Comparison of two Eulerian solvers for the four-dimensional Vlasov equation: Part I

Nicolas Crouseilles 1, 2 Michaël Gutnic 2 Guillaume Latu 2 Eric Sonnendrücker 1, 2
2 CALVI - Scientific computation and visualization
IRMA - Institut de Recherche Mathématique Avancée, LSIIT - Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
Abstract : This paper presents two methods for solving the four-dimensional Vlasov equation on a grid of the phase space. The two methods are based on the semi-Lagrangian method which consists in computing the distribution function at each grid point by following the characteristic curve ending there. The first method reconstructs the distribution function using local splines which are well suited for a parallel implementation. The second method is adaptive using wavelets interpolation: only a subset of the grid points are conserved to manage data locality. Numerical results are presented in the second part.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/hal-00690308
Contributor : Ist Rennes <>
Submitted on : Monday, April 23, 2012 - 10:07:20 AM
Last modification on : Wednesday, March 14, 2018 - 4:48:23 PM

Identifiers

Citation

Nicolas Crouseilles, Michaël Gutnic, Guillaume Latu, Eric Sonnendrücker. Comparison of two Eulerian solvers for the four-dimensional Vlasov equation: Part I. Communications in Nonlinear Science and Numerical Simulation, Elsevier, 2008, 13 (1), pp.88-93. ⟨10.1016/j.cnsns.2007.03.010⟩. ⟨hal-00690308⟩

Share

Metrics

Record views

502