Skip to Main content Skip to Navigation

Études exploratoires dédiées au diagnostic de corrosion assisté par ordinateur des structures de génie civil

Abstract : The PhD thesis "Exploratory studies dedicated to computer-assisted corrosion diagnosis of civil engineering structures" deals with the phenomenology and modeling of corrosion of structural steel. The safety, societal and environmental impact of aging infrastructures makes this theme a major economic issue for the development of any country. The proposed developments focus mainly on the corrosion of reinforcements in reinforced concrete. The corrosion of buried metallic structures is also addressed concerning the problems related to galvanic couplings induced by the heterogeneity of soils and stray currents. The usual methods of investigation (measurements of steel potential, concrete resistivity or polarization resistance), combined with empirical hypotheses established by experience, lead to interpretations that are often uncertain or have only a qualitative value. The ambition of this thesis, motivated by the issues at stake, is to show how a better understanding of the physics of corrosion, combined with the power of finite element calculation, allows the construction of elaborate and robust models, useful for a quantified and reliable diagnosis and/or prognosis. The thesis is abundantly illustrated by real or numerical case studies and supported by original laboratory tests. In order to improve the understanding of the phenomena prevailing in the corrosion process, the key concepts of thermodynamics and electrochemical kinetics are recalled and contextualized. The assembly of different physical, chemical and electrochemical laws allows the elaboration of an advanced modeling approach, integrating in particular the diffusion of oxygen to the reinforcement in an unsaturated context, but also the production and precipitation of corrosion products and their influence on the dynamic equilibrium of a corrosion system. This modeling approach, necessarily three-dimensional or at least two-dimensional, gives rise to a transcription in a finite element calculation code. It is first applied to the numerical study of a first typical case of corrosion: a reinforced concrete pile partially submerged in the sea. The influence of the role of oxygen (availability and diffusion) on the dissolution kinetics of the steel and on the nature of the corrosion products formed is studied in particular. In order to illustrate the effective contribution of 3D modeling in the process of corrosion diagnosis, a real case study is proposed concerning a buried steel structure, in this case sheet piles used to support the abutments of a freeway overpass, located near a pipe buried under cathodic protection. Measurements carried out in-situ but also in the laboratory from judiciously chosen samples are used to feed the calculation model. The numerical model thus constructed, qualified as a digital twin, makes it possible to highlight the existence of stray currents circulating in the structure, but also the risk of galvanic corrosion induced by the heterogeneity of the soil. The electrochemical digital twin is then a powerful tool for estimating the kinetics and the corrosion facies of the structure and making a prognosis in terms of service life. Within a concrete structure, the presence of chlorides is associated with various effects, notably associated with the local electric field. If this phenomenon is ignored, the interpretation of field data, for example potential maps, can lead to a biased diagnosis. This thesis addresses the question of corrosion initiation.[...]
Document type :
Complete list of metadata
Contributor : Abes Star :  Contact
Submitted on : Tuesday, May 18, 2021 - 11:46:32 AM
Last modification on : Monday, April 4, 2022 - 3:24:17 PM


Version validated by the jury (STAR)


  • HAL Id : tel-03228595, version 1


David Garcia. Études exploratoires dédiées au diagnostic de corrosion assisté par ordinateur des structures de génie civil. Génie civil. Université Paul Sabatier - Toulouse III, 2020. Français. ⟨NNT : 2020TOU30247⟩. ⟨tel-03228595⟩



Record views


Files downloads