Weightless Swarm Algorithm (WSA) for Dynamic Optimization Problems

Abstract : In this work the well-known Particle Swarm Optimization (PSO) algorithm is applied to some Dynamic Optimization Problems (DOPs). The PSO algorithm is improved by simplification instead of introducing additional strategies into the algorithm as done by many other researchers in the aim of improving an algorithm. Several parameters (w, Vmax, Vmin and c2) are being excluded from the conventional PSO. This algorithm is called Weightless Swarm Algorithm (WSA) as the prominent parameter, inertia weight w does not exist in this proposed algorithm. Interestingly, WSA still works effectively via swapping strategy found from countless trials and errors. We then incorporate the proven clustering technique from literature into the framework of the algorithm to solve the six dynamic problems in literature. From the series of tabulated results, we proved that WSA is competitive as compared to PSO. As only one parameter exists in WSA, it is feasible to carry out parameter sensitivity to find the optimal acceleration coefficient, c1 for each problem set.
Document type :
Conference papers
Complete list of metadatas

Cited literature [12 references]  Display  Hide  Download

https://hal.inria.fr/hal-01551365
Contributor : Hal Ifip <>
Submitted on : Friday, June 30, 2017 - 10:36:13 AM
Last modification on : Friday, December 1, 2017 - 1:09:56 AM
Long-term archiving on : Monday, January 22, 2018 - 8:21:23 PM

File

978-3-642-35606-3_60_Chapter.p...
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

T. Ting, Ka Man, Sheng-Uei Guan, Mohamed Nayel, Kaiyu Wan. Weightless Swarm Algorithm (WSA) for Dynamic Optimization Problems. 9th International Conference on Network and Parallel Computing (NPC), Sep 2012, Gwangju, South Korea. pp.508-515, ⟨10.1007/978-3-642-35606-3_60⟩. ⟨hal-01551365⟩

Share

Metrics

Record views

102

Files downloads

123