Quantitative Information Flow under Generic Leakage Functions and Adaptive Adversaries

Abstract : We put forward a model of action-based randomization mechanisms to analyse quantitative information flow (qif) under generic leakage functions, and under possibly adaptive adversaries. This model subsumes many of the qif models proposed so far. Our main contributions include the following: (1) we identify mild general conditions on the leakage function under which it is possible to derive general and significant results on adaptive qif; (2) we contrast the efficiency of adaptive and non-adaptive strategies, showing that the latter are as efficient as the former in terms of length up to an expansion factor bounded by the number of available actions; (3) we show that the maximum information leakage over strategies, given a finite time horizon, can be expressed in terms of a Bellman equation. This can be used to compute an optimal finite strategy recursively, by resorting to standard methods like backward induction.
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.inria.fr/hal-01398015
Contributor : Hal Ifip <>
Submitted on : Wednesday, November 16, 2016 - 3:36:47 PM
Last modification on : Wednesday, November 16, 2016 - 4:23:24 PM
Long-term archiving on : Thursday, March 16, 2017 - 6:04:57 PM

File

978-3-662-43613-4_11_Chapter.p...
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Michele Boreale, Francesca Pampaloni. Quantitative Information Flow under Generic Leakage Functions and Adaptive Adversaries. 34th Formal Techniques for Networked and Distributed Systems (FORTE), Jun 2014, Berlin, Germany. pp.166-181, ⟨10.1007/978-3-662-43613-4_11⟩. ⟨hal-01398015⟩

Share

Metrics

Record views

44

Files downloads

85