High throughput proteomic exploration of hypothermic preservation reveals active processes within the cell associated with cold ischemia kinetic - Individual Prediction and Prevention of Risks of Immunosuppressive Therapies in Transplantation Access content directly
Journal Articles International Journal of Molecular Sciences Year : 2021

High throughput proteomic exploration of hypothermic preservation reveals active processes within the cell associated with cold ischemia kinetic

Wassim Kaaki
  • Function : Author

Abstract

The demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape’s ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion. Critical pathways such as energy metabolism, cytoskeleton structure/transport system, and gene transcription/translation were modulated. Important time windows were revealed: a—during the first 3 h, central proteins were upregulated within these pathways; b—the majority of these upregulations were maintained until 12 h cold ischemia time (CIT); c—after that time, the overall decrease in protein expression was observed; d—at reperfusion, proteins expressed in response to cold ischemia were all downregulated. This shows that cold ischemia is not a simple slowing down of metabolism, as deep changes take place within the proteome on major pathways. Time-sensitive expression of key protein reveals possible quality biomarkers as well as potential targets for new strategies to maintain or optimize organ quality.
Fichier principal
Vignette du fichier
ijms-22-02384-v3.pdf (3.19 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03313190 , version 1 (03-08-2021)

Licence

Attribution

Identifiers

Cite

Ophélie Pasini-Chabot, Julia Vincent, Sylvain Le Pape, Maryne Lepoittevin, Wassim Kaaki, et al.. High throughput proteomic exploration of hypothermic preservation reveals active processes within the cell associated with cold ischemia kinetic. International Journal of Molecular Sciences, 2021, 22 (5), pp.1-26. ⟨10.3390/ijms22052384⟩. ⟨hal-03313190⟩
112 View
78 Download

Altmetric

Share

Gmail Facebook X LinkedIn More