Graph Methods for Generating Test Cases with Universal and Existential Constraints

Abstract : We introduce a generalization of the t-way test case generation problem, where parameter t is replaced by a set $$\varPhi $$Φ of Boolean conditions on attribute values. We then present two reductions of this problem to graphs; first, to graph colouring, where we link the minimal number of tests to the chromatic number of some graph; second, to hypergraph vertex covering. This latter formalization allows us to handle problems with constraints of two kinds: those that must be true for every generated test case, and those that must be true for at least one test case. Experimental results show that the proposed solution produces test suites of slightly smaller sizes than a range of existing tools, while being more general: to the best of our knowledge, our work is the first to allow existential constraints over test cases.
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.inria.fr/hal-01470157
Contributor : Hal Ifip <>
Submitted on : Friday, February 17, 2017 - 10:25:55 AM
Last modification on : Wednesday, August 14, 2019 - 2:10:02 PM
Long-term archiving on : Thursday, May 18, 2017 - 1:55:17 PM

File

385214_1_En_4_Chapter.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Sylvain Hallé, Edmond Chance, Sébastien Gaboury. Graph Methods for Generating Test Cases with Universal and Existential Constraints. 27th IFIP International Conference on Testing Software and Systems (ICTSS), Nov 2015, Sharjah and Dubai, United Arab Emirates. pp.55-70, ⟨10.1007/978-3-319-25945-1_4⟩. ⟨hal-01470157⟩

Share

Metrics

Record views

91

Files downloads

369