Multi-Armed bandit Learning in Iot Networks (MALIN)

Remi Bonnefoi 1 Lilian Besson 1, 2, 3 Christophe Moy 1
3 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : With the advent of the Internet of Things (IoT), unlicensed band are going to be shared by a large number of devices with dissimilar caracteristics. In such context, solutions are required to allow the coexistence of devices and to avoid performance drop due to interference. In this demonstration, we show that reinforcement learning algorithms and in particular Multi-Armed Bandit algorithms can be used as a means of improving the performance of IoT communications.
Document type :
Poster communications
Liste complète des métadonnées

https://hal.inria.fr/hal-02013866
Contributor : Lilian Besson <>
Submitted on : Monday, February 11, 2019 - 1:45:46 PM
Last modification on : Tuesday, April 2, 2019 - 2:17:36 AM

File

MALIN_poster.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02013866, version 1

Citation

Remi Bonnefoi, Lilian Besson, Christophe Moy. Multi-Armed bandit Learning in Iot Networks (MALIN). ICT2018 - 25th International Conference on Telecommunications, Jun 2018, Saint-Malo, France. ⟨http://ict-2018.org/demos/⟩. ⟨hal-02013866⟩

Share

Metrics

Record views

150

Files downloads

72