Skip to Main content Skip to Navigation
Journal articles

Turbulent kinetic energy budget in a wall-mounted cylinder wake using PIV measurements

Abstract : In high flow velocity areas, turbulence intensity is high and flow variations may have a major impact on tidal turbines behaviour. Previous studies show that a square wall-mounted cylinder produces a very extended and energetic wake. In this work, two-component PIV measurements are conducted in the symmetry plane of the flow in order to evaluate the Turbulent Kinetic Energy (TKE) budget. This analysis enables to show how the TKE, produced in the shear-layer region, is redistributed and dissipated within the flow. The Large-Eddy PIV method enables to obtain full spatial maps of dissipation and to assess the validity of the constant involved in the spectral method. Results show that the production occurs when the Reynolds shear stress is the more intense, so is the dissipation. Energy is then transported through turbulent motion into the outer flow and swept to the bottom due to the pressure gradient effects. Production is directly due to the periodic vortex shedding unlike for other terms. A better description of the energy exchanges in the turbulent wake flow is obtained. This knowledge is important for the performance determination of a tidal turbine positioned in such an obstacle wake which affects the flow-induced dynamic load on turbine.
Complete list of metadatas

Cited literature [36 references]  Display  Hide  Download
Contributor : Gestionnaire Hal-Su <>
Submitted on : Wednesday, September 23, 2020 - 3:43:57 PM
Last modification on : Wednesday, October 14, 2020 - 8:20:07 AM


Ikhennicheu et al. - 2020 - Tu...
Files produced by the author(s)



Maria Ikhennicheu, Philippe Druault, Benoît Gaurier, Grégory Germain. Turbulent kinetic energy budget in a wall-mounted cylinder wake using PIV measurements. Ocean Engineering, Elsevier, 2020, 210, pp.107582. ⟨10.1016/j.oceaneng.2020.107582⟩. ⟨hal-02946995⟩



Record views


Files downloads