. A live instance is corrupted if after a change in its struc-
ture or its usage it is not updated to follow the required new structure
or usage [TPF"16].

1.2. Problem Statement 5

Change Identification. Determining the set of changes to apply (e.g.,
classes to create, methods to modify, instances to migrate) is error prone
if done manually. Moreover, doing it automatically lacks precision: the
process may miss business dependent value transformations required
for state migration.

Core Libraries and Self Update. Updating the core parts of a run-time
environment (e.g., core language libraries) and the DSU itself is diffi-
cult [PDFT15]. Such updates introduce circular dependencies that may

break the update and require special mechanisms to ensure atomicity.

Safe Point Detection. Detecting and deciding the best moment to
execute an update (Quiescence Point, Safe Update Point or Alterability
Point) [NH09] presents a challenge for those applications that were not
designed for it. Looking for a safe update point should be fast enough
to minimize the suspension time and smart enough to detect as soon
as possible when such update point will never happen.

Execution Penalty. Implementing all the above requires smart strate-
gies to avoid performance penalties outside the update itself. For ex-
ample, the usage of lazy proxies for state migration introduces an addi-
tional level of indirection affecting the overall application performance.

Table[I.Ilsummarizes how the different kinds of DSUs choose to balance

their features to cope with these challenges.

Challenge Development DSUs Production DSUs
State Migration Limited Yes

Change Identification Automatic Manual

Core lib & Self Update | Limited No

Safe Point Detection No Manual
Execution Penalties Most Most

Table 1.1: How different DSU solutions face the challenges.

1.2 Problem Statement

This thesis focuses on the development of techniques to perform dynamic
software update in Live object-oriented Reflective Environments that are ap-

plicable in both development and production scenarios.

In this context, we aim solving the following problems:

6 Chapter 1. Introduction

State Migration. Migrating live instances from one version of the application
to a different one requires the migration of instances. This operation requires
the identification of the changes that requires instance migration, the auto-
matic migration of the instances when it is possible and the tools to provide
to ease the manual migration.

Safe Point Detection. To safely update an application the modifications
should be done in a point in time that does not affect its normal execution.
This thesis focuses on a conservative approach to guarantee a safe point to
perform the update.

Isolation. While the developer is performing Live programming the changes
she is performing should not affect the running application until all of them

are executed.

Execution Penalty. Using a DSU solution should not affect the execution per-
formance of the application. Moreover, the only impact of the use of a DSU
solution should be noticeable during an update window.

Usage in Production and Development scenarios. To ease the use of DSUs
in the daily development cycle, an approach should be able to be used in both

scenarios.

Development Environment Integration. To ease the use of DSUs in a daily
development cycle, an approach should be integrated with the IDE used by
the developer. It should collaborate with existing tools in the development
environment as Automatic Refactorings.

Then, we pose the following research question:

What would be general-purpose DSU solution, integrated with the
development environment of object-oriented reflective languages, to
be used both in production and development scenarios, and guarantee
the correct state migration, safe point detection and isolation without
affecting the execution performance outside the update window?

1.3 Contributions

The main contribution of this thesis is gDSU and the techniques required to
implement it. gDSU is a DSU solution that is applicable in production and de-
velopment scenarios. It is applicable to object-oriented Reflective Languages
and provides a safe live update experience and update of long running ap-
plications.

1.4. Thesis Outline 7

The proposed solution provides a set of automatic and manual migra-
tion strategies for instance migration. It implements a conservative safe point
detection algorithm. It guarantees the isolation of changes and it does not
present any execution penalty outside of the update window. Also it is in-
tegrated in the IDE providing transactional change support and handling of
complex automatic refactorings.

1.4 Thesis Outline

The rest of this dissertation is structured in three main parts followed by con-
clusion chapter and several appendixes with complementary information.

1.4.1 PartI: State of the Art

Chapter 2. This chapter presents the state of the art of dynamic software
update solutions and related techniques. The first section of this chapter
presents an analysis of the requirements for a general-purpose DSU solu-
tion, and how these requirements are related with the development and
production scenarios. Then, this chapter presents a representative set of
DSU solutions and classify them in a taxonomy based on the intended
usage scenario. This chapter also describes and analyses some the related
techniques used in DSU solutions. Finally, the chapter presents an analysis
of the categories of solutions using the stated requirements.

1.4.2 PartII: DSU for Production

Chapter 3. This chapter presents the design principles of our proposed DSU
solution. A general description of our solution is presented, later each of the
mechanisms and techniques used in the solution is explained. The presented
solutions address the different requirements for a general DSU solution.

Chapter 4. This chapter presents the design of the techniques used to imple-
ment an efficient gDSU. In this chapter, efficient techniques are presented to
implement the functionality needed by gDSU. All these techniques allow us
to develop an efficient DSU solution that minimizes the performance issues
and ease its usage [TPF"eda].

Chapter 5. This chapter presents the validation of the production DSU as-
pect of gDSU. First, it presents three different validations to demonstrate that
gDSU is able to do an application update, update itself and the core language
libraries. Moreover, this chapter presents a benchmark showing the minimal
memory footprint and execution penalty of ¢DSU [TPF"eda]. Finally, this

8 Chapter 1. Introduction

chapter presents an assessment of the requirements established for a Pro-
duction DSU.

1.4.3 Part III: DSU for Live Programming

Chapter 6. This chapter starts covering the requirements for a live program-
ming DSU. Initially this chapter analyses the challenges of executing auto-
matic refactorings in a live programming environment. Based on the set of
problems shown in this chapter, an extension for gDSU is presented to sup-
port atomic automatic refactorings. Finally, this chapter presents the imple-
mentation considerations of this extension [TPFTedb].

Chapter 7. Following with addressing of the live programming problems,
this chapter analyses the need for a state-aware transactional live program-
ming. This chapter proposes another extension to gDSU that allows us
to support state-aware transactional changes. Later, this chapter presents
the techniques that have been required to implement the proposed exten-
sion [TPF"18b]. Finally, this chapter presents a requirement assessment of
the challenges for a live programming DSU.

1.4.4 Part V: Conclusion

Chapter 9. This chapter concludes this dissertation. It sums up the contribu-
tions of this thesis and presents several lines of future work.

Appendix A. This appendix presents a list of the publications that came out
of the work on this thesis.

Appendix B. This appendix presents detailed instructions to reproduce the
validations and benchmarks presented in this dissertation.

Appendix C. This appendix presents the detailed analysis of the automatic
refactorings and the problems they present when used in a stateful live pro-
gramming environment.

Part1

State of the Art

COMPARING
EXISTING SOLUTIONS

Contents
R.1 Requirementsfor DSU| 11
2.2 Existing DSU Solutions|. 19
2.3 Categories of Existing Solutions|. 24
2.4 Related Techniques|, 27
2.5 Analysis of Existing Solutions| 29

This chapter first draws a list of requirements for a complete DSU engine.
It then describes and classifies main existing DSU solutions and related tech-
niques. Using this classification, it finally presents a comparison of families
of DSUs solutions based on the previously established list of requirements.

2.1 Requirements for DSU

This section starts by presenting the challenges that arise when applying
changes to a running application through an example. These challenges are
then used to establish a list of requirements for a DSU solution to tackle both

production and development scenarios.

2.1.1 Change Challenges Illustrated

Let us consider an application running a 3D visualization on a continuous
stream of data. This application has a Window class that implements a dra-
wOn: method responsible for rendering a single frame of our visualization
in a 3D canvas. This application has a render thread with a loop invoking
the drawOn: method. So, Window continuously draws in its canvas instances
of Vector3D class. Figure 2.1|shows a screenshot of such application and Fig-
ure2.2illustrates its code.

Let us consider now that a developer wants to change the coordinate sys-
tem from cartesian coordinates to spherical coordinates for performance rea-
sons. Figure[2.3|presents the desired modification. This modification requires
a number of different changes:

¢ The Window»drawOn: method will be updated to use the new coordi-
nates of Vector3D.

12 Chapter 2. Comparing Existing Solutions

x -0 IsoPlaneMorph>>#drawOn:
Scoped Variables. History Navigator s

! IsoPlaneMorph —all- addpoint
ceberg-Plugin ! IsoPlanewindow accessing axisLength
Iceberg-Ul ! Vector3p S Window -
ImportingResource-Help
3 IsoMetric
IssueTracking
IssueTracking Tests
Jobs
JobsTests
Kemel
Kemel-Rules
Kermel Tests
Kernel Tests-Rules
Keymapping-Core
Keymapping-KeyCombinations
Keymapping-Pragmas
Keymapping-Settings
Keymapping-Tests A e
drawon: canvas
super drawon: canvas.
canvas
translatey: self bounds origin
during: [:translatedCanvas |

self drawprojections: translated

self drawaxis: translatedCanvas.

self drawpoints: translatedcanva

y8[]

Figure 2.1: Window of the rendering application in action.

Window >> #drawOn:

- . Vector3D >> length
"Updates the window, using - Vector3D Vector3D
the operations and self squareSum sqrt x:Number x—%
Vector3D's instance y:Number :
Vi D :
variables. It's called by the e‘i\t:g +;7252L3r2e8um z:Number yj 1
drawing thread." length() Z

Figure 2.2: Original version using cartesian coordinates

* The Vector3D»length method will be replaced to use the radius instance
variable.

® The Vector3D»squareSum method will be removed, as it is not used any-

more.

¢ The structure of the class Vector3D will be changed replacing the exist-
ing instance variables with the new ones.

Y\Lljiné:low >; #drawOn: d_le?t'fl’rsl::) ‘Vector3D
pdates the window, using Vector3D >> length ra IUS'. umoer radius: 1.73
the operations and A radius thetha:Number thetha: 0.78
Vector3D's instance phi:Number hi: 0 '95'
variables. It's called by the length() pht: 2.

drawing thread."

Figure 2.3: New version using spherical coordinates

Applying these changes while the application is running is not a trivial
task. This example clearly shows the three problems that occur when updat-

2.1. Requirements for DSU 13

ing a running application:

State Inconsistency. Updating an application involves changing its internal
state representation. However, naively initializing such state may pro-
duce information loss or even failures in the application. Most of the
times, a migration is business dependent. In our example, the Vector3D
instances change: initializing the new instance variables to null pro-
duces a null pointer exception, while initializing them to 0 will pro-
duce a loss of previous application state. Instances should be migrated
from their cartesian coordinates to their corresponding spherical coor-
dinates. The logic of this migration is clearly business dependent and
cannot be generally inferred just from the changes in the classes and
methods (Section [2.1.3).

Change Interdependency. When updating an application, the modifica-
tions are usually interdependent because they relate to the same enti-
ties (i.e., methods, instance variables, classes). In the example, the new
Vector3D»length implementation requires the previous introduction of
the new radius instance variable. Modifying this method before adding
the instance variable is wrong, and it causes application failures. These
interdependencies appear also between methods. For example, remov-
ing Vector3D»squareSum before updating Vector3Dx»length produces a
missing method error during the execution of Vector3D»length (Section
2.1.4).

Concurrency and Execution Inconsistency. While the application is run-
ning, some of the methods to be updated are present in the execution
stacks of running threads. The update process should not lose or
corrupt the application execution. Such a corruption occurs when
the update alters local variables or control-flow of a method in any
execution stack [HN12]. In our example, if the render thread enters
the Vector3D»length method and the update is applied before the
Vector3D»squareSum method is called, continuing the execution of the
length method will fail as the Vector3D » squareSum method does not
exist anymore (Section [2.1.5).

These issues make applying code changes a challenging and interesting
task, to which existing DSUs propose several techniques to solve. However,
implementing a solution in a way that it is applicable in a real scenario im-
poses new challenges. The following section explores those challenges con-
cerned with these more practical issues.

14 Chapter 2. Comparing Existing Solutions

2.1.2 DSU Practical Concerns

DSUs usage presents a set of concerns that should be addressed to have a
practical solution.

Performance. Making a program updateable should impact its performance
as little as possible [HNO5]. A DSU performance impact is divided in
two stages: (1) during normal execution (outside update-window) and
(2) during an update (inside update-window). A DSU should mini-
mize the impact in both stages. Examples of impact are memory con-
sumption, execution overhead and downtime during the update (Sec-
tion[2.1.6).

Ease of Use. The DSU engine should be easy to use by regular application
developers. The less complicated the updating process is, the less error-
prone it will tend to be [HNO5|]. A DSU solution should be integrated
with the development tools used in the language. Also it should min-
imize manual interactions and simplify them when they are unavoid-
able. Finally, it should be present in the whole life-cycle of the applica-
tion providing solutions during the development as well as during the
evolution of systems in production (Section[2.1.7).

Versatility. A DSU should be able to update any part of the running appli-
cation [HNO5|]. The running application is not the only part that may
require modifications. Core language libraries including the DSU en-
gine itself also require updates (e.g., adding new features, improving
performance or fixing bugs and security failures) (Section[2.1.8).

2.1.3 State Inconsistency

Applying updates to live programming environments change the structure
and use of live instances. There are changes that leads to instance state in-
consistency. Instance state inconsistency is when the internal state of live
instances does not follow the expected value for live instances. This mis-
match includes differences in existence or not (instance variables that ex-
ists in only one of the version), how the instance variable is used (the same
instance variable is used for different operations in different versions) and
values types (the instance variable holds different types of values in differ-
ent versions). These instances should be correctly migrated to avoid instance
state inconsistency.

A DSU in an object-oriented environment should manage arbitrary
combinations of the following elementary changes. These changes are com-
posed in different ways, allowing the creation of complex changes. Including

2.1. Requirements for DSU 15

changes in many classes at the same time, for example complex automatic
refactorings.

Adding new instance variable. Adding a new instance variable on an exist-
ing instance means extending the structure of the object and filling the room
with a value. Neither initializing the new variable with the null pointer nor
using the value assigned in the construction are useful for existent objects.
The decision of the value for the new instance variable depends on the up-
date performed.

Removing instance variable. When removing an instance variable there are
two options. Either the object is resized to fit its new layout and the value
is dropped or the object keeps the value but the instance variable is made
obsolete as it is not a property of its class any more.

Renaming instance variable. From the structure point of view this is equiv-
alent to removing an instance variable and adding another one. But doing
so, we loose the value held in the old instance variable. Therefore, the sys-
tem needs to be able to transfer state from an instance variable about to be
removed to a newly added instance variable.

Value Change. When the object structure is updated, it might not be a struc-
tural change. Changes are application specific and only affect the value stored
in an instance variable without modifying the structure of the object. These
migrations may need to compute the new state of the object in various man-
ners that involve all the data available in the object. The way the new values
are calculated are application dependent. For example when in an object rep-
resenting a product we store a price as a number. In a later version we store
the price as an object (containing the number and the currency). The structure
of the instances are not modified (both versions have the price variable), but
the instances should be migrated and the migration is application-dependent
i.e., what is the default currency.

Class Hierarchy Changes. A class hierarchy change can generate or not
changes in the structure of the instances. The DSU should detect when
these changes affect the structure of the instances and migrate the affected

instances.

2.1.4 Change Interdependency

Changes in an update are dependent between each other. This dependency
is produced when the same element (e.g., classes, methods) is modified in

16 Chapter 2. Comparing Existing Solutions

two different changes, and when different elements have changes that are
required by the other.

An example of the first scenario is a class that is modified to have a new
instance variable and a method is added to this class using such instance
variable. Figure[2.3|presents an example of this change. The method Vector3D
» #length depends in the modification of the structure of the class Vector3D.

An example for the second scenario is a a method that is modified to use
a new method in other class. The method Window » #drawOn: has a depen-
dency with the implementation of Vector3D » #length

This interdependency of changes requires that the changes are applied in
correct sequence. The dependencies should be correctly managed during the
update by the DSU solution.

A correct update includes all the changes applied in the system. These
dependency also affects the correct migration of live instances.

2.1.5 Concurrency And Execution Inconsistency

During the update the application is execution, so it is possible that in the
execution stack there are activations of methods that need to be updated.
Also, the execution stack could include references to objects that should be
migrated.

The execution state of the application should be guarantee during and
after the update. All the elements in the execution stack should be correctly
updated or migrated.

The DSU should execute the update only when it can guarantee that the
execution stack of the application is not affected. Also, in multithreading ap-
plications the updates and migrations should be synchronized.

From the point of the running application the update should be per-
formed transparently and atomically.

2.1.6 Performance

Executing an update impact in the execution performance of the running ap-
plication. A DSU should minimize the impact on the running application.

A DSU impact the performance of the running application if the applica-
tion has an execution penalty because of the execution or presence of a DSU
solution.

There exist two different situations during the update window, and out-
side the update window. On one hand, It is required that the DSUs do not
affect the execution of the application outside the update window. On the
other hand, the DSUs should minimize the length of the update window as
the application is not executing during this window of time.

2.1. Requirements for DSU 17

2.1.7 Ease of Use

If the DSU solution requires manual work from the developer, this should be
minimized.

Operation as the identification of changes, creation of a patch, expression
of state migration logic and detection of safe point update should be per-
formed automatically.

In the scenario where the operations could not be completely automatic,

the requirement of interaction from the developer should be minimal.

Moreover, a DSU solution for live programming in development envi-
ronments should give the ability to perform the changes in a iterative way.
The developer should be able to perform the changes incrementally testing
each of the modifications committing or discarding them without affecting
the stability of the running application.

Finally the DSU should present a common usage interface and configu-
ration for changes made in development and production. This transparency
for the user improves the usability of the tool and the use during the whole
development process.

2.1.8 Versatility

A DSU should be able to update not only the application code, but also core
language libraries and the DSU engine itself. This ability is crucial to support
unexpected updates, improvements in the application, DSU tool and the core
language. This characteristic is useful in both development and production

scenarios.

In the first scenario it allows the safe modification and extension of a live
programming environment. In reflective languages, modifying the core li-
braries and tools could lead to instability of the environment as the tools used
to develop the application are using the modified code. Having the ability to
modify the core libraries allows the developer to perform live programming
not only its own application code but also in the whole system. The DSU
solution should guarantee the correct isolation of the changes in a live pro-
gramming environment until the developer decides to apply the whole set of
changes.

In production scenarios, long running application could require updates
in any of the elements of it, e.g., security updates in the core libraries. It is
not possible to know in advance the elements that should be modified in the
future.

18 Chapter 2. Comparing Existing Solutions

2.1.9 Requirements for a General DSU

We consider a general DSU as a tool capable of updating applications in de-
velopment and production scenarios. Taking in consideration the problems
and concerns a practical general DSU should overcome, we have enumer-
ated a set of requirements. Table 2.1 presents how the requirements cover
the problems and concerns that we explain here after.

Problem Concerns
State Inconsistency State Migration.
Change Interdependency Atomicity.
Concurrence and Automatic Safe Point Detec-
Execution Inconsistency tion.
Small Run-time Penalty.
Performance
Minimal Application Down-
time.
Versatility Self and Core Lib Update.
Patch Generation.
Ease of Use Patch Reuse.
Broad Applicability.

Table 2.1: Requirement mapping to the problems and concerns of a DSU.

Atomicity. A DSU solution should perform atomically all changes in a sin-
gle update. All the changes should be applied at once, or at least, the
execution and state of the old and new versions should not be mixed.

State Migration. A DSU solution should provide the means to migrate the
state of the application from one version to the other. The needed mi-
gration logic might be produced automatically or provided by the de-
veloper. The migration logic for value transformations that depends on
business logic cannot be generated automatically thus, a DSU solution
should minimize required manual interventions.

Automatic Safe Point Detection. A DSU solution should detect the safe
points to perform an update. As the application is running the pro-
gram under update, the update should be performed while it does not
have any impact on the running application or the solution should han-
dle the impact. The detection should be done minimizing developer

intervention.

Patch Generation. A DSU should automatically calculate the set of changes
needed to pass from one version to the next one. This set of changes is a

2.2. Existing DSU Solutions 19

patch [SAM13]]. A DSU should provide a clean integration with the de-
velopment process providing programmer transparency [MME12]. This
integration minimizes the need of manual intervention in patch cre-

ation.

Patch Reuse. If the DSU solution requires the participation of a developer,
it should allow the developer to reuse and compose these elements.
The reusing and composing of migration logic and patches ease the
developers’ manual work.

Self Update and Core Lib Update. As the bugs and improvements not only
occurs in the application under modification, it is required that the DSU
solution allows the developer to modify the core libraries of the lan-
guage and the DSU itself.

Small Run-time Penalty. A DSU solution should minimize the performance
impact it has on the application during its normal execution i.e., out-
side the update window. Ideally, the application should run as if there
is no present DSU solution. As a counter-example, techniques such as
bytecode manipulation or lazy proxies introduce an additional level of
indirection affecting the normal performance of the application.

Minimal Application Downtime. A DSU solution should minimize the
downtime of the application during the update window.

Broad Applicability. A DSU should be applicable during the whole life-
cycle of the application. It should be applicable in development and
updating an application in production.

Isolation. A DSU should isolate the changes until the full set of changes is
committed. In a live programming experience, the set of changes is cre-
ated incrementally and during the development phase these modifica-
tions should not affect the running application.

2.2 Existing DSU Solutions

This section describes a series of DSU solutions for object-oriented languages
running on top of a Virtual Machine. The selection of DSU tools presented
represent different characteristics and they are designed to different use
case scenarios. This selection represents examples of different DSU solu-
tions. Other DSU solutions not present in this list use similar strategies and
solutions of the ones included in the selection.

20 Chapter 2. Comparing Existing Solutions

2.2.1 DUSC

DUSC [ORHO02] is a Java DSU solution based in class swapping. It is per-
formed in two stages. In the first stage the application is rewritten using byte-
code manipulation to be able to be updated. Each use of a class is replaced by
the use of an interface. The real implementation of the class is used behind
proxies. In the second stage, during an update the implementation classes
are modified.

It is required that the application code does not directly access to instance
variables. It should use accessors. Also, the application code should not use
reflective calls. Also global state and static methods use should be limited or
they are not able to be updated. It detects a safe update point by checking
that there are no modified methods in the call-stack. Figure [2.4| presents the
transformation of a class to be update-ready.

ClassA K

]

1

i -

\2 | ,
1 7
Case :>: ,

1
_stateB

! ‘

1

Transformation

Class B

Figure 2.4: Static Transformation performed by DUSC to enable dynamic up-
date of the class.

This solution does not require modifications to the virtual machine, but
requires bytecode manipulation while the application is loaded and proxy
logic is added to the execution of the application. The update-ready classes
are divided in four classes: (1) wrapper, (2) state, (3) interface and (4) im-
plementation. By diving the classes, it is able to update part of the classes
without affecting the clients. However, this modification limits the ability to
debug the application as the runtime version of the application does not cor-
respond with the development version. As the client code has references to
the interfaces of the update-ready classes, the updates cannot modify the in-
terface exposed by a given class. By a limitation of the JVM, the old classes
are never discarded. Even though they should not be accessible, old versions
of the classes are present in memory. DUSC does not include support for
custom state migration.

2.2. Existing DSU Solutions 21

2.2.2 Jvolve

Jvolve [SHMO09] is a DSU solution for updating Java programs. Jvolve imple-
ments a virtual machine level DSU, so it needs a special version of the Java
Virtual Machine to run. It is implemented using a modifying version of Jikes
RVMI

Jvolve is able to handle adding, replacing and removing fields and meth-
ods. It handles changes in any level of the class hierarchy. To initialize new
tields and update existing ones, Jvolve applies class and object transformer
functions. Jvolve includes automatic generation of transformers for default
values. Complex state migration including changes in the business logic re-
quires the manual development of transformers.

Jvolve uses bytecode verification to statically type-check the updated ele-
ments. Also it uses bytecode manipulation to introduce barriers and trampo-
lines to handle the automatic detection of safe update points. It extends the
Garbage collection implementation to handle the migration of state.

When the application is outside the update window, the execution
penalty is minimized.

2.2.3 DCEVM

DCEVM [WWS510] is a DSU solution for Java. It is implemented as a modi-
fication of the Java Virtual Machine. It extends the JVM debugging interface
with new operations. These operations perform modifications that are not
possible in the stock implementation of HotUpdate (e.g., modification in the
hierarchy, modification in the class structure).

DCEVM keeps the different versions of the classes in the system. During
garbage collection, it updates the live instances that requires an update.

It does not implement a way of expressing custom state migration from a
version to another. This solution does not perform safe update point detec-
tion to guarantee the stability of the running application.

224 DuSTM

DuSTM [PC11] is a Java DSU solution. It is implemented using multiple
memory transactions. DuSTM requires bytecode rewriting to replace the
uses of application classes and live instances with transactional proxies.
DuSTM divides the user classes in different classes in the same way as
DUSC. It preserves the identity of the objects by using a wrapper as a proxy
of the instances. This transactional proxies are used to handle the update
of the application. It introduces a lazy upgrade model, where the changes

"https:/ /www.jikesrvm.org/

22 Chapter 2. Comparing Existing Solutions

are applied as the code is executed. It also presents a state migration API to
express complex state migration. DuSTM is limited in the amount of class
hierarchy changes it handles.

2.2.5 JRebel

JRebel [Zer12] is a DSU tool designed to update Java programs. It is imple-
mented to run on top of the stock Java Virtual Machine. It implements state
migration and it minimizes runtime and memory penalty.

JRebel instrument the application and libraries to introduce a layer of in-
direction. This layer of indirection is introduced by bytecode analysis and
manipulation. This layer of indirection implements a proxy between the live
instances and other representation in memory. Each live instance points to a
real instance that corresponds with the current version of the application. To
update the application all the proxies are updated to point to instances of the
correct version.

JRebel does not support changes in the hierarchy of classes and interfaces.
It implements a basic initialization of new instance variables and it does not
support changes in instance or global state. Moreover, modifications that re-
quire the change in the types of an instance variable are not supported.

These limitations restrict the update possibility in stateful long running

applications.

2.2.6 Javeleon

Javeleon [GJK™12] is a DSU tool developed to update Java programs. It lever-
ages the classloading mechanism to have multiples versions of the applica-
tion running at the same time. It introduces proxies to replace instances with
new versions of the updated classes when an updated instance receives a
message.

Javeleon requires bytecode instrumentation and class modification dur-
ing the bootstrap of the application. It does not handle custom state migra-
tion. It uses the instance initialization to generate the values for added in-
stance variables.

Javaleon requires correct construction of the patch to update all the clients
a given class in the same update. As it uses proxies, the updated application
should be correctly built to minimize the inlined methods and direct access
to the instance variables. Direct access to instance variables and inlined meth-
ods are not accessed through the proxies, so they cannot be updated correctly.

This solution is integrated with the NetBeans IDE. It generates the patchs
from the modifications in the IDE.

2.2. Existing DSU Solutions 23

2.2.7 Javadaptor

JavAdaptor [PKC™13] leverages the HotUpdate support present in the Java
Virtual Machine. It replaces the modified classes with new versions of them.
It updates all the references to the older classes with new classes.

JavAdaptor is integrated with the Eclipse IDE, and it generates the patch
from the modification in the IDE. It has limited support to handle automatic
refactorings, although it does not handle the migration of live instances.

JavAdaptor uses proxies and delegation, having an impact in the execu-
tion of the application. It uses bytecode manipulation to introduce DSU re-
lated logic in loaded classes. It does not support the modification of core li-
braries limiting the modifications to the application.

JavAdaptor includes some of the characteristics of Production DSUs, al-
though it lacks support to express complex instance structure migration (i.e.,
renaming variables, changing the type of variables, changing from a native
value to an object). Lacking this support is not a problem in development
environments, but it limits its usability for production environments.

2.2.8 Rubah

Rubah [PH13] is a DSU solution for Java programs running in the stock Java
Virtual Machine. It is implemented as a library and it uses bytecode rewriting
to modify the running application to perform the dynamic update. It intro-
duces two schemas of state migration: one lazy using proxies and other ea-
ger. It requires tailored modifications of the program to support safe update
point detection and minimizing the update window. Regarding patch gener-
ation, Rubah implements an API for the update of a program. The developer
should express the changes implementing the update logic. This logic is exe-
cuted and it is responsible of performing all changes. The update objects can
extend already implemented solutions.

229 Pymoult

Pymoult [MDB15] is a Python library implementing various DSU mecha-
nisms. Pymoult is used to evaluate different DSU mechanisms. Using dif-
ferent mechanisms, Pymoult addresses different type of users.

Pymoult requires an special version of the PyPy interpreter to execute. It
executes all

Pymoult presents an API for describing the update of the program.
The developer should express the changes implementing the update logic.
This logic should include all the changes in the update. The update logic is
reusable in different updates.

24 Chapter 2. Comparing Existing Solutions

The program should be rewritten to handle the detection of safe update
point, thread handling and state migration. It does not handle self update or
core libraries update.

The isolation and the atomic application of changes requires of a correct
development of the update and the modifications in the target application.

2.3 Categories of Existing Solutions

Existing solutions have been classified in two categories: DSUs designed to
be used in production environments (Section[2.3.2) and DSUs designed to be
used in development environments (Section[2.3.3).

It is true that many of these solutions are usable in both scenarios. How-
ever, as they are designed to satisfy the requirements of one of these sce-
narios, the other scenario’s requirements are not fully satisfied. For exam-
ple, DSUs designed for production environments do not provide automatic
generation of patches limiting its usability as a development tool, but they
provide an extensive API for state migration that is not present in DSUs for
development environments.

Classical Live Programming environments such as Lisp or Smalltalk (Sec-
tion have been considered within the development oriented DSUs.
However, in this section we study them separately. Although they provide
programming language support for DSU scenarios, they are not fully en-
gineered for this task and considering them amongst development DSUs
would be unfair.

2.3.1 Classical Live Programming Environments

Live programming environments [San78], such as Lisp [Ste90], CLOS [KR90],
Smalltalk [GR83] and Javascript environments allow developers to modify
the code while the program is running. These tools allow hot update of
running code. When the class structure changes, the structure of live in-
stances is updated. Often these languages offer a Meta-Object Protocol
(MOP) [KdRB91] to support version migration of instances and code modi-
fication [Riv96Db]].

However, the migration support is limited. For example, when new fields
are added, these new fields are left uninitialized. In addition, these solutions
do not apply the changes atomically. They apply the modifications one at
the time. As they do not implement atomicity, the sequencing of changes is
mandatory. As sequencing is not always possible [PDF 15| they have limited
ability to update core libraries. Also they do not handle the concurrency or
the detection of safe update points.

2.3. Categories of Existing Solutions 25

These solutions are designed to be used during development. The re-
quired support is implemented in the language infrastructure and they do
not produce additional run-time impact. Patch generation is done automati-
cally because the IDE is integrated with the update tools.

Finally, live programming tools for Javascript (e.g., Nodemorﬂ Firebugﬂ
Chrome Dev Toolﬂ) do not handle the migration of live instances.

2.3.2 Production DSUs

DSUs designed for production (e.g., Pymoult, Rubah, DuSTM, DUSC)
provide the means for applying an update atomically and provide state mi-
gration mechanisms. They are designed to minimize the downtime during
the execution of the update. While they require the manual generation of
the patch, they provide reusable elements to compose the patches. Also
the patches allows the expression of limited instance migration logic. They
present limited or none IDE integration. They provide limited self and core
update.

Production DSUs present run-time impact as they require to rewrite the
application to be update-ready. Also, they require bytecode manipulation to
introduce proxies. These proxies execute during normal execution of the ap-
plication. They generate an impact in the size of the program and a penalty in
the execution. These solutions present an execution penalty during the nor-
mal execution of the application, affecting the application outside the update
window.

2.3.3 Development DSUs

Development DSUs such as Javeleon, Jvolve, DCEVM and JRebel are in-
tended to be used during the development of the application. They are
integrated with the language IDE and generates the patches automatically.
However, they do not allow custom state migrations.

As they are designed to be used during development, these solutions
were not designed with performance impact in mind. They require modi-
fications in virtual machines to run. As an exception, JRebel does not require
VM modifications but the amount of changes it can handle is limited (e.g., it
does not allow hierarchy changes).

In all these solutions, the DSU related code is running all the time im-
pacting the global performance of the application even outside the update
window.

*https:/ / github.com/remy/nodemon
*https:/ /addons.mozilla.org/en-US/ firefox /addon/firebug /
*https:/ /developer.chrome.com/devtools

26 Chapter 2. Comparing Existing Solutions

Development DSUs are not able to apply changes to the DSU engine or
the language core libraries.

During the development process the developer perform a series of
complex changes. A known set of complex changes are the automatic refac-
torings. These complex changes lead to instance corruption. Following
we present the state of the art of handling Automatic refactorings in live
programming environments and Development DSU solutions.

The Rewrite Engine [RBJO96|RB]97] provides a complete refactoring tool.
Since 1996, it has been used in different Smalltalk implementations like
Pharo, Dolphin Smalltalk, VisualWorks and VASmalltalk. However, this
tool does not support migration of live instances. Our solution handles the
correct migration of live instances.

Development DSU are integrated with the IDE. However, they are not in-
tegrated with refactoring tools. The refactoring operations are performed on
the source code. Even though having the support to migrate the instances, the
developer is in charge of generating the migration patch and not the refactor-
ing tools. The refactoring tools are not aware of the DSU tools, and the IDEs
handle the changes statically only. Our solution introduces the integration of
both tools. In the related works, the tools are not correctly integrated, depend-
ing on the developer to implement the changes performed by the refactoring
by a DSU tool.

Moreover, in the work describing JavAdaptor [PKC™13], it have been used
to implement automatic refactoring but the migration of instances have not
been addressed. The lack of instance migration reduces the applicability of
the solution. Our solution provides an integrated solution.

Working with a dynamic language does not change the disconnection
between the DSU tools and refactoring tools. An example of this is Py-
moult [MDB15], that provides the support to migrate live instances after
a refactoring operation. But none of the tools working on a live Python
environment uses this support.

The dynamic nature of Javascript allows the change of the running code
and modification of the instances. However, the refactoring tools present in
Javascript development environments such as WebStorm [Web], Grasp [gral,
Atom [ato] and Visual Studio [vis] handle all the changes in source code level,
without caring about live programming.

Also the live programming tools for Javascript as Nodemon [nod], Fire-
bug [fir] or Chrome Dev Tools [chr] do not handle the migration of live in-
stances. They only migrate the code generating these instances. The live pro-
gramming experience in these environments is not comparable, as they are
not intended to implement complex automatic refactorings.

As we shown, the infrastructure to integrate DSU tools and automatic

2.4. Related Techniques 27

refactorings in IDE exist in the related work, although the transparent inte-
gration that we propose is not present in the related work.

2.4 Related Techniques

The literature describes many other techniques that are not a full DSU imple-
mentation but could be applied to define a DSU solution. In this section we

compare several such solutions.

2.4.1 Safe Point Detection

Regarding safe point detection techniques, Cazzola et al. [CJ16] propose an
automatic way to determine unsafe update points. Their technique uses static
analysis of the changes to detect unsafe update points. Then the update pro-
cess uses this information to avoid performing an update in those points. This
solution could not handle the case when the problems arise from third party
libraries, where the source code is not available.

Makris et al. [MBO9] propose a way of updating software, without wait-
ing for a safe update point, but in their solution the application source code
should be instrumented before execution.

Buisson et al. [BCD ™ 14] propose a way of formally validating safe point
detections. They guarantee the safeness of the update thought the use of a
formal model of the application. However, it requires the generation of a for-
mal model of the updated application.

2.4.2 Migration Logic Generation

Magill et al. [MHSM12] propose a way of automatically generate the migra-
tion logic for a set of example objects. The user must provide a set of examples
in the old and the new version and their solution synthesizes a transforma-
tion function for each of the pairs of objects. These functions are later used
during the update to migrate the instance state. This solution does not handle
the totality of the migration scenarios but provide a baseline for manual mod-
ification by the developer. However, it requires the developer to provide a set
of tests or executions that generates the heap snapshots for both versions.

Penney et al. [PS87] propose a way of handling modifications, but they
require modifications in the virtual machine. Wernli et al. [IWLN13] propose
to manage isolation using a copy and keeping alive both the old and new
environment. The access to the modified objects is done through a lazy proxy,
adding an execution penalty to the application after the update. This also
produces problems with the identity of objects because the updated instances
are duplicated.

28 Chapter 2. Comparing Existing Solutions

2.4.3 Benchmark and Validations

Regarding the safety guarantees provided by the DSU, Tedsuto [PH16] is a
tool that provides a general framework for testing updates and detecting if
they are successful. However, it requires manual intervention to create the
validations and the invalid environment should be discarded so it cannot be
applied to a productive environment.

2.4.4 Architectural Solutions

There are also architectural alternatives to DSU [KM85,0OMT98|’BJ98[|. How-
ever, these solutions should manually take care of replication and persistence
of application state. They require more complex and manual update schemes
and special handling of running instances and processes. Also, they are only
designed to handle anticipated update situations. Because of this, this thesis
left out of the scope these solutions.

2.4.5 Isolation and Atomicity

Mattis et al [MRH17] implement transactional support for Squeak, they allow
to modify the classes and methods scoping the changes to a set of threads.
They also support to apply the changes back into the original environment.
However, they do not propose any support to state migration or conflict de-
tection.

Denker et al [DGL707] propose a transactional solution Changeboxes.
Changeboxes provide an object model representation of changes and scope
the changes in a thread-local context. However, changeboxes are not intended
to apply the changes back into the original environment, but to co-exist with
the original environment. Also, they do not handle the migration of state or
the detection of possible conflicts.

Lincke et al [LH12] propose a way of scoping the changes in a live
programming environment. However, they do not allow to apply back the
changes to the original environment and their solution does not arise all the
problems of a class-based system, as it is based in a prototype system.

Wernli et al [WLN13|] propose a way of scoping changes inside contexts.
A context scope the changes to the classes and methods, and the logic to mi-
grate from one version to another and back. Their solution is designed to al-
low different versions of the same application to co-exists. They provide lazy
migration from one version to the other. However, they do not implement
detection of conflicts and requires more migration logic to interact with all
the co-existing versions of the application. Our solution only keeps a single
version of the running application, the alternative environments are only to

2.5. Analysis of Existing Solutions 29

edit and test code. There is no need to keep the different version running at
the same time.

Casaccio et al [CPDD09] propose a technique for editing Pharo images
without affecting the running environment. They propose to edit a client im-
age from a server image. The modifications in the client image does not affect
the server image. However, this solution requires to copy the whole image
and does not include a way of applying back the changes in the running ap-

plication.

2.5 Analysis of Existing Solutions

This section compares existing DSU approaches. To compare these solutions
we use the requirements stated before. Table [2.2| presents the results of the

comparison using the proposed requirements.

Requirements
> '§ :% g Gé o 2 g 2 =
AR IR P R
= o= = 5 © o— o o) IS "(g _8 S M © D
Ezggr_ﬂ::gg-g—(mw,qﬁ
Category 8 E==@&S 8 m75 8~ 5 2§ g Examples
<| 225 ¢ a1 e R VI R
Al < El G <
Classical
.assma Lisp, Clos,
Live o] 0] O [] L O |O] A |Ol ©
. Smalltalk
Programming
Jrebel,
Development
® O| O O (D) O |© A |O| O | Javeleon,
DSUs
Jvolve
. Rubah,
Production
DSUs o 0 O O L O |e M | e © |DuSIM,
Pymoult

®: Yes O:No ©: Limited
A: Automatic M: Manual S: Semi-Automatic

Table 2.2: Requirement vs. DSU Categories

Part 11

DSU for Production

DESIGN PRINCIPLES
ofF cDSU

Contents
BI gDSUimaNutshell] 33
B2 PatchContentl 35
B3 Patch Generationl 35
3.4 Dynamic Patch Analysis| 36
3.5 Thread Management and Safe Point Detection| 37
B.6 EnvironmentCopy|, 39
3.7 Application of Changes and Instance Migration| 40
3.8 Validation and Commit of Changes|. 41
3.9 ¢DSU Platform Requirements| 43
B0 Conclusion| 44

This chapter presents a new DSU solution called General Dynamic Soft-
ware Update (gDSU). gDSU is called general because it is applicable to both
productive and development scenarios fulfilling all their requirements in a
practical way. gDSU allows developers to apply changes to an application,
core language libraries and even on the DSU engine itself.

3.1 gDSU in a Nutshell

The entry point of the gDSU engine is a patch. A patch is a collection of
changes that describe the update to perform. It includes the changes to apply
in the code, such as method and class modifications, and the corresponding
state migration logic.

gDSU generates this patch semi-automatically by applying a version con-
trol system (VCS) version diff or/and by recording code changes made in
the IDE during a development session. In both approaches, business-related
state migration policies should be provided by the developer (Sections
and3.3).

When ¢DSU is used in production, the developer generates a patch in
her development environment. Afterwards, she applies the patch using the
gDSU engine deployed in the production environment. In the case of a live
development scenario, the patch is generated and applied at the same mo-
ment in the development environment.

34 Chapter 3. Design Principles of gDSU

gDSU takes the patch as input and performs the following steps to safely
apply the update. These steps are the same regardless the update scenario.
Figure[3.1]illustrates such steps.

2. Create
Update Thread

4. Copy Environment

7. Resume
Threads

/

nll)

3. Suspend
Threads

6. Commit

ORIGINAL
ENVIRONMENT

NEw
ENVIRONMENT

speaiy

1. Analyse
Patch

Figure 3.1: Steps to apply an atomic update

1. Analyse Patch. ¢gDSU analyses the patch and calculates the changes to
perform in the environment. This analysis is used to detect what live
instances it should migrate and the conditions to reach a safe update

point (Sections 3.4).
2. Create Update Thread. gDSU spawns the update thread: This thread is re-

sponsible of monitoring the other running threads looking for a safe
update point and performing the update (Section 3.5).

3. Suspend Threads. When the safe point is reached, the update thread sus-
pends all the other threads and the update process can begin (Sec-
tion 3.5).

4. Copy Environment. ¢gDSU copies the instances and classes that are im-
pacted by the update inside an isolated environment (Section [3.6).

5. Apply Patch. gDSU performs all the changes in correct order on the new
environment. It also migrates the state of all affected live instances (Sec-
tion 3.7).

6. Commit. gDSU replaces all the instances in the original environment af-
fected by the update with their corresponding instances in the new en-
vironment. This step is only performed if the resulting environment
is valid. If the validations are not correct, the new environment is just
discarded and the update is not applied (Section 3.8).

7. Resume Threads. The application threads are finally resumed (Sec-

tion3.5).

We now explain in detail the different phases of the update process.

3.2. Patch Content 35

3.2 Patch Content

gDSU requires a patch to contain all the information necessary to perform
the update in a single operation. The patch’s content consists of:

Structural Changes. A set of all changes to methods and class structures cor-
responding to the new version. This includes new classes and methods,
their modifications and removals.

Instance Migration Policies. A set of migration policies. A migration policy
describes how to migrate live instances of one type from the current
version to the new version. Migration policies and their implementa-
tion details are further explained in Section[3.7]

Update Validations. A set of validations. These validations are meant to
guarantee that the application state and behaviour are consistent after
the update is applied but before the commit.

A patch describes the update in a declarative way, containing details of
what to do. The gDSU engine is responsible of determining when and how
to perform the update.

3.3 Patch Generation

To help users using gDSU, gDSU provides several tools to help generate
patches semi-automatically:

VCS version Difference. gDSU calculates a patch from two versions of the
application in the version control system (VCS). This approach is useful
when the update target system is an application in production.

IDE Change Sets. ¢gDSU records IDE events and stores code changes. This
approach is most useful in a development environment.

These tools automatically calculate the structural changes, system level
validations and automatic migration policies. When the update is to be ap-
plied in a production environment the patch is generated in a development
machine. This patch is later applied in the production machines.

Structural changes include modifications to methods, class structure and
class inheritance changes. Structural changes are topologically sorted by their
dependencies between each other. For example the creation of a given class
is before the creation of a subclass or the definition of a method in the new
class. As this order only depends in the static comparison of the versions and
not in the live state of the application to be update, the sorting of the changes
is done during the creation of the patch.

36 Chapter 3. Design Principles of gDSU

gDSU extracts the structural changes from two sources: (1) calculating
the differences from two versions of the application and (2) recording the
changes done by the developer. The former uses the capabilities of VCS so-
lutions to provide a set of changes from one version to another. The later
uses tools integrated with the IDE to extract the changes performed by the
developer. Both methods return a set of changes to the elements of the ap-
plication (i.e., classes, methods), but the returned set could include different
operations on the same element (e.g., two versions of the same method or
adding two instance variables to the same class) so these changes should be
flattened (in the examples, taking the last version of the method and taking
the definition of the class with both new instance variables) [DCD13].

gDSU automatically calculates migration policies based in the analysis of
the changes. This static analysis allows gDSU to only identify changes in the
structure that preserve the same set of values but ordered in different struc-
ture (i.e., different order in the instance variables, instance variable moved to
the super or sub classes). Automatic generation of complex migration strate-
gies is analysed in Chapters[6and[7]

As an example of an automatic migration policy, if a class’ structure
changes the order of its instance variables, the gDSU engine proposes a
migration policy copying the instance variable values by name, as Listing[3.2]
shows.

BylnstVarNameMigration >> migratelnstance: new fromOldInstance: old

inNewEnv: newEnv fromOIdEnv: oldEnv

new class instanceVariables do: [:newlV |
old class instanceVariableNamed: newlV name
ifFound: [:oldIV | newlV write: (oldIV read: old) to: new |].

Figure 3.2: Reusable Migration Policy: it migrates all the instance variables’
values by name. It is used when the instance variable order changes.

The developer can then extend the patch: modify the structural changes
to apply, add business related migration policies (Section[3.7) and validations

(Section[7.4).

The patch elements (e.g., Migration policies, validatiosn) are reused in
posterior updates.

3.4 Dynamic Patch Analysis

Before applying changes or perform any operation, gDSU performs an anal-
ysis of the patch and the state of the application to address the impact of the

3.5. Thread Management and Safe Point Detection 37

patch in the running application. This analysis is used to validate the patch,
calculate the classes of the live instances to migrate and the requirements to
detect a safe update point.

In this stage, the patch is validated to guarantee that all the changes are
applicable. The static dependencies of the changes are met. This means if a
change requires an existing element in the environment, this required ele-
ment exits in the environment to update previous to the update or is created
previously during the update. As an example if a method is added to a class,
the class should exist in the environment or it is created during the update.

Also the patch is analysed to calculate all the classes modified by the patch
and which are the classes that require a migration policy. A class needs a
migration policy if after the changes included in the patch its structure is
modified. A class structure is modified if its own structure of variables is
modified or the structure of the classes in its hierarchy is modified. A class
with modifications only in methods does not require a migration policy.

The list of required migration policies is later used during the update. A
migration policy is required to fulfil the update only if there are live instances
of that class. If there are no live instances of that class, the migration policy
is not required. In this stage of the execution of the update the live instances
are not queried. This validation is later performed in following stages.

Finally this stage detects the modified methods, the list of modified meth-
ods are used to calculate a safe update point. By the definition of safe update
point used by ¢gDSU, there should not be active methods in the call stack of
the threads that are modified by the update (Section 3.5).

3.5 Thread Management and Safe Point Detection

To guarantee isolation, gDSU suspends all the executing threads during the
update window. This is required to guarantee that there is not any thread
executing code that should be modified, also it guarantees that there are no
new instances of classes that require instance migration.

Figure[3.3|presents a representation of how the update is performed from
the threads management point of view. When the update is required, gDSU
spawns a new thread that will perform all the operations related to the up-
date. This thread is responsible of running the update code and will be the
only one running during the update window.

Before executing the update, the gDSU thread executes a series of tasks.
First, it executes the dynamic analysis of the patch, with this information it
establishes the requirements for a safe update point. Then it monitors the all
running threads (application and system threads) to check if a safe update
point is reached. When a safe update point is reached, gDSU suspends all the

38 Chapter 3. Design Principles of gDSU

2.Suspend Threads 3.Resume

A
Threads

t1 | frommmmrrrrr e I |

2| oo | |

t3 |l frommrrr e I |

t4 || fromorrr e I |

update |
thread 4

monitoring | updating | cleanup |

Time
1.Update Request

Figure 3.3: Threads Management during the update window

threads but the update thread. In this moment the update is applied. Once
the update is finished, the suspended threads are resumed and the required
clean up operations are executed. After the clean up is finished the update
thread terminates.

Safe Update Point Definition and Detection

To avoid inconsistencies during the update and after the update, and to guar-
antee that the state of the application is correctly preserved and the applica-
tion is not affected by the update, the update should be performed in a safe
update point.

A safe update point is a point in time where the update is applicable in a
safe way. At this point all the threads are suspended, and the update applied.

gDSU defines a safe update point as the moment in time when all the
threads are at a safe update point. A thread is at a safe point if its call stack
does not contain methods affected by the update i.e., the corresponding patch
contains changes for that method.

This conservative definition does not require call-stack handling or
rewriting, as a result of the condition there is not method that is activated
and modified by the patch.

To detect the safe update point condition, gDSU monitors all the running
threads to check for such condition. The practical considerations in the im-
plementation of this strategy are further analysed in Section

3.6. Environment Copy 39

3.6 Environment Copy

gDSU performs all the modifications in a copy of the environment, when the
update is correctly validated it replaces the original environment with the

new environment.

The environment includes the application state and system (live in-
stances), the meta-state of the application and system (classes and methods)
and the execution state of the application (threads, call-stacks).

Once all running threads are suspended, the update process copies the
environment. Executing this copy in a practical way requires a series of con-
siderations and techniques. Section[#.2|presents the practical details of the im-
plementation of an efficient copy algorithm. In the implementation of gDSU
only the modified elements are copied. This decision minimizes the length
of the update window.

By using a copy of the environment gDSU is able to modify the elements
in it, validate the changes and discard them in case of an error without af-
fecting the original state of the application.

First, making a copy transforms the meta-circular update into a normal
update because gDSU is not modifying itself but a copy of itself. Second,
scoping the changes into a copy allows one to avoid affecting the updated
application when problems appear during the update. Such problems can
raise because of several causes e.g., errors or bugs in the gDSU engine, the
migration policies, or unsatisfied validations. While handy, the copy of the
original environment is a time consuming operation, so limiting the number
of copied objects reduces the overall execution time of the update.

¢DSU implements a partial copy of the environment that only includes
objects (classes and instances) affected by the update. gDSU calculates which
objects are affected using the structural changes and the migration policies
in the patch. A class is considered affected if there is a structural change on
it or on one of its superclasses. An instance is considered affected if its class
is affected or if there exists a registered migration policy for its class or any
of its class” superclasses. Informally speaking, a structural change in a class
will affect all the instances of that class and it will recursively affect its sub-
classes. As methods are not down-copied in subclasses, a change in a method
only affects the class containing the method. The subclasses use the updated
method through the usual method lookup.

This copy process leaves the original objects intact and thus requires to
replace afterwards all references to the old objects with references to the new
objects. In case of a valid update, the commit operation replaces the old en-
vironment with the new one. In case of an error or detection of an invalid

update, the new environment is discarded and the threads resumed without

40 Chapter 3. Design Principles of gDSU

affecting the state of the application.

3.7 Application of Changes and Instance Migration

gDSU applies the update in the copied environment. All the modifications on
classes and methods are applied on this copy of the environment. Changes
do not affect the original elements in the original environment. Also, gDSU
creates the new classes in this environment.

After applying the changes the new environment reproduce the classes
and methods state of the application in the new version. Once, all the static
state of the application, the migration of live instances should be performed.

To perform the migration of live instances, gDSU requires the definition
of migration policies for each of the classes requiring instance migration. A
migration policy is a first-class citizen that represents the migration logic
from one version to the other of a given set of instances. This meta-level ob-
jects are used during the update and they are reusable in different versions
and updates. Figure 3.4/ shows the meta-object protocol of such a migration

policy.

MigrationPoliciy

migrate(oldInstance, newlnstance,
oldEnvironment, newEnvironment)

Figure 3.4: Migration Policy interface

The migration policy has access to the old and new instances of the el-
ement and the old and new environment. Doing so, the migration policy is
able to configure the new instance with values coming from the old instance
and from other instances of the new environment. For example, if a new in-
stance needs to be created it should be done with the class in the new envi-

ronment.

Figure [3.5|presents an example of a migration policy. This migration pol-
icy migrates the coordinates of the instances from a cartesian representation
to a spherical representation.

The migration policies are implemented by the developers handle struc-
tural and application dependent changes. Examples of the former are when
adding or removing an instance variable. Examples of the later is when an in-
stance variable is used in different ways in different versions, e.g., a instance

variable contains a number and then it is replaced by an object.

3.8. Validation and Commit of Changes 41

Vector3DMigration >> migratelnstance: new fromOldInstance: old
inNewEnv: newEnv fromOIdEnv: oldEnv
new radius: ((old x ** 2) 4+ (old y ** 2) + (old z *x 2)) sqrt.
new tetha: (z / new radio) arcCos.
new phi: (old y / old x) arcTan.

Figure 3.5: Example of a manual migration

3.8 Validation and Commit of Changes

Once the changes are applied in the copy environment, gDSU validates this
changes to guarantee the health of the application and the system. The re-
sults of the update are tested, if the update is correct the commit phase is
performed; if the update is not correct the copy environment is discarded
without affecting the original state of the application.

Validations are implemented as objects following the interface defined in
Figure These objects represent the invariants of the application and the
system. There are two different sets of validations: system validations and
application validations.

Validation

validateFromTo(oldEnvironment, newEnvironment):Bool

i

[I T]
System System Application Application
Validation 1 || Validation N Validation 1 | " | Validation M

Figure 3.6: Validations as objects

System validations ensure that the invariants of the system are guaran-
teed. These validations are provided by the DSU solution. They validate that
the system and its runtime are healthy after the update. Listing 3.7| presents
an example of a system validation. This validation guarantees that the new
created classes belongs to a package in the system. Packages are organiza-
tional units and each class in the system should belong to a package.

Application validations guarantee the application invariants. These val-
idations are provided by the developer to guarantee the stability of the ap-
plication. Examples of validations guarantee that: (1) all the products have
a valid price, (2) all the students have a valid name, surname and student
id. Listing [3.8| presents a possible implementation of the second validation
example.

The validations have access to the old and new environment. These reifi-

cations of the environments give access to the static and dynamic elements in

42 Chapter 3. Design Principles of gDSU

PackageClassValidation >> validateFrom: oldEnvironment to: newEnvironment

~ newEnvironment allClasses allSatisfy:
[:aClass | aClass package isNotNil
and: [aClass package includes: aClass]

Figure 3.7: Validating that all classes have a proper package and the package
includes the class

StudentValidation >> validateFrom: oldEnvironment to: newEnvironment

" (newEnvironment classNamed: #Student)
alllnstances allSatisfy:

[:aStudent | (aStudent name isNotNil

and: [aStudent surname isNotNil])

and: [aStudent studentld isNotNil]]

Figure 3.8: Validating that all the students have the required information.

the environment. The validations are able to compare the state of the classes,
methods and any live instance in the system. They access the live instances
though the classes (i.e., accessing to all the live instances of a class) or through
the globally accessible variables in the environment.

Application validations require manual development. However, these
validations are reused in different updates to the application and the system.
During the life-cycle of the application the set of application validations are
enriched with each update. Having more application validations increases
the quality of the application, as it makes less probable that the application
of an update that breaks the invariants of the application. They provide a
similar advantage as the provided by a good set of unit tests.

Commit of Changes

Once the update is validated and the application is in healthy state, the
changes should be applied in the original environment. During the com-
mit operation all the elements that have been modified are replaced in the
old environment with the their respective new environment version. This
operation is performed atomically.

The whole heap and stack of the application is scanned to replace the
references to instances in the old environment with the references to the cor-

responding instance in the new environment.

3.9. ¢DSU Platform Requirements 43

This operation already exists in Smalltalk systems, this operation is called
become. This operation it is implemented at virtual machine level and it is al-
ready used to implement live programming. Similar operations are imple-
mented in different VMs (e.g., HotSpot JVM). If there is no operation present
in the VM, it is implementable in the application level using proxies and byte-
code rewriting.

Section 4.5| presents practical considerations to have an efficient imple-
mentation.

3.9 g¢DSU Platform Requirements

Implementing ¢gDSU as a library requires that the underlying platform pro-

vides a number of requisites:

Class manipulation. ¢DSU needs to query, add and remove classes; and
change the superclass. It also needs to be able to add, remove and change
instance variables. Finally it needs to be able to add, remove and modify
methods.

Instance manipulation. gDSU needs to create new instances from a given
class, read and write all the instance variables in a given instance. And also,
it needs to list all the instances of a given class.

Thread manipulation. gDSU needs to inspect the call stack of threads, stop
and resume them. It needs to be able to modify the call stack inserting new
method activations.

Environment manipulation. gDSU needs to read and modify the elements
in the global environment. It needs to make a copy of the environment and
replace the environment with this copy.

Bulk object swap. gDSU needs to perform a bulk replacement of objects as
described in the Section 3.8l

IDE Integration. To to minimize the manual building of patches, gDSU
needs to integrate with the language IDE. ¢gDSU needs a way of getting the
changes performed by the user and the details of the program modified.

44 Chapter 3. Design Principles of gDSU

3.10 Conclusion

This chapter presents gDSU. gDSU is a DSU solution that is applicable in
production and development environments. This general solution covers all
the requirements established for a DSU solution in Chapter [2|. This chap-
ter presents the solution and describes all the steps in the execution of the
update.

Each of the steps of the execution explains its design and how they are in-
tegrated in the big picture of the solution. The different steps in the execution
of the process map to the requirements for a general DSU solution.

DESIGNING
TECHNIQUES FOR AN

EFFICIENT cDSU

Contents
4.1 Automatic Safe Update Point Detection| 45
4.2 Efficient Partial Copy of the Original Environment| 49
4.3 Reusable Instance State Migrations| 51
4.4 Reusable Validations| 52
4.5 Bulk Instance Replacement|. 54
4.6 Extensible Class Building Process|. 55
M7 Conclusionl. 57

Implementing a practical DSU solution requires solving practical prob-
lems. To have an implementation that is useful for users in both environ-
ments, the implementation should be efficient and perform the updates in a
small update window with the smallest possible memory footprint.

In the implementation of ¢DSU a number of techniques have been
developed to implement it in a practical way. This chapter presents the
required techniques and their details. These techniques include the detec-
tion of a safe point update (Section .T), and an efficient way of copying an
environment (Section 4.2)).

Also, this chapter describes the implementation and reuse of migration
policies and validations (Section[4.3|and [f.4). Finally, it presents the required
language and virtual machine machinery needed to implement gDSU: Bulk
Instance Replacement (Section and a Modular Class Installer (Section

4.6).

4.1 Automatic Safe Update Point Detection

gDSU guarantees that the updated application is not running during the up-
date by suspending all its related threads. Process suspension contributes to
the atomicity of the update. To provide better guarantees and avoid creating
execution inconsistencies, the application should not be suspended at any
moment but at a point considered safe. During the update process the only
running thread is the update engine thread.

46 Chapter 4. Designing Techniques for an efficient gDSU

As defined in Chapter 3} an application is at a safe point if all its threads
are at a safe point. A thread is at a safe point if its call stack does not con-
tain methods affected by the update i.e., the corresponding patch contains
changes for that method.

When an update is required, the gDSU engine spawns a new thread.
This thread is responsible of performing the update. Then the gDSU engine
waits until all other threads are at a safe point before performing the update.
The update thread monitors all other threads using events rather than busy-
waiting. When a thread returns from the execution of an affected method, an
event is produced. Upon an event, the update thread checks if a safe point
is reached, in which case starts applying the update. If the application is not
at a safe point, the update thread yields the processor and waits for the next
event to recheck.

gDSU implements such a detection strategy with call-stack manipulation.
It inserts in each thread call-stacks one notification call context just before
the context of oldest affected method in the stack. When the notification call
context is executed because the thread returns from the affected method, it
suspends all the running threads and re-checks for the occurrence of a safe
update point.

While checking for safe update point condition gDSU will insert new call
contexts in all threads that do not have one. This is required because existing
threads may have returned from the notification call stacks or new threads
include affected methods in their call-stack.

Figure[d.I|presents an example of the detection process. First, the threads
with modified methods should be identified. To perform so, the call-stack
of all the threads are analysed (Figure [4.1b). In this state the update cannot
be performed. The process should wait until there is no modified method
activation left in any thread.

To detect a safe update point, the call-stack is modified to insert a con-
text between the caller of a modified method and the modified method (Fig-
urefd.1d).

Each time one of these inserted contexts is executed it activates the update
thread to detect if a safe update point is reached. If the system is not in a safe
update point, the update thread will yield the processor and the application
will continue executing (Figure [4.1d). In the case of new offending threads
are detected, new detection contexts are added.

If the update thread is activated by a detection context. And the update
process detects that the application is in a safe update point. The update is
performed (Figure [4.T¢).

This conservative strategy may not converge if the application never
reaches a quiescence point [NH09]. gDSU will timeout an update after sev-

4.1. Automatic Safe Update Point Detection 47

T1 Legend

Activation of a
C Method in the Stack

Activation of a
Method to be Modified

B Inserted Notification
Call Context

Calling a Method

Tx Thread

(a) Method A called B, and B called C.

T T2 T3 T4

(c) Context inserted in the call stacks
just before the methods that should be
updated.

T1 T2 T3 T4

(e) The gDSU checks, the system is
at a Safe Update Point. The update is
performed.

T T2 T3 T4

(b) Threads using methods to be mod-
ified, in this state the update cannot be
applied.

T T2 T3 T4

(d) The gDSU checks, but the system
is not at a Safe Update point because
T1 and T2 are still executing methods
to be modified.

Figure 4.1: Modification of call stack for the detection of Safe Update Points.

48 Chapter 4. Designing Techniques for an efficient gDSU

eral of retries, aborting the update. The reasoning of this choice is discussed

later.
mg:;;%‘g’ t>h: V#Vﬁ]r;ja(:’\\llvol?s:ing Vector3D >> length Vector3D
) A :Vector3D
the operations and self squareSum sqrt x:Number EREEEE
Vector3D's |‘nstance Vector3D >> squareSum y:Number yi 1
variables. It's called by the A wA A A z:Number
) " xN2 + yN2 + 272 z:1
drawing thread. length()
(a) Original version using cartesian coordinates
Window >> #drawOn:
) . Vector3D >> length
"Updates the window, using A Vector3D Vector3D
the operations and self squareSum sqrt x:Number —x-—' r
VegtorSD s |‘nstance Vector3D >> squareSum y:Number y: 1
variables. It's called by the A xAD 4 YA A z:Number
: p yh2 + 272 z:1
drawing thread. length()

(b) Modified version using spherical coordinates

Figure 4.2: Example of a modification requiring safe point detection

In the example presented in Figure the problematic thread is the
drawing thread which is calling the drawOn: method. If during the safe point
detection the drawing thread is executing the drawOn: method, the gDSU
engine adds a notification call context just before this method. When the
drawOn: method ends, the thread executes the notification call context and
notifies the ¢DSU engine that is possible to suspend all threads and execute

the update.

Conservative Safe Update Points

We decided to look for safe update points instead of reconstructing the
threads” call stack after the update. This decision simplifies the solution
and permits the execution of any change in the instance structure or in the
methods. Our solution does not stop the execution of the application while
it is waiting for a safe update point, the application is running freely until
this safe point is reached.

Rewriting the call stack allows the execution of the update in any moment,
without needing to wait for reaching a safe update point. However, stack
reconstruction techniques are limited in the number of method changes it
can handle without developers” manual intervention, specially with loops
and recursive methods. They also require full instrumentation of the code
and enough history of previous runs.

Our solution provides a way of automatically detecting safe update points
in a pretty conservative manner. We are aware that the proposed safe point

4.2. Efficient Partial Copy of the Original Environment 49

detection does not always arrive to a safe point, since some programming
patterns produce programs that never reach a safe point in our definition.
For example, patterns such as the one in Figure 4.3| produces a method that

never returns so it never reaches a safe update point.

execution
[true | whileTrue: |
self doActionl.

self doAction2.

Figure 4.3: Example of a Programming Pattern that does not allow the pro-
gram to reach a safe update points if this method is updated in the patch.

We have decided that aborting the update is better than performing the
update without the guarantees needed to continue normal execution. Less
restrictive conditions are possible, but these conditions are more complex to
detect and they do not provide enough guarantees to execute all the possible
changes. Other solutions [PH13,[MME12] require explicit update points to
handle these situations.

4.2 Efficient Partial Copy of the Original Environment

gDSU makes a partial copy of the original environment into a new environ-
ment to guarantee that it can safely perform self-updates, core library up-
dates and cancel failing updates. The copy of the environment is performed
during the update window, so the duration of the update window is directly
related with the duration of the copy. So, the amount of copied objects should
be minimized to minimize the time.

gDSU copies the following objects:

¢ Objects that represent the environment. These elements are the repre-
sentation of the environment in the reflective language. These elements
are modified when a class is installed in the system. They should ref-
erence the new classes in the copied environment. In Pharo, these ele-
ments are the global accessible environment (all the global bindings),
the package manager state (Representing the organization in packages
of the classes) and the class organizer.

¢ (Classes modified during the update. The classes are detected on usage.
Only the modified classes are created in the system.

50 Chapter 4. Designing Techniques for an efficient gDSU

¢ Instances affected by the changes in the modified classes. These in-
stances are identified using the set of classes modified in the update.

4.2.1 Detection of Modified Classes

The detection of modified classes is performed during the execution of the
update. The classes are only copied before the modification. Moreover, new
and modified classes are created in the new environment. As a class is mod-
ified, it is created directly in the new environment with the changes already
applied.

gDSU handles the need of copy the related classes of the modified class.
These related classes are the super class and subclasses of a modified class.
The superclass is not copied as modifications in the subclasses does not af-
fect the superclass. The subclasses of the modified class are recreated in the
new environment if the modification of the class affects its structure. For ex-
ample, only modifying the code of a method in a class does not require to
copy its subclasses. On the other hand, a modification to the structure of a
class (adding or removing an instance variable) requires the copy of all the
subclasses as the subclasses structure depends in the structure of the modi-
fied class.

4.2.2 Detection of Instances to Migrate

During the update process gDSU creates a copy of live instances requiring
migration. All the instances of classes with modified structure should be mi-
grated. Also, all the instances of subclasses of these modified classes should
be migrated.

There is a set of instances that should be migrated even though there is
no modification in their structure. If there is a modification in the value of an
instance variable it should be migrated. If there is a business logic modifica-
tion that changes the use of an instance variable, the instances should be also
correctly migrated.

Figure presents a modification introducing a price object that re-
quires the migration of Product instances, even though the class structure
is not modified. In this example the value stored in the price instance vari-
able changes from using a Float value to a reference to a Price object that
encapsulates the value and the currency.

The requirement to migrate instances of classes affected by a business-
logic change is performed by checking if there is a migration policy for this
class. So, if there is a migration policy for a given class all the instances of
that class and its subclasses are migrated applying the migration policy.

4.3. Reusable Instance State Migrations 51

Product

price

:Product
price: 10.2

(a) Original Version: using a float to represent the price of a product

Product Price
amount
price currency
:Pri
:Product £9

amount: 10.2
currency: EUR

price

(b) Updated Version: using an object to represent the price of a product

Figure 4.4: Update introducing an instance migration for a business-logic
change.

4.3 Reusable Instance State Migrations

Migrating the state of instances from one version to another requires the de-
veloper to implement migration logic in the form of migration policies. Fig-
ure shows the meta-object protocol of such a migration policy.

MigrationPoliciy

migrate(oldInstance, newlnstance,
oldEnvironment, newEnvironment)

Figure 4.5: Migration Policy interface

To ease the effort to implement migration logic gDSU provides generic
migration policies for common cases such as e.g., refactorings. These generic
migration policies are reused between different updates and even between
different applications. Figure 4.6/shows a pull-up instance variable refactor-
ing and the corresponding migration policy that is applicable every time the
same refactoring is applied.

Moreover, the developer may extend this protocol to define business de-
pendent migrations. For example, Figure illustrates a policy to migrate
cartesian to spherical coordinates.

52 Chapter 4. Designing Techniques for an efficient gDSU

From Version N to N+1

— T —

—

- ~
- N
Person Person
name id
birthday name
birthday
/\
Employee P

initialDate initialDate
id

PullUpMigrationPolicy >>
migratelnstance: new fromOldInstance: old
inNewEnv: newEnv fromOIdEnv: oldEnv
new class instanceVariables do: [:newl/V |
old class instanceVariableNamed: new/V name
if-
Found: [:oldIV | newlV write: (oldlV read: old) to: new |].

Figure 4.6: Migrating instance variables per name: an example of application
independent change

In our solution the developer has to implement part of the patch i.e., mi-
gration policies and validations. We have decided to do that because most
of these components are heavily coupled with the application under update.
However, the gDSU tool is shipped with already implemented versions of
such elements. The shipped implementations cover the common scenarios,
and provide a way of extending them. The shipped system validations assert
the correct state of the Pharo environment after an update. We consider the
validations and the migration policies as elements that are equivalent to uni-
tary tests. The required elements are part of the application code base and
they are created during the whole life cycle of the application.

4.4 Reusable Validations

To guarantee that an application state and behaviour are consistent after an
update, gDSU performs several Validations before committing the update. A
Validation is a predicate function that validates the copied environment. If
all validations are successful gDSU proceeds with the commit, otherwise the
update is discarded. Although the validations are not needed by the update
engine, their presence improves the stability of the updates avoiding invalid
updates. We identify two different categories of validations that are easily
reused in different updates.

4.4. Reusable Validations 53

From Version N to N+1

Vector3D - T~ Vector3D
X ~ ~ S radius
y - phi
z theta

CartesianToSphericalMigrationPolicy >>
migratelnstance: new fromOldInstance: old
inNewEnv: newEnv fromOIdEnv: oldEnv
new radius: old length.
new thetha: (old z / new radius) arcCos.
new phi: (old y / old x) arcTan.

Figure 4.7: Migrating Vector3D: an example of application dependent change.

System Level Validation. It checks the consistency of the running platform.
They are independent of the update and the application, and they are
executed in all the updates for a given platform. For example, one vali-
dation checks if the application meta-objects (classes and methods) and
system structures have been correctly migrated (e.g., the inheritance re-
lationship is maintained for classes and metaclasses).

Application Validation. It checks application invariants that should be con-
sistent during all the life-time of the application. They are applied in
all the updates of this application and are useful to guarantee business
rules before committing an update. It is the responsibility of the de-
velopers to produce them. For example, an application validation may
check that all Employee instances have a name.

Using the same validation mechanism, Single Update Validations are imple-
mented. This validations check a condition that should hold when the update
is applied. For example, if the structure of a core object is changed, it is useful
to check if the state migration was correct for every object. Once this update
is committed, this validation is not useful anymore and can be discarded. In
the running example presented in Figure the developer includes a vali-
dation that asserts the correctness of all the points to prematurely detect and
avoid problems in the drawing thread. Figure 4.8 shows an example of such

a validation.

Single update validations guarantee the correctness of a given update.
However, reusable validations provides not only guarantees for a single up-
date but for all the following updates. Moreover, they constitute a documen-
tation and quality element for a given application in the same way as unit

tests do.

54 Chapter 4. Designing Techniques for an efficient gDSU

CartesianToSphericalValidation >>
validateFrom: oldEnvironment to: newEnvironment
" (newEnvironment alllnstancesPairFor: #Vector3D)
allSatisfy:[:aPair | | old new |
old := aPair first.
new := aPair second.

(old length = new length) & (new phi = (old y / old x) arcTan).

Figure 4.8: This validation is used to guarantee the correct migration of the
Vector3D from one coordinate system to the other.

4.5 Bulk Instance Replacement

¢DSU implements the commit operation as a bulk swap of object references.
In other words, during the commit operation gDSU replaces all references
to old affected objects by references to their corresponding copies. Bulk re-
placement is done atomically, making the update a true atomic process. The
bulk replacement operation is crucial in the implementation of most DSUs.
They are used in related works such as Rubah [PH13] and are present in most
Smalltalk implementations. However, a naive implementation would not be
satisfying from a performance point of view as it would require to full scan
the memory to perform pointer replacement [MB15]].

Bulk replacement is implemented in our prototype as the primitive Vir-
tual Machine operation become:. This operation takes two equal-sized arrays
as arguments and performs a pointer-swap between each object in the first
array and the object that occupies the same position in the second array. That
is, a pointer swap between a and b makes all objects in memory referencing
a change and point to b and vice-versa. For the atomic commit, gDSU uses a
variant of become: called becomeForward:. This operation, also called one-way-
become, only performs the pointer replacement from the first to the second
set of references. To efficiently implement become we leverage a novel mem-
ory management technique called forwarders that is available in the Pharo
Virtual Machine. Forwarders allow one to perform lazy pointer swapping
with the use of a partial read-barrier thus avoiding the need of a memory
full scan [MB15].

We have decided to use eager instance migration instead of lazy migration
because lazy instance migration requires the use of proxies. By using eager
migration, the penalty during the normal execution of the application is zero.

During the normal execution of the application there is no need to execute

4.6. Extensible Class Building Process 55

code of the DSU solution.

4.6 Extensible Class Building Process

The creation of classes in running application is divided in three different
stages:

Class Creation. During this stage the class is created in the system. In a reflec-
tive language the classes are other objects in the environment. The creation
of the class requires a series of steps correctly executed to produce a valid
class that is later used to create instances. The correct creation logic handles
the creation of the class, its metaclass and all the related objects (e.g., method
dictionary, instance layout).

Class Installation. After the creation of the class, the new class should be
correctly installed in the system. This registration includes other operations
such as setting the global reference to the class, registering the new class into
its superclass, adding the class to the corresponding package.

Instance Migration. Once the class is installed in the system. Live instances
of the old class should be migrated to the new class. This migration of in-
stances is performed without caring about the state of the object. Only the
matching instance variables are preserved. New instance variables are not
initialized leaving them referencing null.

o

Create Install Migrate
Class Class Instances

f { i
Class Class
Builder Installer

Figure 4.9: Class Building and Installing Process

In Pharo, these stages are handled by two components of the system: Class
Builder and Class Installer. Such component is already present in the envi-
ronment and performs these stages correctly. Figure 4.9/ shows the stages of
the creation of a class and how these two components perform the different
stages.

The actual implementation in Pharo is correctly handling the creation and
installation of classes. However, implementing a DSU solution also requires

56 Chapter 4. Designing Techniques for an efficient gDSU

to perform these stages during the application of an update. Also, the current
implementation does not present a clear separation of the class builder and
class installer responsibilities limiting the ability to reuse the components.

One possible solution is to reimplement all the behaviour implemented in
the class builder into the DSU solution. This solution is not optimal as it du-
plicates the logic in two different components. This duplication increases the
maintenance work required when there is a modification in the class creation
and installation logic.

To correctly integrate a DSU tool into Pharo, we developed a modular
implementation of the class builder and installer. This new modular class
builder and installer is called Shift.

Shift Builder Shift
ClassBuilder Enhancer Classlnstaller

DefaultBuilderEnhancer
configureClass: newClass superclass: superclass
withLayoutType: layoutType slots: slots

configureMetaClass: newMetaclass superclass:
superclass withLayoutType: layoutType slots: slots

classCreated: aClass
afterMethodsCompiled: builder

gDSU Builder T Other Library

Enhancer Builder
Enhancer

Figure 4.10: Shift Builder Enhancers

Shift class installer and builder expose different extension points during
the three stages. They share a common extension point the BuilderEnhancer.
Libraries requiring to extend the behaviour in the creation of classes are able
to collaborate with different builder enhancers.

The builder enhancer provides an interface of integration for all the steps
in the class creation process, also it provides a way of replacing the target
environment, the classes to use and all the logic during the creation and in-
stallation process. Shift provides a default implementation that includes the
default behaviour of the class builder and installer.

Each library implements a builder enhancer to contribute during the pro-
cess of creation. Moreover, the builder enhancers are composable opening a
way of integrating different libraries and tools in a decoupled way. Figure[4.10|
shows the builder enhancer hierarchy.

Finally, Shift also provides a clear interface to divide both steps of the
process. It provides a clear division of the class builder and the class installer.
Both components are usable independently.

4.7. Conclusion 57

gDSU not only uses the class builder and installer, but it also extend it
through the implementation of builder enhancer. This is done to control the
following aspects of the class building:

¢ Changing the target environment of the classes.

¢ Detecting the need of creating in the new environment a superclass or
subclass of a modified class.

¢ Interrupting the default instance migration as the migration is later per-
formed by the DSU tool.

* Registering the modified classes and subclasses to create correspond-

ing automatic validations and migrations of instances.

4.7 Conclusion

This chapter presents the required techniques and machinery to implement
gDSU in a practical way. A DSU solution is practical if it minimizes the man-
ual work from the developer, performs in an efficient way and it is usable
in both production and development environments. The techniques and ma-
chinery presented in this chapter make possible to implement the concepts of
gDSU in a practical way. By using the presented techniques, gDSU achieves
the benchmark results shown in Chapter

Also, this chapter presents the design decisions that we have taken in the
implementation of the required techniques. The set of practical solutions pre-
sented in this chapter, even thought they are tailored to be used by gDSU, are
applicable in other practical solutions.

For example, the extensible class building process has been used to
implement the support for implementing reuse mechanisms called Modular
Class-based Reuse Mechanisms on Top of a Single Inheritance VM [TPF*18a] and
modular stateful traits [BDNWO07] and talents [RGN™12] implementations
for Pharo.

VALIDATION OF

GDSU rFOR

PRODUCTION
RELATED
REQUIREMENTS

Contents
b.1 ValidationSet-up|, . 60
0.2 Validation 1: Application Update| 61
.3 Validation 2: Updateof the DSU|. 62
.4 Validation 3: Update of Language Core Libraries| 62
b5 Validation 4: Benchmarks| 63
p.6 Requirement Assessment{., 65
b7 Conclusion|. L. 66

To validate ¢DSU it was implemented in Pharo [BDN"(09]. Pharo is a
pure object-oriented programming language and a powerful environment,
focused on simplicity and immediate feedbackﬂ It has been implemented in
Pharo because (1) it provides powerful meta-level operations, (2) most of its
runtime is implemented in itself, (3) it represents basic concepts of the lan-
guage and the environment as first-class objects. These characteristics allow
the implementation of gDSU as a library. Moreover, Pharo covers all the plat-
form requirements to implement our solution (Section 3.9).

This prototype is available in a Git repositoryﬂ It is loadable in the latest
stable version (Pharo 6) of the platform and it is intended to be included in
future Pharo versions.

gDSU is applicable not only for updating a running application, but also
in daily development. It is validated in the following three scenarios. Each
scenario has been validated as a long running application and using interac-
tive live programming:

* Update of Application Code with live instances (Section [5.2).
* Update of the DSU engine itself (Section [5.3).

'http://pharo.org/
“https://github.com /tesonep/pharo- AtomicClassInstaller

http://pharo.org/
https://github.com/tesonep/pharo-AtomicClassInstaller

60 Chapter 5. Validation of gDSU for production related requirements

¢ Update of the core libraries of the language (Section [5.4).

gDSU also has been validated using a set of benchmarks. These bench-
marks show that the solution is viable in terms of execution time and used
memory (Section[5.5).

Finally, in Section[5.6lwe analyse the requirement assessment of gDSU for
a production DSU

5.1 Validation Set-up

The following sections present three different scenarios we used to validate
and benchmark our solution. These scenarios include the modification and
refactoring of a stateful chat application. The modifications are performed in
the application, the DSU and in the core system libraries. For each of these
scenarios we applied the following set-up for the development and produc-
tion environment:

Development Environment. We set up a development environment with
our application code. We run a simulation of requests to generate appli-
cation objects. This simulation produces around 30 000 live instances.
After the simulation, we have an environment with live instances that
is useful to perform live programming. This environment replicates a
common development environment where the developer has not only
the code but also a set of data to try her changes. Then, we perform
modifications to the application. These modifications are performed
programmatically, but the result is the same if they are produced us-
ing the existing IDE.

Production Environment. Using the same application a HTTP server is
launched. This HTTP server replicates a production server. This is
designed to be deployed as a productive application, as it uses the
production ready frameworks and technologies used in Pharo. We
generate 10 threads with loops sending requests to our server. They
run concurrently during 2 minutes, generating an average of 700 re-
quests per second. This simulation generates the load expected in a
production server. Then, we apply the update at minute 1.

Finally, we apply measurements after the update is finished.

The scenario application, the set of test scripts and detailed instructions
are available in GitHubﬂ Also, Appendix describes detailed instructions to
replicate the validation experiments.

*https://github.com /tesonep/chatServer.git

https://github.com/tesonep/chatServer.git

5.2. Validation 1: Application Update 61

5.2 Validation 1: Application Update

Research Question. Is gDSU able to safely update a running stateful appli-
cation in a development or production scenario?

Scenario. Our scenario application is a chat application. This application
stores all the messages sent by all the users generating live instances in each

request.

Chat g user ChatUser

text:Strin
room ChatRoom

Figure 5.1: Original design. All the messages are instances of a single class

ChatMessage. This implementation has conditional code to handle the differ-
ences in messages from the system and from users.

Figure [5.1| shows the model of the application in Version 1. For presen-
tation purposes, we show only the part that is relevant for the update. The
application handles two types of messages. The first type is the one sent by a
user in a room, the second type is the one produced by the room (e.g., when a
user enters or leave). In this version all the messages are instances of ChatMes-
sage, when the message is an info message (that is not produced by a user)
the user field is left as null.

<Abstract>

ChatMessage
text:String
/\

ChatRoom
InfoMessage

UserMessage

ChatUser

Figure 5.2: The application is refactored to extract the different behavior in
the messages in two subclasses (InfoMessage and UserMessage) to represent
the messages sent by the system and by a user.

Figure[5.2]shows the model of the application in Version 2. In this version
the ChatMessage is refactored to include two subclasses. One for the user mes-
sages and the other for the info messages. Going from a version to the other

requires the migration of live instances.

Results. gDSU updates correctly both the development and production ap-
plications. Instances are correctly migrated in an atomic fashion. No incon-

sistencies are introduced.

62 Chapter 5. Validation of gDSU for production related requirements

5.3 Validation 2: Update of the DSU

Research Question. Is ¢DSU able to update itself?

Scenarios. We have performed three updates on gDSU code:

1. Update the safe point detection algorithm.
2. Update the application of structural changes.

3. Update the internal representation of the update (i.e., modifying a
gDSU stateful class with live instances during the update).

Results. All updates were successful. All of them show that gDSU can up-
date code and migrate instances that are related to and used by itself. More-
over, the first experiment shows that the safe update detection works even if
the affected method is in the DSU thread.

5.4 Validation 3: Update of Language Core Libraries

Research Question. Is gDSU able to update core language libraries?

Scenarios. To validate the ability to update the language core libraries we

experimented with the following two scenarios:

1. Update the OrderedCollection class, adding a new instance variable
holding the size of the collection and modifying all related methods.
The OrderedCollection class is a key part of Pharo’s collections frame-
work. It is the main collection used in the whole environment. In any
given Pharo environment there around 46 000 live instances of this
class. Also this class is extensively used by gDSU.

2. Update the class builder modifying the methods ¢gDSU uses to create
classes. All the operations modifying a class in Pharo are performed
through the class builder. This component is a crucial part of the live
programming capabilities of Pharo. Also, it is used as a key part of
gDSU.

As said before, both elements are used during the execution of the update,
introducing circularity issues similar to the changing ¢DSU itself.

Results. All updates were successful. These experiments demonstrate that
the running core libraries are indeed isolated from the update. Otherwise,
modifying the core libraries while performing the update risks to compro-
mise the whole application stability.

5.5. Validation 4: Benchmarks 63

5.5 Validation 4: Benchmarks

To evaluate the performance of our solution we have performed two series
of benchmarks. The first one analyses how the number of live instances to
migrate affects the update time. The second benchmark analyses the impact
of the update process on the response time of a running application. The
benchmark has been executed using Pharo 6.1 32-bits, in a machine running
OS X 10.12.6 having a 2,6 GHz Intel Core i7 and 8 Gb of 1600 MHz RAM
memory.

Number of Migrated Instances. This benchmark shows the behaviour in
terms of memory and time with a varying number of instances to migrate.
For this benchmark we use the server application of Validation 1. This scenario
allows us to have different quantities of instances to migrate after the change.
We performed 172 updates varying zero to ten million instances and we anal-
ysed the time and memory required to perform the migration. The results, in
Figure[5.3} show that (1) the memory consumption is linear and it grows with
the number of instances to migrate and (2) the time to execute the update is
almost constant (around 1 second) below ten thousand instances and then it
grows linearly.

100s 1GB
100 MB

10s 10 MB

1MB

100 KB

10 KB

Os 1KB
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07

Number of Instances

—— Byles

—=— Update Time

Avg. Sate Point Detection

Figure 5.3: Impact in memory space and execution time depending the num-
ber of instances to migrate.

The memory consumption linearity is due to the copy of the affected in-
stances. The DSU process copies the modified instances and classes to per-
form the changes. The number of affected instances has a baseline of 13 in-

64 Chapter 5. Validation of gDSU for production related requirements

stances when there are no live instances of the modified class to migrate. This
set of instances are the core objects modified in the system i.e., package man-
ager, package, classes, global environment. So, any change will include at
least these 13 instance to migrate. These instances are the minimum affected
by an update. Starting from this baseline the update process only copies the
objects affected by the update.

The variation in the execution time is due to two causes. The first one is
that the detection of a safe update point takes an average of 750 milliseconds.
During this time the application is running normally and the update process
is just waiting. The second cause is that the bulk replacement takes a constant
time of 250 milliseconds in average to create the forwarders. If the number
of forwarders does not fit in the available free memory, the bulk update runs
a garbage collection and performs a traditional pointer swapping with a full
scan [MB15]]. Our benchmark shows that bulk replacement is able to handle
about 25 thousand instances per second.

Server Response Time. This benchmark shows time measurements on the
server application described in Section The results, illustrated in Fig-
ure shows the application response time. The response time during the
update windows is of 1400 ms, with a number of instances to migrate around
28500. Contrastingly, the response time outside the update window ranges
from 5 to 200 ms, with an average of 22 ms. This benchmark shows that the
impact in response time is inside the parameters of the first benchmark.

1000
400

| atudadaulat

00:00 00:17 00:35 00:52 01:09 01:26 01:44 02:01

Response Time (ms)

Time

Figure 5.4: The response time is only affected briefly during a small update
window.

5.6. Requirement Assessment 65

5.6 Requirement Assessment

This section analyses how gDSU satisfies each of the stated requirements. We
are analysing the capability of gDSU to be used as a production DSU.

Atomicity. We satisfy the atomicity requirement by applying the changes in
an isolated environment, and committing all the changes in a bulk replace-
ment operation (Section [3.8).

State Migration. We satisfy state migration requirement through the use of
migration policies (Section[3.7). The developer provides the required migra-
tion logic implementing one or more migration policies. The migration poli-
cies are reused in different updates and also the implementation provides

generic migration policies.

Automatic Safe Point Detection. We satisfy safe point detection requirement
by the implementation of an automatic detection algorithm based on stack
manipulation. The developer does not need to provide extra information to
detect safe points (Section 3.5).

Isolation. While the changes are not committed, they are isolated into the
alternative environment. The instances and classes of different versions are
never mix up (Section3.8).

Patch Generation. We satisfy the patch generation requirement with a semi
automatic patch generation (Section [3.3). Our proposed patch generation
uses two strategies: (1) getting the information from the version control
system and (2) storing the information while the developer changes the
application. The first strategy is used when the patch is generated to migrate
one version of the application to another. The second strategy is used when
the application is modified using live programming. In both strategies, the
patch is not totally generated. The developer should provide the business
related migrations that are impossible to calculate.

Patch Reuse. Our proposed solution requires the implementation of custom
migration and validation logic. However, the solution provides different
mechanisms to reuse and combine this custom logic (Sections [3.7/and [7.4).

Self Update and Core Lib Update. Our solution satisfies the self update and
core libraries update requirement using an atomic commit operation. Our
solution performs all the changes in a copied environment. This level of iso-
lation allows us to modify elements that are currently used by the update

66 Chapter 5. Validation of gDSU for production related requirements

process. The real elements are replaced in a single operation using a bulk

instance replacement mechanism (Section (3.8).

Small Run-time Penalty. We minimize the run-time penalty through the us-
age of eager migration of instances. Using eager migration does not require
the use of lazy proxies or bytecode instrumentation. Our solution does not
add any impact in the execution outside the update window. Moreover, no
part of the gDSU engine runs outside the update process. We validate this in
Section

Minimal Application Downtime. Our solution minimizes the downtime of
the application by minimizing the copy of objects. Only the modified parts
of the application are copied and replaced in an update. The efficient copy of
updated elements apply to live instances, classes and methods (Section .
We validate this in Section 5.5

5.7 Conclusion

In this chapter, we present a validation of gDSU. This validation has been
implemented in Pharo and it has been tested in different scenarios. These
scenarios where designed to show that the proposed DSU solution complies
with the requirements for a DSU that is designed to be used in production.

Table[5.T|presents a summary of the comparison of our proposed solution
and the production DSU solutions.

Requirements
Telesle [[o
2Rl gl w = = 3 ©
S| gl 8| tEEEE 28 2E
S| =g 3 3FEE S| S K|
Category g S|EQ|IZ 5| E &l ¢ SEEIRGIRS % Examples
¥l ol 8 & = A S 2| .2 gl 2| & =
NEEEE- OlE| TS
Rh| <& B
) Rubah,
Production
DSUs e e O O e o M |e © |DuSIMV,
Pymoult
gDSU o0 o] ®e o S { I)

®: Yes O:No ©: Limited
A: Automatic M: Manual S: Semi-Automatic

Table 5.1: gDSU vs. Production DSU

Also, this chapter presents a benchmark of the solution implemented in

5.7. Conclusion 67

Pharo. This performance validation is included to show that the implemen-
tation represents a practical DSU solution.

Part 111

DSU for Live Environments

ATOMIC STATE
PRESERVING
REFACTORINGS

Contents
[6.1 Class Refactorings that break Instances|. 72
[6.2 Our Solution: Atomic Refactorings for Live Programming|. 77
[6.3 Preserving Instance State when Applying Refactorings with gDSU| . 80
[6.4 Using ¢gDSU to preserve instancestate] 82
6.5 Application of the Refactoring step by step[. 83
6.6 Validafionl 86
6.7 Conclusionl 89

Refactorings are behaviour preserving operations that help developers
to improve the design of an application [Fow99,RBJ97,|DHL96]. These code
transformations modify the implementation of the application keeping its
features. They improve the overal quality of the application [RBJ97]. Nowa-
days, refactoring tools are present in the majority of Integrated Develop-
ment Environments (IDE) used in the industry [MT04], but with different
degrees of refactoring supports. A refactoring is composed of pre and post-
conditions as well as a number of ordered elementary steps. Each step mod-
ifies the classes and methods. Automatic refactorings constitute a daily tool
used by programmers to improve the quality of their code [KZN12,XS06,
DJ05,KZN14,BDLDP " 15].

However, depending on the performed change, the internal state of live
instances may be corrupted, making them unusable for the running program.
For example, adding an instance variable initializes the new instance variable
to null for all live instances. Such bad initialization may break program execu-
tion. As explained later, there are other refactorings leading to such instance
corruption.

The use of a refactoring tool in a live programming environment ampli-
ties the instance corruption problem. We show that 36% of the refactorings de-
scribed by Fowler et al. [Fow99] present this problem when they are applied
in a live programming environment (cf. Section [6.T).

We propose an implementation of automatic refactorings that takes ad-
vantages of using a DSU tool. Each refactoring runs in a transaction and it

72 Chapter 6. Atomic State Preserving Refactorings

affects all instances and classes in an atomic fashion. For each refactoring re-
quiring migration of instances, a migration strategy is provided. By doing so,
the instance corruption is removed when applying automatic refactorings.

In this chapter we present: (1) an analysis of the impact of refactoring tools
in a live programming environment. (2) a new technique (using ¢gDSU) for
applying refactorings in live programming environments. This technique al-
lows developers to perform refactorings while preserving the state of live ob-
jects and thus the correct behaviour of the running program. And (3) a valida-
tion of our proposed solution through an implementation in Pharo [BDN09]
using ¢DSU.

6.1 Class Refactorings that break Instances

Although it is possible to perform refactorings by hand, tool support is
crucial to increase productivity [IB01, MT04]. Refactoring tools guarantee
software behaviour consistency while preserving its correctness [RBJO96].
However, this guarantee is not extended to live instances that constitute
the runtime environment. Live instance correctness is crucial when doing
live-programming, as the program is executing while the modification is
performed.

A refactoring operation involves a number of small modifications of the
code and the structure of the objects. These operations are usually performed
sequentially, modifying classes one change after the other, without handling
the refactoring as a complex atomic change. Since the scope of default refac-
toring tools is static (i.e., they manipulate models of the code not of the in-
stances), they focus on preserving a correct behaviour. However, a problem
arises when refactorings are applied in a live programming environment. In-
deed, live objects whose classes were modified should be migrated from the
previous structure to the new structure. This need of migrating instances is
not addressed by existing refactoring tools as they are not intended to be used

in an environment with live instances.

As an extreme example, in bootstrapped and reflective systems [PDF* 14,
PDFB15], applying a refactoring on system classes may result in an instability
of the whole system if instances are not correctly handled by the refactoring
tool. This is why developers must carefully plan transformation steps to pre-
serve the internal state of “kernel” objects [PDF"15]. This issue is present in
reflective languages such as Pharo, Self [US87|], Newspeak [Bra07, Bral0] or
Strongtalk [Str]. These environments allow the developer to change all the
elements without differencing application, core libraries or kernel classes.

6.1. Class Refactorings that break Instances 73

6.1.1 Challenges in refactorings: Two examples of corrupting refac-
toring

This section details two examples of refactorings that corrupt instances.

6.1.1.1 Pull Up Instance Variable

This refactoring removes the selected instance variable from all the subclasses
and defines it in the selected superclass. Figure [6.1|shows the process of ap-
plying this refactoring to the idNumber instance variable. This instance vari-
able is present in the Student and Teacher classes. Figure shows the orig-
inal state and Figure shows the desired result of the refactoring.

To perform this, the refactoring does the following operations:

1. Iterate all the subclasses of the selected class. If the subclass has the
instance variable, the instance variable is removed. Figure shows
the removal of the idNumber instance variable from Student and Teacher
classes.

2. Add the instance variable to the selected class. Figure shows the
addition of the instance variable idNumber to the Person class.

During each of the two operations, live instances are migrated due to the
change in their structure. This migration is performed by the live program-
ming environment each time a class is modified. During this process, the
value of the pulled up instance variable is lost for live instances of subclasses
(e.g., Student, Teacher). These values are lost because the instance variables
from subclasses are removed during the first migration step. Note that the or-
der of these steps cannot be changed because instance variables of subclasses
should be removed before adding the new instance variable to the superclass
to avoid duplicated instance variables.

When we compare the result of applying the Step 2 (Figure and the
expected result (Figure[6.1d), we can see that the refactoring is not preserving
live instance state. A state preserving refactoring must correctly keep the state
of idNumber in existing instances.

6.1.1.2 Split Class Refactoring

This refactoring extracts a selected subset of instance variables into a new
object. It replaces all accesses to the selected instance variables by message
sends to the new object. It also present the same problem described before.

This refactoring is more complex than the previous one. Indeed, to per-
form this refactoring the following changes are performed:

1. Create a new class with the selected instance variables.

74 Chapter 6. Atomic State Preserving Refactorings

Teacher
idNumber
courses

Student
idNumber
degree

Teacher
name = 'Carl'
idNumber = '6789'
courses ="..."

:Student
name = 'John'
idNumber = '1234'
degree ="..."

(a) Original State before

the refactoring
Person

name

idNumber
[Student | [Teacher |
[degree | [courses |

:Student :Teacher

name = 'John' name = 'Carl'
idNumber = nil idNumber = nil
degree ="..." courses ="..."

(c) Step 2: Add superclass instance
variable

[Student | [Teacher |
[degree | [courses |
:Student :Teacher
name = 'John' name = 'Carl'
Ldegree ="..." courses ="...!

variables

(b) Step 1: Remove subclass instance

Person
name
idNumber
[Student | [Teacher |
| degree | [courses |
:Student Teacher
name = 'John' name = 'Carl'

idNumber = '1234'

degree ="..."

idNumber = '6789'
courses ="..."

(d) Expected Result

Figure 6.1: Step by Step of appliying the Pull Up Instance Variable refactoring

to the idNumber instance variable present in Student and Teacher classes.

2. Add the accessor methods to the new class.

3. Add a new instance variable in the original class to hold the extracted

object.

4. Change all the uses of the selected instance variables with messages to

the new object.

5. Remove the selected instance variables from the selected class.

6. Add initialization code creating an instance of the new class when the

selected objects are created.

Figure depicts the class structure of an example and Figure [6.2¢

shows some live instances in the environment before applying the refactor-

ing. As a contrast, Figure shows the expected result of applying the

refactoring with the desired state of the live instances in Figure

Even though, the class structure and the methods are correctly created,

live instance state is not preserved. Figure shows the actual result of

applying this refactoring. Since there is no special handling for migrating

the extracted instance variables, this state is lost.

Although the refactoring operation is able to perform all the structural

6.1. Class Refactorings that break Instances 75

Citizen
name
street
number
city

(a) Classes before Refactoring

Address
Citizen address | street
name —> g_ttlmber
ity

(b) Classes after Refactoring

:Citizen
name = 'Bart'
street = 'Evergreen Terrace' :Citizen
number = 742 name = 'Bart'
city = 'Springfield' address = nil
(c) Objects before Refactoring (d) Actual Result

dd :Address
:Citizen address street = 'Evergreen Terrace'

name = 'Bart' ’ number = 742

city = 'Springfield'

(e) Expected Result

Figure 6.2: The Split Class refactoring corrupts its instances.

and behavioural changes needed, the instances are not migrated properly.
The instances of the selected class are now useless because all the selected
instance variables have been removed, replaced by an empty instance vari-
able, and all the code has been modified to use this empty instance variable.

6.1.2 Refactoring Impact Categories

Instance corruption is not only present in the described examples. Instance
corruption exists in a larger set of refactorings. Considering the 72 refactor-
ings described in Fowler’s book Refactoring: Improving the Design of Existing
Code [Fow99] as a set of existing refactorings, we analyse the impact of ap-
plying the refactorings over live instances. This analysis shows that 36.11 %
of these refactorings produce instance corruption when applied in presence
of live instances. Preventing instance corruption is not just a matter of
adding new pre/post-conditions to refactorings. Indeed, refactorings have
pre and/or post-conditions as part of their definition. These conditions help
to guarantee consistency. Nevertheless, in the literature, these conditions
only focus on structure and behaviour consistency without taking care of
instances. Extending pre/post-conditions is not enough because instances
must be correctly migrated according to the applied refactoring and the

76 Chapter 6. Atomic State Preserving Refactorings

context.

We classified refactorings into 4 different categories related to instance cor-
ruption. For each category, we assess the amount of work to be able to preserve
instance state.

No Corruption. The live instances are not affected at all because the refac-
toring does not modify the structure or the use of the state. All the changes
are in the methods of the object. An example of this category is Add Parameter
refactoring. This refactoring only adds a new parameter to an existing method.
The method is modified in the class, but the structure of the live instances is

not modified and no migration is required.

Internal Corruption. The structure of live instances is modified, but the
state preservation can be computed using exclusively the modified instances.
Client objects that have references to the modified instances don’t need to
be updated. An example of this is the Instance variable rename refactoring,
where the value of the renamed instance variable should be preserved in a
new instance variable with a new name. Another example is the Extract class
refactoring. Here, the value of one or more instance variables is replaced
with an object but the information to create this new object is taken from the

original instance.

Class Corruption. When a refactoring changes the class of a set of instances,
some or all selected instances should be migrated because their structure may
also have changed which requires a data transformation. The Introduce Lo-
cal Extension refactoring is an example of this kind of instance corruption.
This refactoring moves part of the behavior of selected class to a new class
that contains these extra methods. The new class is a subclass of the selected
class. Some or all of the instances of the selected class should be migrated to

instances of the new class.

Complex Corruption. The changes performed by the refactoring either im-
pact or require access to more instances than the ones from the modified
classes to keep consistency. One example of refactoring corrupting more in-
stances than the ones from the modified classes is Change Value to Reference.
This refactoring impacts not only the instances becoming references but also
all the users of those instances. Think about two clients referencing two equal
value objects that when converted to references should be the same instance.
This refactoring impacts both the client and the transformed value objects.
On the other hand, an example of a refactoring that requires access to many
instances is Change Unidirectional Association to Bidirectional. The refactoring

6.2. Our Solution: Atomic Refactorings for Live Programming 77

creates a bidirectional association from a unidirectional. For example con-
sider a Course with a collection of Student. This refactoring requires access to
Course instances to insert the back pointer to Student instances.

In Appendix [C|we present the detailed classification and the justification
of each of the problematic refactorings.

Applying this classification we discovered that 26 out of 72 (36.11%) refac-
torings corrupt instances and should take care of the migration of live in-
stances to conserve their integrity. This means that 36.11% of these refactor-
ings cannot be applied in a live programming environment without corrupt-

ing instances in the running program.

6.1.3 Ubiquity of the problem

This analysis is not exclusive to the Fowler’s catalog and we also extended
it to existing industrial tools. We wanted to check if potential problems are
present in tools used daily by every programmer. To show this we extend
the analysis to refactorings tools in Rewrite Engine for Pharo (Smalltalk), Eclipse
JDT (Java), Groovy/Grails Tool Suite (Groovy), Intelli] IDEA (Java), Visual Studio
2015 with ReSharper (C#) and WebStorm (Javascript).

Table 6.1 presents the results of the tool analysis and how they compare
with the results of Fowler’s list of refactorings. These results show that if the
refactoring tools are used in live programming environments, the consistency
of the live instances is not preserved.

The analysed industrial tools are used in live programming environ-
ments. When doing so, they present the described problems. For exam-
ple, live programming is performed in Java or Groovy using tools like
DCEVM [WWS10], JRebel [|Zer12] or Jvolve [SHMO09].

Also, studies of the usage of automatic refactorings show that the prob-
lematic refactorings are used daily [VCN™12,NCV"13,MHPB12]. Other stud-
ies show that the use of automatic refactorings is limited as it is not giving
enough guarantee to developers [KZN12]. Although there are no specific
studies applied to live programming, it is possible to extrapolate these re-
sults to live programming.

6.2 Our Solution: Atomic Refactorings for Live Pro-

gramming

Traditionally, refactorings are applied in a non-atomic way and changes gener-
ated by the refactoring tool are applied one at a time, modifying live instances
after each change. For example, the rename refactoring involves two opera-

tions: adding a new instance variable with the new name and removing the

78 Chapter 6. Atomic State Preserving Refactorings

E 3 S g S

S 5 3 3

z £ S O S
Fowler 46 9 11 6 26

(63.89%) | (12.50%) | (15.28%) | (8.33%) (36.11%)
Eclipse 24 5 3 1 9
JDT (72.73%) | (15.15%) | (9.09%) (3.03%) (27.27%)
Resharper | 32 9 4 1 14

(69.57%) | (19.57%) | (8.70%) (2.17%) (30.43%)
Intelli] 28 5 8 1 14
IDEA (66.67%) | (11.90%) | (19.05%) | (2.38%) (33.33%)
Pharo 33 13 2 2 17

(66.00%) | (26.00%) | (4.00%) (4.00%) (34.00%)
WebStorm | 10 1 0 0 1

(90.91%) | (9.09%) (0.00%) (0.00%) (9.09%)
Groovy 7 3 0 1 4

(63.64%) | (27.27%) | (0.00%) (9.09%) (36.36%)
Average | 25.71 6.43 4.00 1.71 12.1

(67.92%) | (16.98%) | (10.57%) | (4.53%) (32.08%)

Table 6.1: Results of the analysis of existing refactoring engines.

instance variable with the old name. These operations are performed one af-
ter the other and after each one, live instances are migrated and corrupted.

In a live programming environment, atomic refactorings are needed to
prevent instance corruption. Since instances are accessed and modified con-
currently in a multi-threading application, all the changes should be applied
at once guaranteeing isolation and mutual-exclusion.

Next, we present our solution to perform refactorings that preserve the
state of live instances. This solution is based on a Dynamic Software Up-
date mechanism. It manages the application of changes to methods and class
structure as well as the migration of existing instances from an old class struc-
ture to a new one. The DSU mechanism performs all the changes atomically,
preserving the state of the application and its behaviour while the application
is running. For this solution we implemented the refactoring engine using
gbsU.

Regarding refactorings, it means that all classes are modified at once and

6.2. Our Solution: Atomic Refactorings for Live Programming 79

A B Automatic B C

b = - Ko

A
& Refactoring 2 patch 4 p
\L/‘ Tool 3 ﬂ
_

- |
© 2o I I .
] [E] I includes:] Atomic - <
! - : - Changes :
B - Migration :

FPolicies
Onigina! Emioneend Trommreneeees MNew Environmeant
1. User selects
and configuras
e refactonng.

Halsf |

2. Generates 3. Invokes the 4. Updatas the
thi patch D5U process Emvironment

Figure 6.3: The Atomic Refactoring process.

that live instances are directly migrated from the current version to the final

one in an atomic way.

Description of the Atomic Refactoring Application

gDSU provides ways of expressing the changes to be applied as a patch. The
atomic refactoring engine generates patches automatically. As the changes
required by an automatic refactoring are well known, the patch is gener-
ated with this changes. Instead of applying the changes in the methods and
classes they are accumulated in a patch. All the changes are scheduled and
performed atomically, gDSU determines the exact moment to execute the up-
date.

Figure[6.3|describes the overall process, the following section expands the
details:

¢ In Step 1, the user selects and configures the refactoring, this is per-
formed through the same user interface the user uses in non-atomic
refactorings. When applying a refactoring, our solution relies on the
same information that is provided in the non-atomic implementation
of the refactorings. Indeed, all required information is already specified
in the refactoring to apply or it is retrieved from the live environment.
After having all the user input, the process is fully automatic.

¢ In Step 2, the atomic refactoring engine generates the patch. As described
before, this patch includes all the modifications needed and the migra-
tion policies to migrate live instances. The creation of the patch is spec-
ified in the refactoring definition. Most of the time, existing refactor-
ing engines compute the changes to be applied to classes and methods.
With Atomic Refactoring, refactorings should also compute the migra-
tion policies that we will be applied to the instances.

¢ The patch is the sole entry parameter of gDSU. In Step 3, gDSU is in-
voked to apply the patch.

80 Chapter 6. Atomic State Preserving Refactorings

¢ In Step 4, gDSU applies all the changes in an atomic way. Preserving
the behavioural consistency [RBJO96] and also the consistency of live
instances. gDSU can be executed while the system is running. gDSU se-
lects the best moment to execute the update process, checking that none
of the running threads is using the affected instances. As the changes
are applied atomically, in case of an error or problem during the execu-
tion the process is safely aborted.

After an update of the running environment by gDSU, the atomic refac-
toring is completed and the user can continue using it.

6.3 Preserving Instance State when Applying Refactor-
ings with gDSU

Our refactoring model and gDSU are successfully used to correctly handle
live instances when applying refactorings presented in Section[6.1} In essence,
our refactoring engine generates the corresponding migration policy for ex-
isting instances according to the currently applied refactoring. We have ap-
plied this technique to all the refactorings in Pharoﬂ that corrupt instances.

6.3.1 Pull Up Instance Variable

In the case of Pull Up Instance Variable the migration policy should correctly
copy the values from the instances before the application of the refactoring
to the refactored instances. There is no need of transforming the values, just
not losing them and correctly re-assign them into the refactored instances.
To achieve this, the atomic refactoring engine generates a migration policy
for the refactored class and its subclasses. This policy copies the state of all
affected instances into newly created refactored instances. The gDSU creates
the refactored instances in the new environment. The refactoring engine cor-
rectly initializes new instances with the saved state even if refactored objects
have a different layout from original ones (e.g. instance variable order has
changed) by using the instance variable names. Relying on names is the de-
fault migration policy and it is automatically generated. Here the automati-
cally generated code for the migration policy of a pull up refactoring:

migratelnstance: new fromOldInstance: old inNewEnv: newEnv fromOIdEnv: oldEnv
new class instanceVariables do: [:newlV |
old class instanceVariableNamed: newlV name
ifFound: [:oldIV | newlV write: (oldIV read: old) to: new]].

! Atomic refactoring implementation is available at
https://github.com/tesonep/pharo-atomic-refactors

https://github.com/tesonep/pharo-atomic-refactors

6.3. Preserving Instance State when Applying Refactorings with gDSU 81

This migration policies iterates all the instance variables defined in the
new instance. In Smalltalk, the instance variables are reificated as objects.
They can be accessed by the class of an object. The code iterates the instance
variables of the new instance, and looks for the one with the new name in
the old instance. If the instance variable is found in both instances, the object
representing the instance variable is used to read it from the old instance and

to write it in the new instance.

6.3.2 Split Class Refactoring

For solving the live instance migration of Split Class, the atomic refactoring
engine generates a more complex migration policy. Although this migration
policy is more complex because it has transformations of values, the migra-
tion policy is generated automatically.

We call mother objects the instances of the selected class for the refactor-
ing and child objects the instances of the newly created class. We have two
versions of the mother object, the old and the new one. This is shown in the
Figure[6.2c/and Figure The first figure shows the instance before the mi-
gration, with all the values of the instance even the ones to be migrated to the
new class. And the second figure shows the two instances that are the desired
result of the refactoring. This migration policy performs the following steps
for each of the instances to migrate:

1. Create a new instance of the child class.
2. Store this new object into the instance variable of the new mother object.

3. Copy all the instance variables to extract to the new child object.

The creation of the new instances, the copy of all the instance variable
values to the new created instance and building the relationship between
the migrated mother object and the new child object are not performed by
default by gDSU. It is the responsibility of the migration policy to perform the
following tasks:

o It creates a new child instance.

¢ From the old mother instance, it copies all the instance variable values
to the newly created object.

¢ Itadds a reference to the child object in the new mother instance. Using
for this the new instance variable in the mother object.

This migration policy can be automatically generated by the atomic refac-
toring engine using the information it already has. A detailed explanation of
the implementation of this refactoring is presented in Section 6.4}

82 Chapter 6. Atomic State Preserving Refactorings

6.4 Using gDSU to preserve instance state

We validate our proposed solution by the implementation of an extension to
the refactoring tool present in the Pharo Programming Environment. We se-
lected Pharo because (1) it supports live programming with an advanced
debugger allowing to define methods on the fly, dynamic recompilation of
classes, and other features supporting live programming such as instance mi-
gration, (2) the Refactoring engine available in Pharo is the direct evolution
of the original Refactoring Browser [RB]97]] implemented in Smalltalk, (3) the
Pharo Refactoring engine propose one of the most complete refactoring im-
plementation with 50 refactorings.

We implemented our Atomic Refactoring solution based on the use of
gDSU. This DSU solution has some characteristics that ease the implemen-
tation of the atomic refactorings. It supports the definition of patches. Each
patch contains the set of changes, migration policies and validations. This
DSU runs as a library without needing to modify the running Virtual Ma-
chine or expecting the target code to follow any guideline.

As required by our solution gDSU receives a patch describing the modi-
fications. The patch contains not only all the changes to perform but also the
migration policies to apply. gDSU allows us to perform all the changes in an
atomic way, which means all the modifications are applied at once.

Also, it allows the use of migration policies to describe how the objects
should be migrated from the old version to the new version. gDSU allows an
easy reuse of the migration policies. This feature eases the development of the
migration policies for the different refactorings. Moreover, gDSU provides
a number of default migration policies that can be used. However, in our
implementation, we need to implement our own migration policies to be able
to express more complex instance migrations.

gDSU also allows us to validate the correct execution of the update. The
validations objects are added to the patch and they are generated by the refac-
toring tool. The validations are defined for each of the automatic refactor-
ings. Each automatic refactoring includes the validations as it includes the
required operations to do. For example, in the Pull-Up refactoring instances
of the new classes are validated to have the proper instance variable value.

Using them we validate the correctness of the refactoring after all the
changes are applied. Again gDSU allows the reuse of different validations in
different refactorings. This feature is used when a refactoring operation needs
to validate a post-execution condition. Including validations is not manda-
tory, but provides a way of validating the result of the refactoring execution,
not only over the static model but also on live instances. For example, it can

be used in the Split Class Refactoring to validate if the accessor methods in the

6.5. Application of the Refactoring step by step 83

original instances return the same values.

Our solution is handling each refactoring as an atomic operation. When
a set of two or more refactorings modify the same classes, the required mi-
gration policy should be capable of performing the migration taking into ac-
count both refactorings. The required migration gets more and more com-
plex. This required complexity is outside the scope of our solution.

As our solution is generating the migration policies and validations au-
tomatically based in the definition of the refactorings. We implemented for
each refactoring the code to generate them. This automation constraints our
solution to apply each refactor atomically. We does not support to apply two
or more refactorings at the same time. As they might modify the same class
in many ways that cannot be analysed by the automatic generation of the
migration policies.

We decided to implement the refactoring tool as an extension, so we can
reuse all the user interface and the integration of existent tool with the IDE.
As the required information to apply a refactoring is the same required by
the previous implementation of the refactoring tool, it was not needed to im-
plement modifications in the user interface. The implementation is available
in Githubﬂ and can be easily downloaded and used in Pharo 6.

6.5 Application of the Refactoring step by step

Citizen
name
street
number
city

:Citizen
name = 'Bart'
street = 'Evergreen Terrace'
number = 742
city = 'Springfield'

Figure 6.4: State before refactoring

Our proposed solution performs a number of steps to apply refactorings
in an atomic fashion. We will explain in detail these steps following the ex-
ample presented in Subsection [6.3.2]

Figure [6.4) shows the state before applying the changes. To perform the
changes the atomic refactorings apply the following steps.

1. The new environment is created. All the new and modified objects and
class/methods will be stored in this new environment. The environ-
ment starts empty. (Figure

https:/ / github.com/tesonep /pharo-atomic-refactors

84 Chapter 6. Atomic State Preserving Refactorings

/ Citizen N
/ name AN
\
/ street \
K number \ T, -
! city \ d \
| ! '\ !
| ! N 7
\ 1 NG s
\ :Citizen ! ikl
! name = 'Bart' ,’
\ = .
\ | street = 'Evergreen Terrace') New Environment
\ | number =742 ’
\ Lcity = 'Springfield')/
\ /
\ ’

Original Environment

Figure 6.5: A new environment is created

2. The modified versions of the classes Citizen and Address are created
in the new environment. The refactoring operations modify the copied
classes without tampering the original environment. For example, it is
not needed to create the class at once, as the Address class can be cre-

ated empty and then add the different instance variables (Figure|[6.6).

s Citizen N e ~..
.
/ name AN - "
7/ \ ’ .
/ street \ , Address Y
! 1
number _
/ cit Voo Citizen address streebt '
' g \ v [name number J
: AN city ,
! I N L/
| :Citizen ’v ~ .
‘\ name = 'Bart' h \\\\ ’//,
\ street = 'Evergreen Terrace' / ~~—e T
\ | number =742 / Rl
\ Leity = 'Springfield")/ New Environment
N /
N ;

Old Environment

Figure 6.6: All the modifications to the classes are applied

3. Once the class modifications are completed, the Citizen instances
should be migrated. The migration policy migrates the Citizen in-
stances, creating the Address instance needed in each case (Figure [6.7).
This migration is performed using the refactoring migration policy.
This policy is included in the automatic refactoring engine, and it is
used only for this refactoring. The following code is the migration
policy.

6.5. Application of the Refactoring step by step 85

SplitClassMigrator >> migratelnstance: new fromOldInstance: old inNewEnv: newEnv
fromOIdEnv: oldEnv
| child childClass targetClass oldClass oldVariable |

"Step 1:uses the default migration for the mother object, that

copy all the instance variables by name.

This is implemented in the reusable part of the migration policies.
It copies the instance variable values by name, copying the instance
variables existing in the old instances into the new instance."

self basicMigratelnstance: new from: old.

"Step 2: recovers the newly child class created from the environment.
The newClassName is a parameter of the refactoring."
childClass := newEnv at: newClassName.

"Step 3: creates a new instance of the child class.

Using the class recovered from the environment the new instance is created."
child := childClass new.

targetClass := new class.

oldClass := old class.

"Step 4: add the reference from the mother object to the child object."
(targetClass instanceVariableNamed: referenceVariableName)
write: child to: new.

"Step 5: copy all the extracted instance variables.
Fill up the child instances with the variables extracted from the mother instance.
These are the instance variables that are extracted from the mother class.

These variables are a parameter to the automatic refactoring."

variablesNamesToExtract
do: [:e |
oldVariable := oldClass instanceVariableNamed: e.

(childClass instanceVariableNamed:)
write: (oldVariable read: old) to: child].

4. When all live instances are migrated, the update engine validates the
correctness of the refactoring, by the execution of a validation object
generated by the refactoring tool. In this case, it checks that all the Cit-
izen instances have a corresponding Address. As the validation is suc-
cessful, the modified objects in the old environment are replaced with
the ones in the new environment. The bulk swap operation replaces all
the instances updating the references to them. (Figure[6.8)

86

6.6

Chapter 6. Atomic State Preserving Refactorings

7 Citizen \ s S
.
/ name N L Ny
\
/ street \ / Address]\,
1
number —
h cit \ / Citizen address streel; N
\
! £ v/ [pame number \
: 1 | city '
1
ll :Citizen V‘ ! :Address ’l
\ name = 'Bart' / \ :Citizen address | street = 'Evergreen Terrace' ’
| ' = /
\ street = 'Evergreen Terrace' ,’ ‘\ n_umbtlar = .742. . ,
| number = 742 / N city = 'Springfield ’
\ Leity = 'Springfield" / . L
\ 7 N P
N /7 ~ < . s
N L’ - .
N ~ - s SS - P -
Old Environment New Environment

Figure 6.7: Live instances are migrated

Address
Citizen address | Street
name P number
city
:Address
Citizen address | street = Evergreen Terrace'

name = 'Bart’ ——P»| number = 742
city = 'Springfield'

Figure 6.8: The New environment replaces the old environment

Validation

This section presents three tested scenarios to validate the correct application

of the changes preserving the state of the application. The validations have

been done using the implementation that is publicly available in Githubﬂ In

such repository there are instructions to install our solution in Pharo 6.

6.6.1 Validation 1: Refactorings without Corruption

Research Question. Is it possible to execute refactorings that do not produce

instance corruption?

Scenario. This validation shows that our solution does not affect the exist-

ing refactorings. For this test we use the Protect Variable Refactoring (imple-

mented by RBProtectVariableRefactoring). This refactoring removes the acces-

sors to an instance variable and replaces all the uses of these messages in the

class and subclasses with direct accesses to the instance variable.

Figure[6.9/shows the original state before the execution of the refactoring.
Figure shows the state after the execution of the refactoring.
For testing the migration of instances, we have created instances of the

class Person with state and validated that this state is correctly created. Finally,

*https:/ / github.com/tesonep /pharo-atomic-refactors

6.6. Validation 87

Person
name
name Person >> #fullName
name: A self name
fullName

Figure 6.9: Before applying the protect variable refactoring.

Person
name Person >> #fullName
otherMethod A name

Figure 6.10: After applying the protect variable refactoring.

we execute the refactoring programmatically. Listing[6.1|shows the executed
code.

refactor := RBProtectVariableRefactoring
instanceVariable: 'anlnstanceVariable’
class: classProtectVariable name.

refactor execute.

Listing 6.1: Execution of the Protect Variable Refactoring

Result. After executing the refactoring, we validated that the static modifica-
tions are performed correctly and the migration of instances has been done
correctly.

6.6.2 Validation 2: Refactorings with Internal Corruption

Research Question. Is it possible to execute refactorings that produce inter-
nal corruption preserving the state of the application?

Scenario. This validation shows that our solution does not affect the exist-
ing refactorings. For this test we use the Pull Up Variable Refactoring (im-
plemented by ARPullUplnstanceVariableRefactoring). This refactoring removes
the instance variable from the subclasses and define it in the superclass.

Figure[6.1T|shows the original state before the execution of the refactoring.
Figure shows the state after the execution of the refactoring.

For testing the migration of instances, we have created instances of the
class Employee with state and validated that this state is correctly created.
Finally, we execute the refactoring programmatically. Listing shows the
executed code.

88 Chapter 6. Atomic State Preserving Refactorings

Person

Employee

name

Figure 6.11: Before applying the Pull Up variable refactoring.

Person

name

i

Employee

Figure 6.12: After applying the Pull Up variable refactoring.

refactor := ARPullUplnstanceVariableRefactoring
variable: 'name’
class: Person.

refactor execute.

Listing 6.2: Execution of the Pull Up Variable Refactoring

Result. After executing the refactoring, we validated that the static modifica-
tions are performed correctly and the migration of instances has been done
correctly.

6.6.3 Validation 3: Refactorings with Complex Corruption

Research Question. Is it possible to execute refactorings that produce com-
plex corruption preserving the state of the application?

Scenario. This validation shows that our solution does not affect the existing
refactorings. For this test we use the Split Class Refactoring (implemented by
ARSplitClassRefactoring). This refactoring extracts a set of instance variables
to a new class. The developer chooses which instance variables should be
moved into the new class. The new class becomes an instance variable of the
original class and every reference to the moved variables is replaced by a
accessor call.

Figure[6.13]shows the original state before the execution of the refactoring.
Figure shows the state after the execution of the refactoring.

6.7. Conclusion 89

Employee
address
city
country

Figure 6.13: Before applying the Split Class refactoring.

Employee Address
address
address city
country

Figure 6.14: After applying the Split Class refactoring.

For testing the migration of instances, we have created instances of the
class Employee with state and validated that this state is correctly created.
Finally, we execute the refactoring programmatically. Listing |6.3| shows the
executed code.

refactor := ARSplitClassRefactoring
class: Employee
instanceVariables: #(address city country)
newClassName: #Address
referenceVariableName: #address.

refactor execute.

Listing 6.3: Execution of the Split Class Refactoring

Result. After executing the refactoring, we validated that the static modifica-
tions are performed correctly and the migration of instances has been done
correctly.

6.7 Conclusion

In this chapter, we identify the problem of refactorings corrupting instances
when there are live instances of the modified classes. We propose a catego-
rization of the instance corruption issue. And we show that 36.11% of refactor-
ings described in the literature present this problem. Moreover, we proposed
a refactoring implementation mechanism which solves this problem.

Our Atomic Refactorings mechanism preserves instances’ state. It is
suitable for live programming environments because it does not corrupt
instances of refactored classes. We use gDSU, it offers the possibility of
modifying all the objects in a separated environment. When all the changes
are performed, it replaces all the modified objects at once.

We presented a validation of our proposed solution with an implementa-
tion of an atomic automatic refactoring tool in Pharo. This validation shows

90 Chapter 6. Atomic State Preserving Refactorings

that the proposed solution cover the stated requirements for a set of auto-
matic refactorings that does not produce instance corruption. So, this solu-
tion is applicable to live programming environments without affecting the
stability of the running application.

Our solution is integrated with a refactoring tool existing in an indus-
trial platform. The use of this new extension is transparent to the developer.
Developers perform the refactorings without thinking to regenerate the live

instances.

STATE-AWARE
TRANSACTIONAL
LivE PROGRAMMING

Contents
[7.1 Changes Corrupting Instances|. 92
[7.2" Transactional Changes| 95
[7.3 Implementing PTm| 96
|74 Using PTm to safely apply changes| 99
[Z5__Transactional Modifications Validation| 101
[7.6 Design Decisions|, 103
[7.7 Requirements Assessment| 105
78 Conclusionl. 106

Live programming environments [San78], such as Pharo [BDN " 09], allow
developers to modify the running application while it is executing. These
environments include not only the code of the application but all the live
instances representing the application state.

As stated before, live programming environments implement simple yet
powerful mechanisms to migrate the application state after each change.
Pharo allows the developers to freely modify application code, core libraries
and the language itself. It allows us to modify all the elements present in the
environment.

However, this mechanism does not cover all the possible changes leaving
uninitialized variables and inconsistent global state. As a result, some mod-
ifications affect the stability of the system. Complex modifications require
special care from the developer to maintain the stability of the running appli-
cation (i.e., staging, sequencing, doing intermediate changes). As this special
care is not always possible [PDF"15], this requirement limits the flexibility
and power of live programming environments. Moreover, even a modifica-
tion in application code could arise a stability problem.

We propose to address this limitation scoping the modifications to a
transactional environment. By doing so, the modifications to classes, meth-
ods and instances do not affect the running application. Scoping the changes
is not enough, the developer should be able to perform new changes, test
her changes and inspect and modify live instances.

92 Chapter 7. State-aware Transactional Live Programming

Also, the developer should be able to safely discard or apply these
changes. As the application is running, the application of changes should
be performed atomically. The changes to be applied are not only changes to
methods or classes, also live instances should be migrated to maintain the
application state coherence.

We implemented our solution in Pharo as an extension of gDSU. Our pro-
totype tool (PTm) allows the developer to evaluate changes in a scoped en-
vironment. This environment includes the unmodified classes and instances
from the application environment and the modified ones. This environment
is created in an efficient way using the techniques included in gDSU, only
containing the referenced or modified classes and instances. This alterna-
tive environment is used to evaluate expressions, inspect and modify the in-
stances and classes, allowing the developer to test her modifications. Once
the modifications are ready, the developer applies or discard them.

In case of needing migration strategies, the environment provides ways of
detecting the need and provide ways of configuring the required migration
strategies.

There are other solutions that provide a scoped transactional environ-
ment to isolate the changes [DGL™07/LH12,WLN13|PS87,MRH17,CPDD09].
However, these solutions do not take into account the migration of applica-
tion state.

7.1 Changes Corrupting Instances

Needing Transactions. Pharo allows the user to modify the class structures
and the methods of a running application. However, to maintain the coher-
ence of the application state these changes have to be performed atomically
or in a sequence of well-designed steps. Also, there are situations where such
sequencing is not possible [PDF"15] requiring the atomic application of the
changes.

An example of a complex change is the Pull up refactoring (Figure[7.T)) that
we introduced in Chapter|[6] The refactorings are a good example of complex
changes, where one or more classes and methods are modified in the same
operation. For this example, the developer will perform the changes to apply
the refactoring manually. The developer performs the following steps:

¢ Removes the instance variable idNumber from all the subclasses of Per-

son.

¢ Adds the instance variable idNumber to the Person class.

This set of changes produced the expected result in the class structure.
However, as stated before if these changes are performed naively the state

7.1. Changes Corrupting Instances 93

[Person |
Student Teacher
idNumber idNumber
degree courses [Student | [Teacher |
[degree | [courses |
:Student Teacher
name = 'John' name = 'Carl' :Student :Teacher
idNumber = '1234' idNumber = '6789' name = 'John' name = 'Carl'
degree ="...' courses ="..." degree ="...' courses ="..."

(a) Original State before the refactor- (b) Step 1: Remove subclass instance

ing variables
Person
name
idNumber Person
name
idNumber
[Student | [Teacher
[degree [courses
[Student | [Teacher |
| degree | [courses |
:Student :Teacher
name = 'John' name = 'Carl'
idNumber = nil idNumber = nil -Student “Teacher
degree ="...' courses ="... name = 'John' name = 'Carl'

idNumber = '1234'

degree ="..."

idNumber = '6789'
courses ="...'

(c) Step 2: Add superclass instance

variable (d) Expected Result

Figure 7.1: Step by Step of applying the Pull Up Instance Variable refactoring
to the idNumber instance variable present in Student and Teacher classes.

of live instances is lost. In Pharo (and in many Smalltalks), when the first
step is performed the instance variable is removed from all live instances of
Student and Teacher. Once the instance variable is removed, their values are
lost. When the instance variable is added back to the class Person, the instance
variable values cannot be restored as they are already lost. This modification
requires the atomic application of the changes and performing the instance
migration after all the changes in the classes are performed.

Needing migrations. There are changes that require more than transactional
changes, they require correct migration of instance state. If the modifications
affect the structure of live instances or the instance variable value types, live
instance should be migrated using custom logic [TPF"16].

In Figure we return to the same example introduced before. It is a sim-
ple application that draws vectors in a window. The vectors are represented
by instances of Vector3D. These instances have cartesian coordinates (x, y, z).

Figure shows the initial implementation of the example and Fig-
ure shows the desired changes to perform. The developer wants to
change the representation of the vectors to use polar coordinates. To do so,
the following changes are required:

94 Chapter 7. State-aware Transactional Live Programming

\ Window >> #drawOn:

Vector3D >> length "Updates the window, using
" self squareSum sqrt | the operations and

Window >> #drawOn:

"Updates the window, using Vector3D >> length

the operations and Vector3D's instance * radius
VectordD's |Instance Vector3D >> squareSum | variables. It's called by the
variables. It's called by the AXM2 4 Y2 4 272 N N
drawing thread." drawing thread.
Vector3D - Vector3D -
x:Number Vector3D radius:Number | VectordD |
i x: 1 | radius: 1.73
y:Number : thetha:Number .
| y: 1 . thetha: 0.78
z:Number 71 phi:Number hi: 0.95
length() - length() pat: 9.
(a) Original state (b) After the desired change

Figure 7.2: Example of changes requiring migration of instances with custom
logic.

¢ Update the methods Window » #drawOn: and Vector3D » #length.

¢ Remove the method Vector3D » #squareSum.

¢ Remove the instance variables x, y and z.

¢ Add the instance variables radius, thetha and phi.

After performing these changes, the instances of Vector3D are in an in-
valid state. When the old instance variables are removed, their values are
discarded. Also, the new instance variables are initialized in nil. With this
invalid state, the application using the instances crashes.

To avoid this, the instances of Vector3D should be regenerated (e.g., from
a persistent store), or they should be migrated. This set of changes requires a
custom migration strategy [TPFT16]. Listing|7.1{shows a possible migration
block. The block receives an old instance and a new instance.

[:old :new |

new radius: old length.

new thetha: (old z / new radius) arcCos.
new phi: (old y / old x) arcTan.

]
Listing 7.1: Migration Logic required for Vector3D

Needing Testing Environment. To safely perform changes in a live program-
ming environment, the developer requires an environment to test the changes
is performing. A transactional live programming environment should keep
the interactive development experience.

This interactive experience includes: (1) performing the changes, (2) test-
ing and debugging the changes, (3) modifying the changes or performing
new ones. All these operations should be done without affecting the stability
of the running application.

We considere a key element of live programming environment the con-

tinue flow of interaction between the evolving program an the developer. The

7.2. Transactional Changes 95

risk of getting an unstable environment or application limits the freedom of
the developer and cut down the freedom of evolving the system by small
steps.

7.2 Transactional Changes

1.Create Env.
Original Environment _.-~"’ “T*-.._ Scoped Environment

Vector3D
x:Number
y:Number
z:Number
length()
squareSum()

Vector3D
radius:Number
thetha:Number
phi:Number
length()

1 PR
:Vector3D
radius: 1.73
thetha: 0.78
phi: 0.95

4.Commit

Figure 7.3: Overview of the Solution
We propose a technique to scope changes and instance state modifications

in a transactional environment. To do so, we extend the alternative environ-
ment proposed by gDSU.

This alternative environment is used to evaluate the code modifying the
methods, classes and instances. In a nutshell, the developer is working in
a copy of the environment and when the changes are complete and safe to
apply, the old environment is replaced by the new objects.

Our proposed solution extends the implementation of gDSU to be able
to execute code and tests in the copied environment. The modifications are
applied when they are performed by the user. As all the instances and classes
are living objects they are accessible through the environment.

Figure[7.3|shows the overview of the solution and Listing[7.2| presents an
overview of how to do the different steps. The integration with the IDE will
hide these details.

First, the scoped environment is created empty (Step 1). Next, the devel-
oper perform changes to the classes. When the classes are modified, copies of
the classes are created in the scoped environment (Step 2). Only the required
classes are created.

The developer is free to create instances and test her changes in the scoped
environment (Step 3). The classes and instances in the original environment

96 Chapter 7. State-aware Transactional Live Programming

are not affected.

"Step 1: Creation of the environment"

env := TMEnvironment new.

"Step 2: Applying the changes in the scoped environment"
env evaluate: |
transaction createSubclassOf: #Object withNewName: #Vector3D
slots: #(radius thetha phi)
sharedVariables: "'
package: 'Transactions— Tests'].

"Perform the changes in the methods"

env evaluate: [Vector3D removeSelector: #squareSum].
env evaluate: [Vector3D compile: 'phi: aVal. phi:=aVal'].

"Step 3: Create instances and test them"
aVector := env evaluate: [Vector3DTest new]
aVector radius: 1.73

"Step 4: Commit the transaction"

env evaluate: [transaction commit].
Listing 7.2: Using our solution

Finally, when the developer has tested her changes, she commits the op-

erations in the original environment (Step 4).

7.3 Implementing PTm

Our solution extends the implementation of gDSU. This extension presents a
number of practical issues. We will address these issues in this section. First,
we analyse how the new environment is created, which are the elements to
include (e.g., classes, objects and methods) in it and when the new environ-
ment is created and populated (Section[7.3.1). Second, we provide a solution
for state migration from and to the alternative environment (Section .
This migration has to handle the globally accessible state (Section[7.3.2). Be-
fore applying the changes, it needs to detect and handle the conflicts in the
state of the application (Section |7.3.3). Finally, we provide the means to im-
plement the application of changes (Section [7.3.4).

7.3.1 Scoped Environment

An environment includes all the objects, classes and methods required to ex-
ecute the application. In Pharo, the whole image is the environment of execu-
tion. All the modifications performed in our solution are performed in a copy
of the environment. This copy is incrementally created. This implementation

7.3. Implementing PTm 97

follows the same optimizations performed in gDSU. However, the discovery
of the classes and instances to copy in the new environment is different.

The classes are created in the new environment when they are referenced
directly in the expressions evaluated in the environment or referenced in
a method that is present in the environment. When a class is referenced in
the new environment, the class is copied with the same definition that exists
in the original environment. The superclasses of the copied classes are also
copied. Also, the methods are compiled in the new environment and stored
in the copied class.

To minimize the number of copied classes, we defined a set of classes that
are only copied when they are modified (not when they are accessed). This
set of classes includes core system Classes (e.g., Object, Array, Smalllnteger,
Class, Metaclass). Not copying them on access improves the copy in most of
the development scenarios, and allowing to copy them when modified allow
us to handle transactional changes on them. This improvement is required
to make the solution practical, without it the copy of the environment is not
practical for speed reason.

To transparently replace all the references to classes inside the alternative
environment, the methods and expressions are compiled using the alterna-
tive environment to resolve the bindings. When a new binding is required,
the environment creates a copy of it and creates the required class. This de-
tection of the bindings and global variables is achieved by plugin on the com-
piler.

7.3.2 Global State

To be able to execute code in the scoped environment, our solution migrates
the required globally accessible state of the application. In Pharo, the global
state basically is of two types (1) global variables defined in the environment
and (2) class-side variables. All the global state required by the scoped envi-
ronment is copied in the new environment transparently.

The global variables are copied on access. Whenever an expression or
method is compiled using a global variable this global variable is copied to
the new scoped environment. We extend the compiler to perform the copy
during the compilation of methods. Extending the compiler allowed us to
only copy the necessary global values. For example, literals, constants, and
shared objects (e.g., true, false, nil) are not copied.

The class-side variables are copied when the classes are included in the
scoped environment.

In both cases, the value of the global state is copied. The instances pointed
by the global state are copied in the scoped environment allowing us to be

98 Chapter 7. State-aware Transactional Live Programming
modified freely without affecting the running application.

7.3.3 State Conflicts Detection

If the migration cannot be performed automatically, the transactional envi-
ronment cannot be committed in the original environment. Any attempt to
commit it will raise an exception. To be able to apply the changes in the origi-
nal environment, the developer should provide the missing migration strate-
gies (Section[7.3.5).

After performing changes in the application code, the structure or use
of the instance variables might be altered. If this is the case, these changes
require migration of the instances from the old to the new version.

Our proposed solution first detects if the instance migration can be per-
formed automatically. This is performed if one of the following conditions

are met:

¢ There are no live instances (or subclasses instances) of the modified

class in the old environment.

¢ The class structure is not changed in the number of slots or the names
of slots.

¢ The types of the instances in the old environment and new environment
are equivalent.

¢ The global state of the classes is the same (i.e., all their class-side and
shared variable values are the same).

7.3.4 Applying Changes

The application of changes is performed following the same guidelines of
gDSU. The safe point update is calculated in the same way as implemented
in gDSU.

7.3.5 State-Migration

The migration of state is performed in two stages by our solution. The first
stage is the instance migration. In this stage live instances of the old envi-
ronment are migrated to their new representation. The migration of state is
performed using the gDSU mechanisms. Our transactional solution calcu-
lates the required migration policies to migrate the state of live instances and
the global accessible state.

If the changes in the class structure do not add a new slot, the migration is
performed automatically. Our solution is able to handle changes in the order
of the slots, the position of the slot in the inheritance hierarchy (i.e., moving a

7.4. Using PTm to safely apply changes 99

tield to a super / sub class) or removing slots. In the automatic migration, the
slots are copied from the old instances to the new instances by name. If the
migration cannot be performed automatically, the developer should provide
a migration strategy.

The second stage is the migration of global state. If the global state has
been modified in the scoped environment, the developer should choose be-
tween three strategies: (1) using the state in the scoped environment (using
new global state) or using the state in the original environment (using old global
state). The selection of the strategy is performed in a class base. The developer
selects for each of the classes with modified state which strategy to use.

7.3.6 Aborting the Transaction

To safely abort the transaction, our solution is using the abort mechanism
implemented in gDSU. We have extended the mechanism to allow discarding
the copied environment in any stage before the commit.

Once the new environment is discarded, there is no modifications left in
the original instances and classes.

7.4 Using PTm to safely apply changes

To validate our proposed solution, we implemented our tool in Pharo 7ﬂ PTm
provides an alternative environment to execute any modification in a scoped
environment. The prototype is available as a Github projectﬂ With this proto-
type, it is possible to perform the changes, execute code and tests, configure
the migration strategies and commit or discard the changes.

We show in this section how to update the running application in the
examples presented in Section As our solution is still a prototype, it is
not integrated with the Ul or the existing tools. However, it can be used from
a workspace (GT Playground). So, in the examples, we will show the code to
evaluate. The shown code only includes the required steps to implement the
changes, although in the environment and in the development session many
expressions and tests could be run.

7.4.1 Transactional Changes

The example of the Pull-up refactoring requires transactional applications of
the changes. Listing [7.3| shows the steps to perform this update using PTm.
First, this example redefines both Teacher and Student classes removing the
idNumber instance variable. The definition of the classes is performed through

'https://pharo.org
Zhttps://github.com/tesonep/transactions

https://pharo.org
https://github.com/tesonep/transactions

100 Chapter 7. State-aware Transactional Live Programming

the transaction object. This object is available in the context of the new envi-
ronment. This object is the main entry point of PTm.

"Creates a new environment"

env := TMEnvironment new.

"Redefines the Student class, removing idNumber"
env evaluate: |
transaction createSubclassOf: #Person withNewName: #Student
slots: #(degree)
sharedVariables: "

package: 'Transactions—Example'].

"Redefines the Teacher class, removing idNumber"
env evaluate: |
transaction createSubclassOf: #Person withNewName: # Teacher
slots: #(courses)

sharedVariables:
package: 'Transactions—Example’].

"Redefines the Person class, adding idNumber"
env evaluate: |
transaction createSubclassOf: #Object withNewName: #Person
slots: #(name idNumber)

sharedVariables:

package: 'Transactions—Example'].

"Runs the tests to evaluate that the changes are ok"
result :== env evaluate: [StudentTest suite run |.
result defect isEmpty.

result := env evaluate: [TeacherTest suite run |.

result defect isEmpty.

"Commits the transaction"

env evaluate: [transaction commit].

Listing 7.3: Atomic application of Pull-up refactoring using PTm

Then, the Person class is redefined to have the new instance variable. Fi-
nally, the commit is performed. The changes are applied atomically. In this
example, there is no need of custom instance migration, as the instance struc-
ture of Student or Teacher have not changed. The migration from the old to
the new instances is performed automatically by name. This automatic mi-
gration is only possible as the changes are applied atomically.

7.4.2 Custom Migration

The second example in Section the one migrating the structure of Vec-
tor3D class, requires custom migration of live instances. Listing[7.4shows the

7.5. Transactional Modifications Validation 101

step to safely perform this update using PTm.

If the developer tries to commit the transaction before setting a migration
strategy and there are live instances of Vector3D, the operation will fail and it
will produce an exception informing the situation to the developer. Then, the
developer can decide to provide a migration strategy or discard the transac-
tion without affecting the running application.

7.5 Transactional Modifications Validation

This section presents two scenarios tested to validate PTm transactional mod-
ification implementation. The validations have been done using the imple-
mentation that is publicly available in Githubﬂ

7.5.1 Validation 1: Manual Refactorings

Research Question. Is it possible to perform transactional manual refactor-
ings preserving the state of the application?

Scenario. This scenario demonstrates that the implementation of transac-
tional modifications supports manual refactorings that require a migration of
state even when the changes in the refactoring are applied manually. For this
scenario, we use the example of the pull up refactoring, but in this time the
refactoring is manually applied. It means the developer changes the classes
by hand.

Figure [7.4| shows the original state before the execution of the changes.
In this scenario there are two subclasses of the class Person, both having the
idNumber instance variable. This instance variable is migrated to the super-
class in the changes. Figure|7.5/shows the final state of the application. These
changes usually requires caring about the state of the application not to lose
state.

To validate it, we create instance variables before executing the changes

in the transaction. These instances should be correctly migrated.

Listing|7.3|shows the execution of the described scenario.

Results. After executing the changes and commiting the transactions, we ob-
serve that the changes are applied correctly and the instances are correctly

migrated without losing application state.

*https:/ / github.com/tesonep/transactions

102 Chapter 7. State-aware Transactional Live Programming

name

Student

Teacher

idNumber
degree

idNumber
courses

:Student

:Teacher

name = 'John'
idNumber = '1234'
degree ="..."

name = 'Carl'
idNumber = '6789'
courses ="..."

Figure 7.4: State before executing the changes

Person
name
idNumber

[Student | [Teacher |
[degree | [courses |

:Student :Teacher
name = 'John' name = 'Carl'
idNumber = '1234' idNumber = '6789'
degree ="...' courses ="..."

Figure 7.5: State after executing the changes

7.5.2 Validation 2: Detection of Custom Migration Needing

Research Question. When the transaction requires a custom migration, does
the proposed solution detect this need and require a custom migration to the
developer?

Scenario. For this validation, we use the running example of the modifica-
tion to Vector3D class. To refresh the example, Figure[7.6|presents the old and
new version.

For validating the correctness of the changes, we create instances of Vec-
tor3D in the original environment. Later, we execute the code in Listing
Executing this segment of code produces an error requesting the provision
of a migration strategy for Vector3D. After providing the strategy, the trans-

action is commited correctly.

Results. After executing the changes and commiting the transaction, all the
instances of Vector3D are correctly migrated using the provided custom mi-
gration.

7.6. Design Decisions 103

Window >> #drawOn:
"Updates the window, using
the operations and
Vector3D's instance

Vector3D S
variables. It's called by the es\ 25,2 +>;"szq:azr§2um
drawing thread."

Vector3D >> length
A self squareSum sqrt

Vector3D
x:Number
y:Number
z:Number
length()

:Vector3D

N< X
oo

Window >> #drawOn:
"Updates the window, using

the operations and Vector3D >> length

Vector3D's instance A radius

variables. It's called by the

drawing thread."

Vector3D

radius:Number ra-_\éfii'fst(.)r137DS
thetha:Number thetha: 0.78
phi:Number ohi Oés.
length() :0.

Figure 7.6: Changes requiring a custom migration

7.6 Design Decisions

Nested environments are still not supported by our prototype. Although, one
possible implementation may require to implement a polymorphic API be-
tween the image environment and the transactional environments.

Block Closures require particular considerations. In Pharo, a closure has
a reference to its creating context to be able to access its state. This means that
implementation-wise, a shallow copy of the closure will create a new closure
sharing the creating context. Thus, any change in the context will affect both
closures. In our implementation, the copy of the closures is performed by
a shallow copy to minimize the impact in performance. However, this is a
limited case as it only applies to globally shared non-clean closures.

Our prototype does not implement any given support for concurrent
transactions, the transactions are applied in the order they are committed.
However, the detection of conflicts notifies the problems when trying to
commit the second transaction. Having a proper locking of elements or
versioning is a possible extension to this prototype.

We decided to use blocks to express the migration strategies. Using blocks
allows the developer to easily provide a migration strategy. However, it lacks
the ability to reuse this migration strategies. We consider to extend the sup-

port to using objects as migration strategies allowing a greater reuse.

104 Chapter 7. State-aware Transactional Live Programming

env := TMEnvironment new.
"Redefines the class with the new structure"
env evaluate: |
transaction createSubclassOf: #Object withNewName: #Vector3D
slots: #(radius thetha phi)
sharedVariables: '

package: 'Transactions—Tests'].

"Perform the changes in the methods"
env evaluate: [Vector3D removeSelector: #squareSum].
env evaluate: [Vector3D compile: 'length ~ radius'].

env evaluate: [Vector3D removeSelector: #x].
env evaluate: [Vector3D removeSelector: #y].
env evaluate: [Vector3D removeSelector: #z].
env evaluate: [Vector3D removeSelector: #x:].
env evaluate: [Vector3D removeSelector: #y:].
env evaluate: [Vector3D removeSelector: #z:].

~

env evaluate: [Vector3D compile: 'radius * radius’].

env evaluate: [Vector3D compile: 'thetha ~ thetha'].

env evaluate: [Vector3D compile: 'phi ~ phi'].

env evaluate: [Vector3D compile: 'radius: aVal. radius:=aVal'].
env evaluate: [Vector3D compile: 'thetha: aVal. thetha:=aVal'].

env evaluate: [Vector3D compile: 'phi: aVal. phi:=aVal'].

"Run the tests"

results := env evaluate: [Vector3DTest suite run]
"Check if the tests are ok"

results defects isEmpty.

"Try to commit the transaction.

It fails informing that a migration

is required for Vector3D"

env evaluate: [transaction commit].

"Provides a migration strategy for Vector3D"

env evaluate: [transaction migrate: Vector3D with: [:old :new |
new radius: old length.
new thetha: (old z / new radius) arcCos.
new phi: (old y / old x) arcTan.

)
"Commits the transaction"

env evaluate: [transaction commit].

Listing 7.4: Atomic update of Vector3D using PTm

Regarding the migration strategies, we also consider the automatic gener-
ation of migration strategies using the information in the image environment

and the alternative environment.

7.7. Requirements Assessment 105

Other possible extension is the integration of our transactional environ-
ment with the existent tools in the Pharo Image providing a transparent ex-
perience to the user.

Finally, a possible enhance to our prototype is the use of Write Barriers
and lazy binding of the associations to minimize the number of objects copied

in the creation of the new environment.

7.7 Requirements Assessment

This section compares the stated requirements in Chapter 2| with the capa-
bilities of gDSU including the extensions described in Chapters[f|and in this
chapter. Covering all the requirements makes ¢gDSU a practical DSU solu-
tion addressing the instance corruption problems and preserving the state of
the application. We will center in the requirements that are needed for a live
programming DSU.

Isolation. gDSU with the transactional extension allows the developer to
safely perform her changes, to test those changes, to apply or discard the
sandboxed environment. The isolation is guaranteed by the use of a copied
environment. ¢DSU provides the required level of isolation.

State Migration. The state migration requirement is covered by ¢DSU. Our
proposed solution allows the patch to include the migration logic to express
the migration of live instances. This requirement is already covered by the

basic implementation of gDSU.

Patch Generation. gDSU has been extended to collect the changes from the
changes in the sandboxed environment. Also, it identifies the changes per-
formed through the use of automatic refactorings. Moreover, gDSU propose
automatic migration strategies for the common changes in the enviornment,
including the automatic refactoring. For the migrations that require business
logic, gDSU detects this situation and collaborates with the developer to pro-

vide a correct migration policy.

Atomicity. The commit operation implemented in gDSU guarantees the
atomicity of the solution. The implementation correctly modifies the classes

and migrates live instances from the original version to the new one.

Automatic Safe Point Detection. gDSU implements a safe update point de-
tection algorithm. The implementation of the algorithm does not change for

106 Chapter 7. State-aware Transactional Live Programming

live programming environments. The conditions to find a safe update point
are the same that stated for the Production DSU.

7.8 Conclusion

In this chapter, we center the analysis in the state migration requirements
when applying changes to a live programming environment. These problems
arise daily when modifying applications with live instances. Based on these
problems, we propose a transactional modification solution that allows us
to handle these daily problems. The proposed solution is based on gDSU.
gDSU is a DSU tool that is designed to allow us to update programs in live
programming environments.

We showed that our solution and prototype are able to handle these prob-
lems by applying the changes in a scoped environment and later applying
them back to the original environment.

Our tool still requires additional work to be integrated in the existing
Pharo tools. This is an important step to allow the developers to transpar-
ently benefit from our solution.

From the validation of the requirements, we observe that gDSU covers
the requirements to provide a safe live programming experience. Comparing
gDSU with existing solutions shows that our proposed solution covers all the
requirements extending the capabilities of live programming environments
with the DSU solution safety.

Regarding the automatic generation of patches, we see that the compari-
son with other solutions might show that our solution is lacking an automatic
patch generation. However, the lacking of automatic patch generation is re-
lated to the state migration logic. Our solution, in comparison with the other
solutions, offers a way of specifying state migration logic for cases where the
automatic generation is not enough (e.g., modifications related with the use
of an instance variable or changes in the business logic).

Table [7.1| presents the results of comparing our solution with develop-
ment oriented DSU solutions and classical live programming solutions.

7.8. Conclusion 107

Requirements
Sl L gl v
S| " ©| & o o
A PR EE TR R
S| 0 E gl 3G E EElE S| &l 8 &
g S g A& gl 8 5|2 &8 ¢ o= -
Category % AR IR 2 ~ g % @ % Examples
=| 2 3| E A Ol 3
D < El A
Classical
'assma Lisp, Clos,
Live Ool©| O o o Ol A |0 ©
, Smalltalk
Programming
bel,
Development Jrebe
DSUs @ O O O © Ol A Ol O | Javeleon,
Jvolve
gDSU o 0 o [o ® S o o

®: Yes O:No ©: Limited
A: Automatic M: Manual S: Semi-Automatic

Table 7.1: gDSU vs. Development DSU & Live Programming Environments

Part IV

Conclusion

CONCLUSION

Contents
BI CONIABULIONS - « - « « « o v o e e e e e e e e 112
B2 FUture WOorKl o o e e e e 114

Updating a running applications without affecting its normal execution is
known as Dynamic Software Update (DSU). This thesis focuses in applying
DSU tools to production and to live programming environments, particularly
for reflective Object-Oriented languages.

Using DSU solutions in any of the above scenarios presents a number
of challenges and requirements. The set of requirements differs when the
application is in a production environment or in a development environment.

¢ Updating production applications requires to minimize the downtime
of the execution, to guarantee the stability of the application and to
minimize the memory footprint. The patch generation is carefully built
by the developer. Implementing the patch requires a profound under-
standing of the changes and the impact of them. Also, the update of
long running applications requires carefully migration of the applica-
tion objects and the execution of the update only when the application
is in a safe state.

¢ Live programming a stateful application in a development environ-
ment requires a deep integration with the Integrated Development En-
vironment (IDE). This integration is required to automatically generate
the migration and change logic. In a live programming environment,
the patch is generated by the DSU tool. Also, live programming envi-
ronments require to have a proper isolation of the changes and a seam-
less integration with existing tools as automatic refactorings.

There exists DSU solutions for each of the above scenarios. However,
the existing solutions are designed to resolve the challenges and comply the
requirements for only one of the environments. So, we divide the existing
solutions in two clear categories: Production DSU and Development DSU.
Analysing these categories we realise that there is not existing solution that
addresses the requirements for both scenarios.

We introduce gDSU, a novel unifying DSU solution that is applicable
in production and live programming scenarios. Our proposed solution has

been designed to update long running stateful applications in both scenarios.

112 Chapter 8. Conclusion

gDSU minimizes the manual development and provides a seamless integra-
tion with the IDE. We show the applicability of gDSU in both scenarios. Also,
we present a set of techniques that used by gDSU gives it the required per-
formance and minimal memory footprint to be used in production and live

programming environment.

8.1 Contributions

This section lists the main contributions of this thesis:

Main design principles of gDSU.

Implementation techniques to perform it in a practical way.

Integration with automatic refactorings

Transactional support for live programming.

Additionally, we published the results of several facets of our work. We
list these publications in Appendix

8.1.1 gDSU and its techniques

gDSU is the main contribution of this thesis. It is a DSU designed to be
applied in production and development environment. Our solution im-
plements safe update point detection using call stack manipulation and a
reusable instance migration mechanism to minimize manual intervention in
patch generation. Moreover, it also offers updates of core language libraries
and the update mechanism itself. This is achieved by the incremental copy
of the modified objects and an atomic commit operation. [TPF"eda].

We show that our solution does not affect the global performance of the
application and it presents only a run-time penalty during the update win-
dow. Our solution is able to apply an update impacting 100,000 instances in 1
second. In this 1 second, only during 250 milliseconds the application is not
responsive. The rest of the time the application runs normally while gDSU
is looking for the safe update point. The update only requires to copy the
elements that are modified.

To achieve a solution that does not affect the global performance of the
application and reduce the impact during the update window a set of tech-
niques has been developed. These techniques include an automatic safe up-
date point detection algorithm; an efficient partial copy of the environment;
the proposal of reusable instance state migration and validation logic; and a
extensible class building process. gDSU leverages the existing bulk instance
replacement present in Pharo VM.

8.1. Contributions 113

8.1.2 Atomic Automatic Refactoring

An important activity of software evolution consists in applying refactorings
to enhance the quality of the code without changing its behaviour. Having
a proper refactoring tool is a must-to in any professional development en-
vironment. In addition, live programming allows faster development than
the usual edit- compile-debug process. During live programming sessions,
the developer can directly manipulate instances and modify the state of the
running program.

However, when a complex refactoring is performed, instances may be cor-
rupted (i.e., their state can be lost). For example, when pushing an instance
variable to a superclass there is a moment where the superclass does not have
yet acquired the new instance variable and the subclass does not have it any-
more. It means that the value assigned to this instance variable in existing
instances is lost after the refactoring. This problem is not anecdotal since 36%
of the refactorings described in Fowler’s catalog corrupt instances when used
in a live programming context. There is a need to manually migrate, regen-
erate or reload instances from persistent sources. This manual fix lowers the
usefulness of live programming.

In this context of live programming, we propose, AtomicRefactor-
ing [TPF"edb], a new solution based on gDSU to preserve the state of the
application after performing refactorings. We provide a working extension
to the existing refactoring tool allowing application developers to perform
complex refactorings preserving the live state of the running program.

This externsion to gDSU extends the usability of a DSU solution in live
programming environments.

8.1.3 State-Aware Transactional Live Programming

Live programming environments, such as Pharo, allow developers to modify
the code and application state while the application is running. This allows
a faster development cycle compared with the edit-compile-debug process.

Live programming environments implement simple yet powerful mecha-
nisms to migrate the application state after each change. It allows developers
to modify both methods and classes. However, modifying classes with ex-
isting instances could lead to an inconsistent application state, because e.g.,
new instance variables are left uninitialized or with obsolete state. As these
modifications are applied while the live application is running, a naive de-
velopment session may break the application.

This requires special care from the developer (i.e., staging, sequencing,
and doing intermediate changes) to keep the coherence of application state.
We propose a novel tool (PTm) that allows the developer to scope her changes

114 Chapter 8. Conclusion

isolating them from the running application [TPF"18b]. For this, PTm ex-
tends gDSU to create an alternative environment with all the classes, meth-
ods and instances that are modified. The developer uses this environment to
execute her code isolated from the running application, to validate it without
affecting the running environment. Finally, the developer decides to safely
discard her changes or to apply them atomically in the running application.

This externsion to gDSU extends the usability of a DSU solution in live

programming environments.

8.2 Future Work

The use of DSU solution in both live programming environments and pro-
duction environment present future work to increase its usability during the
development and maintenance processes. Having a transparent DSU usage
opens several directions for future work that we consider for exploration.

8.2.1 Distributed DSU

Having a DSU that is usable in production scenarios opens the door to the
research of how to apply safe updates in distributed system. Our proposed
safe update point algorithm could be used to detect local safe points and
collaborate to detect the global safe update point. Moreover, having an algo-
rithm that does not impact the execution of the application while searching
the safe update point could lead to a way of having a global safe update point
detection that does not affect the execution of the whole cluster.

8.2.2 Isolation and Virtualization

Having isolated environments inside the original environment could open
the door to efficient virtualization of environments. This feature could allow
to efficiently isolate different versions of the application and different appli-
cations.

8.2.3 Analysis of Changes

The analysis of changes, as our solution uses when generating the patch and
analysing the conflicts, opens the door to analysis of changes and impact of
these changes. This analysis could be extended to detect the need of adding
test scenarios that cover the changes performed. Also, this information could
be integrated with different visualizations to increase the information pre-

sented in a review of changes.

8.2. Future Work 115

8.24 Language Evolution

Having the ability of modifying core language libraries opens the door to
new ways of evolving a dynamic reflective language. Using it could allow
the developer to safely modify the core language and test its changes in a
safe environment. Moreover, this ability could lead to easy development of
custom languages and extensions leading to a framework of language devel-

opment and experimentation.

8.2.5 Development Experience

Having support for transactional modifications in a live programming en-
vironment opens the door to research in changes in the way the developer
interacts with the IDE. It also opens the research of new ways of safely in-
specting, modifying and changing the live environment.

[AS14]

[ato]

[BCD"14]

[BDLDP*15]

[BDN109]

[BDNWO7]

[BEdH*13]

[BFL+14]

[Bra07]

Bibliography

Sorin Adam and Ulrik Pagh Schultz. Towards interac-
tive, incremental programming of ros nodes. arXiv preprint
arXiv:1412.4714, 2014. (Cited on pagel[i})

Atom. https://atom.io/. (Cited on page[26])

Jérémy Buisson, Everton Calvacante, Fabien Dagnat, Elena Ler-
oux, and Sébastien Martinez. Coqcots & pycots: Non-
stopping components for safe dynamic reconfiguration. In
Proceedings of the 17th International ACM Sigsoft Symposium on
Component-based Software Engineering, CBSE 14, pages 85-90,
New York, NY, USA, 2014. ACM. (Cited on page 27])

Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta,
Rocco Oliveto, and Fabio Palomba. An experimental investi-
gation on the innate relationship between quality and refac-
toring. Journal of Systems and Software, 107:1-14, 2015. (Cited

on pages[3land [71})
Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien

Pollet, Damien Cassou, and Marcus Denker. Pharo by Example.
Square Bracket Associates, Kehrsatz, Switzerland, 2009. (Cited

on pages and 01])

Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and
Roel Wuyts. Stateful traits. In Advances in Smalltalk — Proceed-
ings of 14th International Smalltalk Conference (ISC'06), volume
4406 of LNCS, pages 66-90. Springer, August 2007. (Cited on
page[57)

Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux,
Sean McDirmid, Michal Moskal, Nikolai Tillmann, and Jun
Kato. It’s alive! continuous feedback in ui programming. In
ACM SIGPLAN Notices, volume 48, pages 95-104. ACM, 2013.
(Cited on pages[I]and [2})

S Bragagnolo, L Fabresse,] Laval, P Estef6, and N Bouragadi.
Pharos: a ros client for the pharo language, 2014. (Cited on
page(T})

Gilad Bracha. On the interaction of method lookup and scope

with inheritance and nesting. In 3rd ECOOP Workshop on Dy-
namic Languages and Applications, 2007. (Cited on page[72})

https://atom.io/

118

[Bral0]

[CF17]

[chr]

[CI16]

[CNSG15]

[CPDD09]

[Dav06]

[DCD13]

[DDNO02]

[DGL*07]

[DHL96]

Bibliography

Gilad Bracha. Newspeak programming language draft speci-
fication version 0.06, 2010. (Cited on page[72})

Miguel Campusano and Johan Fabry. Live robot program-
ming: The language, its implementation, and robot api inde-
pendence. Science of Computer Programming, 133:1-19, 2017.
(Cited on pagel[l})

Chrome dev tools. https://developer.chrome.com/devtools. (Cited
on pages [2]and 26])

Walter Cazzola and Mehdi Jalili. Dodging unsafe update
points in java dynamic software updating systems. In Soft-
ware Reliability Engineering (ISSRE), 2016 IEEE 27th International
Symposium on, pages 332-341. IEEE, 2016. (Cited on page[27])

Andrei Chis, Oscar Nierstrasz, Aliaksei Syrel, and Tudor
Girba. The moldable inspector. In 2015 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software (Onward!), Onward! 2015, pages 44-60, New
York, NY, USA, 2015. ACM. (Cited on pagel[i})

Gwenaél Casaccio, Damien Pollet, Marcus Denker, and
Stéphane Ducasse. Object spaces for safe image surgery. In Pro-
ceedings of ESUG International Workshop on Smalltalk Technologies
(IWST'09), pages 77-81, New York, USA, 2009. ACM digital li-

brary. (Cited on pages[29/and 92])
Flanagan David. JavaScript: The Definitive Guide. O’Reilly Me-
dia, Inc., fifth edition, 2006. (Cited on page)

Martin Dias, Damien Cassou, and Stéphane Ducasse. Repre-
senting code history with development environment events. In
IWST’13: International Workshop on Smalltalk Technologies 2013,
2013. (Cited on page[36})

Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Object-Oriented Reengineering Patterns. Morgan Kaufmann,
2002. (Cited on pagel[T})

Marcus Denker, Tudor Girba, Adrian Lienhard, Oscar Nier-
strasz, Lukas Renggli, and Pascal Zumkehr. Encapsulating
and exploiting change with Changeboxes. In Proceedings of the
2007 International Conference on Dynamic Languages (ICDL 2007),
pages 25-49. ACM Digital Library, 2007. (Cited on pages
and[92))

C Dony, M Huchard, and T Libourel. Automatic hierarchies
reorganization: an algorithm and case studies with overload-

https://developer.chrome.com/devtools

Bibliography 119

ing. In Proceedings of the 11th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
S, pages 151-176, 1996. (Cited on pages[3|and [71})

[DJO5] Daniel Dig and Ralph Johnson. The role of refactorings in API
evolution. In Proceedings of 21st International Conference on Soft-
ware Maintenance (ICSM 2005), pages 389-398, September 2005.

(Cited on pages [3|and [71})

[DRGT05] Serge Demeyer, Filip Van Rysselberghe, Tudor Girba, Jacek
Ratzinger, Radu Marinescu, Tom Mens, Bart Du Bois, Dirk
Janssens, Stéphane Ducasse, Michele Lanza, Matthias Rieger,
Harald Gall, Michel Wermelinger, and Mohammad El-Ramly.
The LAN-simulation: A research and teaching example for
refactoring. In Proceedings of IWPSE 2005 (8th International
Workshop on Principles of Software Evolution), pages 123-131, Los
Alamitos CA, 2005. IEEE Computer Society Press. (Cited on

pagel[T})

[fir] Firebug. |https://addons.mozilla.org/en-US/firefox/addon/firebug/.
(Cited on pages [2|and 26])

[Fow99] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999. (Cited on pages
and [I35])

[GIKT12] Allan Raundahl Gregersen, Bo Norregaard Jorgensen, Kai
Koskimies, et al. Javeleon: An integrated platform for dynamic
software updating and its application in self-* systems. In En-
gineering and Technology (S-CET), 2012 Spring Congress on, pages
1-9. IEEE, 2012. (Cited on page[22])

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language
and its Implementation. Addison Wesley, Reading, Mass., May
1983. (Cited on pages[I|and 24])

[gra] Grasp. |http://www.graspjs.com/. (Cited on page)

[Han03] Christopher Michael Hancock. Real-time programming and the
big ideas of computational literacy. PhD thesis, Massachusetts In-
stitute of Technology, 2003. (Cited on pagel[l])

[HNO5] Michael Hicks and Scott Nettles. Dynamic software updat-
ing. ACM Transactions on Programming Languages and Systems,
27(6):1049-1096, nov 2005. (Cited on pages[2]and [14})

[HN12] Christopher M Hayden and Iulian Neamtiu. Report on
the third workshop on hot topics in software upgrades

https://addons.mozilla.org/en-US/firefox/addon/firebug/
http://www.graspjs.com/

120

[KdRB91]

[KLTO3]

[KMS85]

[KR90]

[KZN12]

[KZN14]

[LBS5]

[LH12]

[Lim14]

[Mae87]

[MBO09]

Bibliography

(hotswup’11). ACM SIGOPS Operating Systems Review,
46(1):93-99, 2012. (Cited on page[13])

Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991. (Cited on pages[3|

and 24])

Jussi Koskinen, Henna Lahtonen, and Tero Tilus. Software
maintenance cost estimation and modernization support. In
ELTIS-project. University of Jyvaskyld, 2003. (Cited on pagel[i})

Jeff Kramer and Jeff Magee. Dynamic configuration for dis-
tributed systems. IEEE Trans. Softw. Eng., 11(4):424-436, 1985.
(Cited on page[28])

Gregor Kiczales and Luis Rodriguez. Efficient method dis-
patch in pcl. In Proceedings of ACM conference on Lisp and
Functional Programming, pages 99-105, Nice, 1990. (Cited on
page24])

Miryung Kim, Thomas Zimmermann, and Nachiappan Na-
gappan. A field study of refactoring challenges and benefits.
In Proceedings of the ACM SIGSOFT 20th International Sympo-
sium on the Foundations of Software Engineering, page 50. ACM,

2012. (Cited on pages and[77))

Miryung Kim, Thomas Zimmermann, and Nachiappan Na-
gappan. An empirical study of refactoringchallenges and ben-
efits at microsoft. IEEE Transactions on Software Engineering,
40(7):633-649, 2014. (Cited on pages [3|and [71})

Manny Lehman and Les Belady. Program Evolution: Processes of
Software Change. London Academic Press, London, 1985. (Cited
on page|})

Jens Lincke and Robert Hirschfeld. Scoping changes in self-
supporting development environments using context-oriented
programming. In Proceedings of the International Workshop on
Context-Oriented Programming, page 2. ACM, 2012. (Cited on
pages 28 and [02})

Jason Lim. Live programming for robotic fabrication. Journal
of Professional Communication, 3(2), 2014. (Cited on page/[i})

Pattie Maes. Concepts and experiments in computational re-
flection. In Proceedings OOPSLA '87, ACM SIGPLAN Notices,
volume 22, pages 147-155, December 1987. (Cited on page[3})

Kristis Makris and Rida A Bazzi. Immediate multi-threaded
dynamic software updates using stack reconstruction. In

Bibliography

[MB15]

[McDO07]

[MDB15]

[MDC92]

[MHPB12]

[MHSM12]

[MJD96]

[MME12]

[MRH17]

121

USENIX Annual Technical Conference, volume 2009, 2009. (Cited
on page[27])

Eliot Miranda and Clément Béra. A partial read barrier for
efficient support of live object-oriented programming. In Inter-
national Symposium on Memory Management (ISMM "15), pages
93-104, Portland, United States, June 2015. (Cited on pages
and [64])

Sean McDirmid. Living it up with a live programming lan-
guage. SIGPLAN Not., 42(10):623-638, October 2007. (Cited on
page[2)

Sébastien Martinez, Fabien DAGNAT, and Jérémy Buisson. Py-
moult : On-Line Updates for Python Programs. In ICSEA 2015

: 10th International Conference on Software Engineering Advances,
pages 80 — 85, Barcelone, Spain, nov 2015. (Cited on pages

and 26])

Jacques Malenfant, Christophe Dony, and Pierre Cointe. Be-
havioral Reflection in a prototype-based language. In
A. Yonezawa and B. Smith, editors, Proceedings of Int’l Work-
shop on Reflection and Meta-Level Architectures, pages 143-153,
Tokyo, November 1992. RISE and IPA(Japan) + ACM SIG-
PLAN. (Cited on page[3})

Emerson Murphy-Hill, Chris Parnin, and Andrew P Black.
How we refactor, and how we know it. IEEE Transactions on
Software Engineering, 38(1):5-18, 2012. (Cited on page[77])

Stephen Magill, Michael Hicks, Suriya Subramanian, and
Kathryn S. McKinley. Automating object transformations for
dynamic software updating. In Proceedings of the ACM Inter-
national Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA "12, pages 265-280, New York,
NY, USA, 2012. ACM. (Cited on page[27)

J. Malenfant, M. Jacques, and F.-N. Demers. A tutorial on be-
havioral reflection and its implementation. In Proceedings of
Reflection, pages 1-20, 1996. (Cited on page[3})

Emili Miedes and Francesc D Munoz-Esco1. Dynamic software
update. Technical report, Technical Report ITI-SIDI-2012/004,

2012. (Cited on pages|[I9/and [49])

Toni Mattis, Patrick Rein, and Robert Hirschfeld. Edit transac-
tions: Dynamically scoped change sets for controlled updates

122

[MTO04]

[NCV*13]

[NHO09]

[nod]

[OMT98]

[ORHO02]

[PB]J98]

[PC11]

[PDF+14]

[PDF+15]

Bibliography

in live programming. The Art, Science, and Engineering of Pro-
gramming, 1,2017. (Cited on pages[28and [02])

Tom Mens and Tom Tourwé. A survey of software refactoring.
IEEE Transaction on Software Engineering, 30(2):126-139, 2004.

(Cited on pages and[72})

Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. John-
son, and Danny Dig. A comparative study of manual and au-
tomated refactorings. In 27th European Conference on Object-
Oriented Programming, pages 552-576,2013. (Cited on page[77])

Iulian Neamtiu and Michael Hicks. Safe and timely updates
to multi-threaded programs. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI "09, pages 13-24, New York, N, USA, 2009.
ACM. (Cited on pages [5|and [46])

Nodemon. https://github.com/remy/nodemon. (Cited on pages[2]
and 26])

Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor.
Architecture-based runtime software evolution. In Proceedings
of the 20th International Conference on Software Engineering, ICSE
'98, pages 177-186, Washington, DC, USA, 1998. IEEE Com-
puter Society. (Cited on page[28])

Alessandro Orso, Anup Rao, and Mary Jean Harrold. A
technique for dynamic updating of java software. In Soft-
ware Maintenance, 2002. Proceedings. International Conference on,
pages 649-658. IEEE, 2002. (Cited on pages[2]and 20})

F. Plasil, D. Balek, and R. Janecek. Sofa/dcup: architecture
for component trading and dynamic updating. In Proceed-
ings. Fourth International Conference on Configurable Distributed
Systems (Cat. No.98EX159), pages 43-51, May 1998. (Cited on

page[8})
Luis Pina and Joao Cachopo. Dust'm-dynamic upgrades using
software transactional memory. 2011. (Cited on page[21])

Guillermo Polito, Stéphane Ducasse, Luc Fabresse, Noury
Bouraqadi, and Benjamin van Ryseghem. Bootstrapping re-
flective systems: The case of pharo. Science of Computer Pro-
gramming, 2014. (Cited on page[72])

Guillermo Polito, Stéphane Ducasse, Luc Fabresse, Noury
Bouraqadi, and Max Mattone. Virtualization support for dy-

https://github.com/remy/nodemon

Bibliography 123

namic core library update. In Onward! 2015, 2015. (Cited on
pages) B2 72 01) and 2)

[PDFB15] Guillermo Polito, Stéphane Ducasse, Luc Fabresse, and Noury
Bouraqadi. A bootstrapping infrastructure to build and extend
pharo-like languages. In Onward! 2015, 2015. (Cited on pages/4]

and[72])
[PH13] Luis Pina and Michael Hicks. Rubah: Efficient, general-
purpose dynamic software updating for java. In HotSWUp,

2013. (Cited on pages M9} and [54})

[PH16] Luis Pina and Michael Hicks. Tedsuto: A general framework
for testing dynamic software updates. In Software Testing, Veri-
fication and Validation (ICST), 2016 IEEE International Conference
on, pages 278-287. IEEE, 2016. (Cited on page[28})

[PKC*13] Mario Pukall, Christian Kadstner, Walter Cazzola, Sebastian
Gotz, Alexander Grebhahn, Reimar Schroter, and Gunter
Saake. Javadaptor-flexible runtime updates of java applica-
tions. Software: Practice and Experience, 43(2):153-185, 2013.
(Cited on pages[2} 23] and [26])

[PS87] D. Jason Penney and Jacob Stein. Class modification in the
gemstone object-oriented DBMS. In Proceedings OOPSLA 87,
ACM SIGPLAN Notices, volume 22, pages 111-117, December
1987. (Cited on pages[27/and [92})

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactor-
ing tool for Smalltalk. Theory and Practice of Object Systems
(TAPOS), 3(4):253-263, 1997. (Cited on pages[3} 26} [/1} and [82])

[RBJO96] Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke.
An automated refactoring tool. In Proceedings of ICAST 96,
Chicago, IL, April 1996. (Cited on pages and [80])

[RGN*12] Jorge Ressia, Tudor Girba, Oscar Nierstrasz, Fabrizio Perin, and
Lukas Renggli. Talents: an environment for dynamically com-
posing units of reuse. Software: Practice and Experience, 2012.
(Cited on page[57])

[Riv96a] Fred Rivard. Pour un lien d’instanciation dynamique dans les
langages a classes. In JFLA96. INRIA — collection didactique,
January 1996. (Cited on page4})

[Riv96b] Fred Rivard. Smalltalk: a reflective language. In Proceedings of
REFLECTION ’96, pages 21-38, April 1996. (Cited on page[24})

[Rob99] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD
thesis, University of Illinois, 1999. (Cited on page)

124

[SAM13]

[San78]

[SHMO09]

[Shn83]

[Ste90]

[Str]

[Tan90]

[TBO1]

[TPF+16]

[TPF+18a]

[TPF+18b]

Bibliography

Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi
Moshkenani. A survey of dynamic software updating. Journal
of Software: Evolution and Process, 25(5):535-568, 2013. (Cited on

page[I9)
Erik Sandewall. Programming in an interactive environment:
The “lisp” experience. ACM Comput. Surv., 10(1):35-71, March

1978. (Cited on pages and 01])

Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley.
Dynamic software updates: A vm-centric approach. SIGPLAN
Not., 44(6):1-12, June 2009. (Cited on pages[21]and [77])

B. Shneiderman. Direct manipulation: A step beyond pro-
gramming languages. Computer, 16(8):57-69, August 1983.

(Cited on page[2})

Guy L. Steele. Common Lisp The Language. Digital Press, second
edition, 1990. (Cited on pages[Ijand 24])

The strongtalk type system for smalltalk.

http:/ /bracha.org/nwst.html. (Cited on page)

Steven L. Tanimoto. Viva: A visual language for image pro-
cessing. Journal of Visual Languages & Computing, 1(2):127 - 139,
1990. (Cited on page[2])

Lance Tokuda and Don Batory. Evolving object-oriented
designs with refactorings. Automated Software Engineering,

8(1):89-120, 2001. (Cited on page[72])

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury

Bouraqgadi, and Stéphane Ducasse. Instance migration in
dynamic software update. In Workshop on Meta-Programming

Techniques and Reflection 2016, 2016. (Cited on pages
and [94])

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury
Bouraqadi, and Stéphane Ducasse. Implementing Modular
Class-based Reuse Mechanisms on Top of a Single Inheritance
VM. In SAC 2018: Symposium on Applied Computing, Pau,

France, April 2018. (Cited on page[57)

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury
Bouraqadi, and Stéphane Ducasse. Ptm: State-aware transac-
tional live programming. In IWST’18: International Workshop on

Smalltalk Technologies, Cagliari, Italy, September 2018. (Cited
on pages[8and [114})

Bibliography 125

[TPFfeda] Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury
Bouraqadi, and Stéphane Ducasse. Atomic dynamic soft-

ware update for live programming environments. Journal of
Object Technology, 2017 submitted. (Cited on pages[/]and [112})

[TPFfedb] Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury
Bouragadi, and Stéphane Ducasse. Preserving instance
state during refactorings in live environments. Future Gen-
eration Computer Systems, 2017 submitted. (Cited on pages

and[113])

[US87] David Ungar and Randall B. Smith. Self: The power of simplic-
ity. In Proceedings OOPSLA ‘87, ACM SIGPLAN Notices, vol-
ume 22, pages 227-242, December 1987. (Cited on page[72})

[VCNT12] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh
Rajkumar, Brian P. Bailey, and Ralph E. Johnson. Use, disuse,
and misuse of automated refactorings. In Proceedings of the
34th International Conference on Software Engineering, ICSE "12,
pages 233-243, Piscataway, NJ, USA, 2012. IEEE Press. (Cited
on page[77])

[vis] Microsoft visual studio. https://www.visualstudio.com/. (Cited on
page[26})

[Web] Jetbrains webstorm. https://www.jetbrains.com /webstorm /. (Cited
on page[26])

[WLN13] Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. Incre-
mental dynamic updates with first-class contexts. Journal of Ob-
ject Technology, 12(3):1:1-27, August 2013. (Cited on pages
and 92])

[WWS10] Thomas Wiirthinger, Christian Wimmer, and Lukas Stadler.
Dynamic code evolution for java. In Proceedings of the 8th Inter-

national Conference on the Principles and Practice of Programming
in Java, PPP] "10, pages 10-19, New York, NY, USA, 2010. ACM.

(Cited on pages[2} 21} and [77))

[XS06] Zhenchang Xing and Eleni Stroulia. Refactoring practice: How
it is and how it should be supported-an eclipse case study. In
Software Maintenance, 2006. ICSM’06. 22nd IEEE International
Conference on, pages 458—-468. IEEE, 2006. (Cited on pages

and [71})
[Zerl2] ZerolurnAround. What developers want: The end of
application redeployes. http://files.zeroturnaround.com/pdf/

JRebelWhitePaper2012-1.pdf, 2012. (Cited on pages[2,[22] and [77})

https://www.visualstudio.com/
https://www.jetbrains.com/webstorm/
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf

PuBLISHED PAPERS

A.1 Journals

Dynamic Software Update from Development to Production

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane
Ducasse. Accepted, The Journal of Object Technology, Special Issue META’16,
2018, Impact Factor: 0.58

(Under Revision) Preserving Instance State during Refactorings in Live Environ-
ments

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane
Ducasse. Future Generation Computer Systems, Impact Factor: 4.639

A.2 Conferences

Implementing Modular Class-based Reuse Mechanisms on Top of a Single Inheri-
tance VM

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane
Ducasse. 33rd ACM/SIGAPP Symposium On Applied Computing (SAC
2018), 2018.

Wollok: Language + IDE for a gentle and industry-aware introduction to OOP
Nicolas Passerini, Carlos Lombardi, Javier Fernandes, Pablo Tesone, Fer-
nando Dodino. Twelfth Latin American Conference on Learning Technolo-
gies (LACLO 2017), 2017

A.3 Workshops

PTm: State-aware Transactional Live Programming

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane
Ducasse. In International Workshop on Smalltalk Technologies (IWST 2018),
2018.

Transparent Memory Optimization using Slots
Pablo Tesone, Santiago Bragagnolo, Marcus Denker, Stéphane Ducasse. In
International Workshop on Smalltalk Technologies (IWST 2018), 2018.

Instance Migration in Dynamic Software Update
Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane

128 Appendix A. Published Papers

Ducasse. In Workshop on Meta-Programming Techniques and Reflec-
tion (META 2016), 2016.

Wollok — Relearning How To Teach Object-Oriented Programming
Javier Fernandes, Nicolds Passerini, Pablo Tesone. In Congreso Nacional
Argentino de Ingenierfa Informética y Sistemas de Informacién. (CONAIISI
2015), 2015

An extensible constraint-based type inference algorithm for object-oriented dynamic
languages supporting blocks and generic types

Nicolas Passerini, Pablo Tesone, Stéphane Ducasse. In International Work-
shop on Smalltalk Technologies (IWST 2014), 2014.

Enhancing Binding-based User Interfaces with Transaction Support

Nicolés Passerini, Javier Fernandes, Ronny De Jesus, Pablo Tesone, Leonardo
Gassman. In International Workshops on Foundations of Object-Oriented
Languages (FOOL 2013), 2013

INSTRUCTIONS TO
REPRODUCE
VALIDATIONS AND
BENCHMARKS

To validate the proposed solution we need to use a stateful bench applica-
tion. We implemented a stateful chat server. This simple application presents
all the problems and requirements described in this work. This application
allows us to replicate and evaluate the design decisions in our proposed so-
lution.

The bench application is used to validate the following scenarios:

¢ Updating application code while migrating live instances.
¢ Updating kernel libraries of the environment.
¢ Updating the DSU tool itself.

¢ Benchmarking the DSU implementation.

B.1 Installation

The bench application, tests scripts and more documentation are available in
a GitHub repository. This repository is located in https://github.com/tesonep/
chatServer.

The first step to install the bench application is to clone the given reposi-
tory in a local machine. For the results included in this paper the validations
have been executed in a machine running OS X 10.12.6 having a 2,6 GHz Intel
Core i7 and 8 Gb of 1600 MHz RAM memory. However, the same validations
will run in Linux or Windows machines.

The bench application runs in Pharo 6.1} A basic knowledge of Pharo is
required to execute the validations. The documentation of Pharo and begin-
ner instructions are also available in the Pharo web site.

A 32-bits image and VM are needed to run the validations. They are avail-

able at the download site.

'http://pharo.org

https://github.com/tesonep/chatServer
https://github.com/tesonep/chatServer
http://pharo.org

130 Appendix B. Instructions to Reproduce Validations and Benchmarks

On this fresh image the bench application and the DSU tool should be
installed. To do so, Listing[B.I|should be executed in the image.

EpMonitor current disable.
Deprecation showWarning: false.
Deprecation raiseWarning: false.

Metacello new
baseline: 'ChatServer’;
repository: 'filetree://pathToClonedRepository';
load.

EpMonitor current enable.
Listing B.1: Installing Bench Application

This script will install the bench application and all the required libraries.
Including the DSU tool. For the DSU tool it uses a release called JOTPaper Ver-
sion.

To simplify the installation in the repository we provide a script that
download the required elements and install them inside the build subdirec-
tory. The file install.sh is the simplified installation script.

B.2 Executing Validations

All the validations have been executed using the same image. For running
the image in development mode there is a script in the root of the repository
called run.sh. This script runs the image in interactive mode.

Also this script opens a Pharo Playground to execute different statements.
The Playground is a REPL to execute Smalltalk code. It is similar to the Scala
Worksheet or the old Workspace in other Smalltalk dialects. These are the
pieces of code to replicate the experiments.

In the Pharo Playground to evaluate a line, the line should be selected and
with the context menu execute Do it.

B.2.1 Preparation

To execute the different validations, live instances are needed. Generation of
instances is performed by executing listing[B.2] This script generates the users
and messages instances to execute the validations. The number of instances
can be modified to reflect different scenarios.

"Generate Instances"

ChatUpdate new generatelnstances: 10000.

Listing B.2: Generating Bench Instances

B.2. Executing Validations 131

The generated instances, and the code of the application is accessible to
browse. Listing |B.3| presents the code needed to open the instance inspector
and the source code browser. Checking the instances is needed to see if the
instance migration is correctly performed.

"Inspect User Instances"
ChUser alllnstances inspect.

"Inspect Message Instances"

ChMessage allSublnstances inspect.

"Browse Model"

'ChatServer—Model' asPackage browse.

Listing B.3: Browsing Code and Instances

B.2.2 Running Validations

For all the validations we have to execute the preparation steps.

For Validation 1, listing [B.4shows the code to apply and revert the appli-
cation update. Once the application is updated (or reverted) the changes are
seen in the instance inspectors and in the source code browser.

"Update Model"
ChatUpdate new updateV1ToV2.

"Revert Update Model"
ChatUpdate new updateV2ToV1.

Listing B.4: Updating the Bench Application

Even more, there are tests in the code base of the bench application to test
it.

For Validation 2, listing[B.5]shows the code to apply and revert the update
on the DSU tool. After doing the update we can execute any of the other
validations to see that the DSU tool is operative.

"Update DSU"
ChatUpdate new updateAtomicProcess.

"Revert DSU"
ChatUpdate new revertUpdateAtomicProcess.

Listing B.5: Updating the DSU itself

For Validation 3, listing[B.6|shows the code to apply and revert the update
in the OrderedCollection class, and in the class builder. This classes are used
by the DSU process and they are part of the kernel of Pharo language.

132 Appendix B. Instructions to Reproduce Validations and Benchmarks

"Update Kernel libraries"
ChatUpdate new updateKernel.

"Revert Kernel Libraries"

ChatUpdate new revertUpdateKernel.

Listing B.6: Updating Core Libraries

ChatUpdateMeter >> doTest
((0 to: 7) collect:[:e | 10 *x* €]) collect:[:q |
Stdio stdout << q asString.
Stdio stdout << (q —> (ChatUpdateMeter new testWith:q)) asString.
Stdio stdout crlf ; flush.

Smalltalk garbageCollect.

ChatUpdateMeter >> testWith: numberOflnstances

| user room duration |

ChUser initialize.

ChRoom initialize.
(1 to: 3 do: [:e | Smalltalk garbageCollect]).

user := ChUser registerUser: 'username’ firstName: 'firstName’ lastName: 'lastName’.

room := ChRoom addRoom: 'roomName’.

instances := OrderedCollection new: numberOfinstances.
1 to:numberOflnstances do:[:i |
instances add:(i % 2 = 0 ifTrue:[
ChMessage from: user to: room text: 'Generic user message’
| ifFalse:|
ChMessage in: room text: 'Generic info message’.

)

self assert: instances size = numberOflnstances.

duration := [ChatUpdate new updateV1ToV2] timeToRun .
"The garbage collector runs many times to force the instances
to move to the old space. Doing so we test a scenario that

is closer to a long running application."

(1 to: 3 do: [:e | Smalltalk garbageCollect]).

"Perform the update"
ChatUpdate new updateV2ToV1.

~ duration.

Listing B.7: Memory Consumption Benchmark

To achieve repeatability we have scripted the changes in the methods that

B.3. Executing Benchmarks 133

are used for each of the updates. These methods can be easily browsed to see
the executed changes. Moreover, these methods can be modified to perform
other updates. For example, the 3rd validation updates is implemented in the
method updateKernel of the ChatUpdate class.

B.3 Executing Benchmarks

We implemented two different benchmarks, the first one measures the mem-
ory consumption of the DSU process and the second one the downtime dur-
ing an update.

B.3.1 Memory Consumption

To measure memory consumption, we have implemented a benchmark that
executes the application update 8 times. Using 1 to 10,000,000 live instances
(using 10" where n is in [0,8]). Listing [B.7| shows the code executing during
this benchmark. This process outputs the results in the standard output of
the terminal. Listing [B.8 shows the code to evaluate to run the benchmark.
"Executing memory and time benchmark per instance quantity. (Long to execute). It

outputs in the Standard Output the different test executed, listing number of instances

and time consumed. From 1 instance to 10.000.000"

ChatUpdateMeter new doTest.

Listing B.8: Launching Memory Consumption Benchmark

B.3.2 Server Response Time

The second benchmark is designed to validate the downtime of the applica-
tion during an update. In this benchmark, the application is running in server
mode. It implements a REST server to receive request through HTTP.

The server is launched and stopped from the image. Listing[B.9shows the
Smalltalk code to start and stop the server instance.

"Starting the HTTP test to run the benchmark with JMeter. The REST server is listening in
port 1701"
ChatServer uniquelnstance start.

"Stopping server"

ChatServer uniquelnstance stop.
Listing B.9: Controlling the Bench Server

Once the server is started, the update process can be requested via REST
calls. We implemented a different REST request for each of the updates. Ta-

134 Appendix B. Instructions to Reproduce Validations and Benchmarks

REST URL Action
*http://localhost:1701/updateV1ToV2 Updates from V1 to V2.
khttp://localhost:l?Ol/u pdateV2ToV1 Updates from V2 to V1.
%http://localhost:1701/updateKerneI Updates the Kernel imple-

mentation of OrderedCol-
lection.
http://localhost:1701/revertUpdateKernel Reverts the Kernel imple-
mentation of OrderedCol-
lection.
http://localhost:1701/updateAtomicProcess Updates the DSU imple-
mentation.
http://localhost:1701/ Reverts the DSU imple-
revertUpdateAtomicProcess mentation.

Table B.1: Update REST Entry points

ble shows the REST entry points that can be used to perform different
updates while the server is running.

To simulate the load of the server we use a]Metelﬂ script. This script is
designed to perform 10 concurrent requests during 2 minutes. It generates
an average of 700 requests per second. The script is located in the root of the
git repository, and it is named chatServer.jmx. We refer to the documentation
of JMeter on how to run the given script.

In the benchmark, we execute the JMeter script and after one minute we
perform one of the update REST calls. Once the JMeter scripts ends it presents
the results of the benchmark.

Zhttp://jmeter.apache.org/

http://localhost:1701/updateV1ToV2
http://localhost:1701/updateV2ToV1
http://localhost:1701/updateKernel
http://localhost:1701/revertUpdateKernel
http://localhost:1701/updateAtomicProcess
http://localhost:1701/revertUpdateAtomicProcess
http://localhost:1701/revertUpdateAtomicProcess
http://jmeter.apache.org/

DETAILED ANALYSIS
OF AUTOMATIC
REFACTORINGS

After analysing the impact to live instances of the refactorings described in
Refactoring: Improving the Design of Existing Code [Fow99], we present here the
detailed results of all the refactorings in the book. There are 46 refactorings
that does not affect live instances, 6 refactorings with complex corruption, 11
with class corruption, and 9 with internal corruption.

C.1 Refactoring without Corruption

The following refactorings do not have any impact in live instances. The class
structures are not affected.

Refactoring Page
Add Parameter 275
Change Reference to Value 183
Consolidate Conditional Expression 240
Consolidate Duplicate Conditional Fragments 243
Convert Procedural Design to Objects 368
Decompose Conditional 238
Encapsulate Collection 208
Encapsulate Downcast 308
Encapsulate Field 206
Extract Interface 341
Extract Method 110
Form Template Method 345
Hide Delegate 157
Hide Method 303
Inline Method 117
Inline Temp 119
Introduce Assertion 267
Introduce Explaining Variable 124
Introduce Foreign Method 162

136 Appendix C. Detailed Analysis of Automatic Refactorings

Refactoring Page
Introduce Parameter Object 295
Move Method 142
Parameterize Method 283
Preserve Whole Object 288
Pull Up Constructor Body 325
Pull Up Method 322
Push Down Method 328
Remove Assignments to Parameters 131
Remove Control Flag 245
Remove Middle Man 160
Remove Parameter 277
Remove Setting Method 300
Rename Method 273
Replace Constructor with Factory Method 304
Replace Error Code with Exception 310
Replace Exception with Test 315
Replace Magic Number with Symbolic Constant 204
Replace Method with Method Object 135
Replace Nested Conditional with Guard Clauses 250
Replace Parameter with Explicit Methods 285
Replace Parameter with Method 292
Replace Record with Data Class 217
Replace Temp with Query 120
Self Encapsulate Field 171
Separate Query from Modifier 279
Split Temporary Variable 128
Substitute Algorithm 139

C.2. Refactoring with Complex Corruption

C.2 Refactoring with Complex Corruption

Refactoring

Page

Explanation

Change Bidirectional
Association to Unidirec-

tional

200

One of the sides of the bidi-
rectional association should be
dropped. One of the two classes
involved in the association will
drop one instance variable.

Change Unidirectional
Association to Bidirec-

tional

197

The modified instances need the
objects referencing to them to
construct the bidirectional asso-
ciation. This information is not
present in the modified instances.

Change Value to Refer-
ence

179

All the client instances of this ob-
ject should be updated to refer-
ence the same object.

Introduce Null Object

260

All the clients using null in this
tield should be updated to use the
newly created object. If this ob-
ject should be shared, it should be
done in the migration process.

Move Field

146

The field can come from any class
in the system, the original and tar-
get classes are not related. The
logic to match from the original
instances to the target instances
should be in the migration pro-
cess.

Replace Data Value with
Object

175

It exposes the same problems
of Extract Class but the new
instances should be shared, it
makes more complex the migra-
tion process.

Replace Type Code with
Class

218

It exposes the same problems
of Extract Class but the new
instances should be shared, it
makes more complex the migra-
tion process.

137

138 Appendix C. Detailed Analysis of Automatic Refactorings

C.3 Refactoring with Class Corruption

Refactoring Page | Explanation

Collapse Hierarchy 344 | All the instances of the subclass
should be migrated to the super-
class. As the subclass does not

exist any more.

Extract Hierarchy 375 | Some of the modified instances
should be migrated to the new
subclasses. The migration pro-
cess should manage the determi-
nation of which class to instanti-
ate in each case.

Extract Subclass 330 | Some instances should be mi-
grated to the new subclass. Also,
the structure of the main class is
changed.

Extract Superclass 336 | A new superclass is extracted
from the common part in two
classes. The live instances need
a migration if the class structure
changed.

Introduce Local Extension | 164 | Some instances should be mi-
grated to the new class. Estab-
lishing which instances to mi-
grate is a responsibility of the mi-
gration process.

Replace Conditional with | 255 | A new set of subclasses are cre-
Polymorphism ated, the live instances should
be migrated to these subclasses
according to the values of the
original instance variables. Also,
the instance variables of the sub-

classes might be renamed.

C.3.

Refactoring with Class Corruption 139
Refactoring Page | Explanation
Replace Delegation with | 355 | A pair of collaborating objects is

Inheritance

integrated into the same hierar-
chy. Making the client of the del-
egation a subclass of the dele-
gate. The instances of the client
should be migrated to the new
subclass, and all the instance
variables of the delegate should
be migrated to the client.

Replace Inheritance with
Delegation

352

As a subclassification is replaced
with a delegation, all the inter-
nal state of the single instance
should be migrated to the new
collaboration. Also, the delegate
object should be created.

Replace a Subclass with
Fields

232

All the instances of the subclass
should be migrated to the su-
perclass. Preserving the subclass
state and adding the needed
fields to distinguish from the su-

perclass instances.

Replace Type Code with
Subclasses

223

The instances should be mi-
grated to new subclasses de-
pending on the value of the type
code.

Tease Apart Inheritance

362

As the hierarchy is split, the live
instances should be split in the
same way, putting the original
instance state to the correspond-

ing instances.

140

Appendix C. Detailed Analysis of Automatic Refactorings

C.4 Refactoring with Internal Corruption

Refactoring

Page

Explanation

Duplicate Observed Data

189

As Extract Class, with the addi-
tion that the extracted has a ref-
erence to the original instance it
was extracted from.

Extract Class

149

The live instances of the original
class should be split in the new
version of the mother instances
and the newly created child in-

stance.

Inline Class

154

The internal state of the child ob-
ject should be migrated to the
mother instance.

Pull Up Field

320

The structure of the class has
changed, all the fields should be
migrated to their new position in
the object.

Push Down Field

329

The structure of the class has
changed, all the fields should be
migrated to their new position in
the object.

Replace Array with object

186

The same problematic of Extract
Class.

Replace Type Code with
State/Strategy

227

The same problematic of Extract
Class, only having more possible
subclasses.

Separate Domain From
Presentation

370

The same problematic of Extract
Class.

Dynamic Software Update for Production and Live Programming Environments
Pablo Tesone

Abstract: Updating applications during their execution is used both in production to minimize application downtime
and in integrated development environments to provide live programming support. Nevertheless, these two scenarios
present different challenges making Dynamic Software Update (DSU) solutions to be specifically designed for only
one of these use cases. For example, DSUs for live programming typically do not implement safe point detection or
instance migration, while production DSUs require manual generation of patches and lack IDE integration. These
solutions also have a limited ability to update themselves or the language core libraries and some of them present
execution penalties outside the update window.

In this PhD, we propose a unified DSU named gDSU for both live programming and production environments.
gDSU provides safe update point detection using call stack manipulation and a reusable instance migration mecha-
nism to minimize manual intervention in patch generation. It also supports updating the core language libraries as
well as the update mechanism itself thanks to its incremental copy of the modified objects and its atomic commit
operation.

gDSU does not affect the global performance of the application and it presents only a run-time penalty during the
update window. For example, gDSU is able to apply an update impacting 100,000 instances in 1 second making the
application not responsive for only 250 milliseconds. The rest of the time the application runs normally while gDSU
is looking for a safe update point during which modified elements will be copied.

We also present extensions of gDSU to support transactional live programming and atomic automatic refactorings
which increase the usability of live programming environments.

Keywords: dynamic software update, live programming, long running applications, transactional modifications, au-
tomatic refactorings.

Mise a jour Dynamique pour Environnements de Production et Programmation Interactive
Pablo Tesone

Résumé: Mettre a jour des applications durant leur exécution est utilisé aussi bien en production pour réduire les
temps d’arrét des applications que dans des environnements de développement interactifs (IDE pour live program-
ming). Toutefois, ces deux scénarios présentent des défis différents qui font que les solutions de mise a jour dy-
namique (DSU pour Dynamic Software Updating) existantes sont souvent spécifiques a I'un des deux. Par exemple,
les DSUs pour la programmation interactive ne supportent généralement pas la détection automatique de points stirs
de mise a jour ni la migration d’instances, alors que les DSUs pour la production nécessitent une génération manuelle
de I'ensemble des modifications et manquent d’intégration avec I'IDE. Les solutions existantes ont également une
capacité limitée a se mettre a jour elles-mémes ou a mettre a jour les bibliothéques de base du langage; et certaines
d’entre elles introduisent méme une dégradation des performances d’exécution en dehors du processus de mise a
jour.

Dans cette thése, nous proposons un DSU (nommé gDSU) unifié qui fonctionne a la fois pour la programmation
interactive et les environnements de production. gDSU permet la détection automatique des points stirs de mise a
jour en analysant et manipulant la pile d’exécution, et offre un mécanisme réutilisable de migration d’instances afin
de minimiser les interventions manuelles lors de I'application d"une migration. gDSU supporte également la mise a
jour des bibliotheques du noyau du langage et du mécanisme de mise a jour lui-méme. Ceci est réalisé par une copie
incrémentale des objets a modifier et une application atomique de ces modifications.

gDSU n’affecte pas les performances globales de 1’application et ne présente qu'une pénalité d’exécution lors
processus de mise a jour. Par exemple, gDSU est capable d’appliquer une mise a jour sur 100 000 instances en 1
seconde. Durant cette seconde, I’application ne répond pas pendant 250 milli-secondes seulement. Le reste du temps,
l'application s’exécute normalement pendant que gDSU recherche un point stir de mise a jour qui consiste alors
uniquement a copier les éléments modifiés.

Nous présentons également deux extensions de gDSU permettant un meilleur support du développement interac-
tif dans les IDEs : la programmation interactive transactionnelle et ’application atomique de reusinages (refactorings).

Mots clés: mise a jour dynamique, programmation interactive, applications de longue durée, modifications transac-
tionnelles, réusinage de code

	Introduction
	Context
	Live Programming Environments
	DSU Solutions
	Automatic Refactorings
	Reflective Languages
	DSU Scenarios and their Challenges

	Problem Statement
	Contributions
	Thesis Outline
	Part I: State of the Art
	Part II: DSU for Production
	Part III: DSU for Live Programming
	Part V: Conclusion

	I State of the Art
	Comparing Existing Solutions
	Requirements for DSU
	Change Challenges Illustrated
	DSU Practical Concerns
	State Inconsistency
	Change Interdependency
	Concurrency And Execution Inconsistency
	Performance
	Ease of Use
	Versatility
	Requirements for a General DSU

	Existing DSU Solutions
	DUSC
	Jvolve
	DCEVM
	DuSTM
	JRebel
	Javeleon
	Javadaptor
	Rubah
	Pymoult

	Categories of Existing Solutions
	Classical Live Programming Environments
	Production DSUs
	Development DSUs

	Related Techniques
	Safe Point Detection
	Migration Logic Generation
	Benchmark and Validations
	Architectural Solutions
	Isolation and Atomicity

	Analysis of Existing Solutions

	II DSU for Production
	Design Principles of gDSU
	gDSU in a Nutshell
	Patch Content
	Patch Generation
	Dynamic Patch Analysis
	Thread Management and Safe Point Detection
	Environment Copy
	Application of Changes and Instance Migration
	Validation and Commit of Changes
	gDSU Platform Requirements
	Conclusion

	Designing Techniques for an efficient gDSU
	Automatic Safe Update Point Detection
	Efficient Partial Copy of the Original Environment
	Detection of Modified Classes
	Detection of Instances to Migrate

	Reusable Instance State Migrations
	Reusable Validations
	Bulk Instance Replacement
	Extensible Class Building Process
	Conclusion

	Validation of gDSU for production related requirements
	Validation Set-up
	Validation 1: Application Update
	Validation 2: Update of the DSU
	Validation 3: Update of Language Core Libraries
	Validation 4: Benchmarks
	Requirement Assessment
	Conclusion

	III DSU for Live Environments
	Atomic State Preserving Refactorings
	Class Refactorings that break Instances
	Challenges in refactorings: Two examples of corrupting refactoring
	Refactoring Impact Categories
	Ubiquity of the problem

	Our Solution: Atomic Refactorings for Live Programming
	Preserving Instance State when Applying Refactorings with gDSU
	Pull Up Instance Variable
	Split Class Refactoring

	Using gDSU to preserve instance state
	Application of the Refactoring step by step
	Validation
	Validation 1: Refactorings without Corruption
	Validation 2: Refactorings with Internal Corruption
	Validation 3: Refactorings with Complex Corruption

	Conclusion

	State-aware Transactional Live Programming
	Changes Corrupting Instances
	Transactional Changes
	Implementing PTm
	Scoped Environment
	Global State
	State Conflicts Detection
	Applying Changes
	State-Migration
	Aborting the Transaction

	Using PTm to safely apply changes
	Transactional Changes
	Custom Migration

	Transactional Modifications Validation
	Validation 1: Manual Refactorings
	Validation 2: Detection of Custom Migration Needing

	Design Decisions
	Requirements Assessment
	Conclusion

	IV Conclusion
	Conclusion
	Contributions
	gDSU and its techniques
	Atomic Automatic Refactoring
	State-Aware Transactional Live Programming

	Future Work
	Distributed DSU
	Isolation and Virtualization
	Analysis of Changes
	Language Evolution
	Development Experience

	Bibliography
	Published Papers
	Journals
	Conferences
	Workshops

	Instructions to Reproduce Validations and Benchmarks
	Installation
	Executing Validations
	Preparation
	Running Validations

	Executing Benchmarks
	Memory Consumption
	Server Response Time

	Detailed Analysis of Automatic Refactorings
	Refactoring without Corruption
	Refactoring with Complex Corruption
	Refactoring with Class Corruption
	Refactoring with Internal Corruption

