A Generative Game-Theoretic Framework for Adversarial Plan Recognition - Archive ouverte HAL Access content directly
Conference Papers Year :

A Generative Game-Theoretic Framework for Adversarial Plan Recognition


Adversarial reasoning is of the first importance for defence and security applications since it allows to (1) better anticipate future threats, and (2) be proactive in deploying effective responses. In this paper, we address the two subtasks of adversarial reasoning, namely adversarial plan recognition and strategy formulation, from a generative, game-theoretic perspective. First, a set of possible future situations is computed using a contextual action model. This projected situation serves as a basis for building a set of Markov games modeling the planning strategies of both the defender and his adversary. Finally, a library of critical plans for the attacker and a library of best responses for the defender are generated automatically by computing a Nash equilibrium in each game. The adversarial plan recognition task therefore consists of inferring a probability distribution over the set of possible plans of the adversary, while the strategy formulation problem reduces to the selection of the most appropriate response. Initial results on a urban warfare scenario suggest that our framework can be useful to model complex strategic interactions inherent to plan recognition in adversarial situations.
Fichier principal
Vignette du fichier
Le_Guillarme_JFPDA_2015.pdf (632.42 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-01196703 , version 1 (10-09-2015)


  • HAL Id : hal-01196703 , version 1


Nicolas Le Guillarme, Abdel-Illah Mouaddib, Xavier Lerouvreur, Sylvain Gatepaille. A Generative Game-Theoretic Framework for Adversarial Plan Recognition. 10es Journées Francophones sur la Planification, la Décision et l'Apprentissage (JFPDA 2015), Jun 2015, Rennes, France. ⟨hal-01196703⟩
289 View
273 Download


Gmail Facebook Twitter LinkedIn More