Some applications of compressed sensing in computational mechanics: model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction

Abstract : Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to reconstruct a signal at less than 2Q samplings per second, where Q stands for the highest frequency content of the signal. This property has, however, important applications in the field of computational mechanics, as we analyze in this paper. We consider a wide variety of applications, such as model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction. Examples are provided for all of them that show the potentialities of compressed sensing in terms of CPU savings in the field of computational mechanics.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02410086
Contributeur : Compte de Service Administrateur Ensam <>
Soumis le : vendredi 13 décembre 2019 - 16:38:40
Dernière modification le : vendredi 20 décembre 2019 - 15:24:44

Fichier

PIMM_CM_2019_IBANEZ.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

R. Ibañez, Emmanuelle Abisset-Chavanne, Elías G. Cueto, Amine Ammar, Jean Louis Duval, et al.. Some applications of compressed sensing in computational mechanics: model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction. Computational Mechanics, Springer Verlag, 2019, 64 (5), pp.1259-1271. ⟨10.1007/s00466-019-01703-5⟩. ⟨hal-02410086⟩

Partager

Métriques

Consultations de la notice

17

Téléchargements de fichiers

27