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Linear SVM: the problem

Linear SVM are the solution of the following problem (called primal)

Let {(xi , yi ); i = 1 : n} be a set of labelled data with
xi ∈ IR

d , yi ∈ {1,−1}.
A support vector machine (SVM) is a linear classifier associated with the
following decision function: D(x) = sign

(
w⊤x + b

)
where w ∈ IR

d and
b ∈ IR a given thought the solution of the following problem:

{
min
w,b

1
2‖w‖2 = 1

2w
⊤w

with yi (w
⊤xi + b) ≥ 1 i = 1, n

This is a quadratic program (QP):

{
min

z

1
2z

⊤Az − d⊤z

with Bz ≤ e

z = (w, b)⊤, d = (0, . . . , 0)⊤, A =

[
I 0
0 0

]
, B = −[diag(y)X , y] et e = −(1, . . . , 1)⊤
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A simple example (to begin with){
min
x1,x2

J(x) = (x1 − a)2 + (x2 − b)2

with

x x⋆
∇xJ(x)

iso cost lines: J(x) = k



A simple example (to begin with){
min
x1,x2

J(x) = (x1 − a)2 + (x2 − b)2

with H(x) = α(x1 − c)2 + β(x2 − d)2 + γx1x2 − 1

Ω = {x |H(x) = 0}

x x⋆
∇xJ(x)

∆x

∇xH(x)

tangent hyperplane
iso cost lines: J(x) = k

∇xH(x) = λ ∇xJ(x)



The only one equality constraint case
{

min
x

J(x) J(x + εd) ≈ J(x) + ε∇xJ(x)
⊤d

with H(x) = 0 H(x + εd) ≈ H(x) + ε∇xH(x)⊤d

Loss J : d is a descent direction if it exists ε0 ∈ IR such that
∀ε ∈ IR, 0 < ε ≤ ε0

J(x + εd) < J(x) ⇒ ∇xJ(x)
⊤d < 0

constraint H : d is a feasible descent direction if it exists ε0 ∈ IR such
that ∀ε ∈ IR, 0 < ε ≤ ε0

H(x + εd) = 0 ⇒ ∇xH(x)⊤d = 0

If at x⋆, vectors ∇xJ(x
⋆) and ∇xH(x⋆) are collinear there is no feasible

descent direction d. Therefore, x⋆ is a local solution of the problem.



Lagrange multipliers

Assume J and functions Hi are continuously differentials (and independent)

P =





min
x∈IR

n
J(x)

avec H1(x) = 0
et H2(x) = 0

. . .
Hp(x) = 0



Lagrange multipliers

Assume J and functions Hi are continuously differentials (and independent)

P =





min
x∈IR

n
J(x)

avec H1(x) = 0 λ1

et H2(x) = 0 λ2

. . .
Hp(x) = 0 λp

each constraint is associated with λi : the Lagrange multiplier.



Lagrange multipliers

Assume J and functions Hi are continuously differentials (and independent)

P =





min
x∈IR

n
J(x)

avec H1(x) = 0 λ1

et H2(x) = 0 λ2

. . .
Hp(x) = 0 λp

each constraint is associated with λi : the Lagrange multiplier.

Theorem (First order optimality conditions)

for x⋆ being a local minima of P, it is necessary that:

∇xJ(x
⋆) +

p∑

i=1

λi∇xHi (x
⋆) = 0 and Hi (x

⋆) = 0, i = 1, p
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The only one inequality constraint case{
min

x

J(x) J(x + εd) ≈ J(x) + ε∇xJ(x)
⊤d

with G (x) ≤ 0 G (x + εd) ≈ G (x) + ε∇xG (x)⊤d

cost J : d is a descent direction if it exists ε0 ∈ IR such that
∀ε ∈ IR, 0 < ε ≤ ε0

J(x + εd) < J(x) ⇒ ∇xJ(x)
⊤d < 0

constraint G : d is a feasible descent direction if it exists ε0 ∈ IR such that
∀ε ∈ IR, 0 < ε ≤ ε0

G (x + εd) ≤ 0 ⇒
G (x) < 0 : no limit here on d

G (x) = 0 : ∇xG (x)⊤d ≤ 0

Two possibilities

If x⋆ lies at the limit of the feasible domain (G (x⋆) = 0) and if vectors
∇xJ(x

⋆) and ∇xG (x⋆) are collinear and in opposite directions, there is no
feasible descent direction d at that point. Therefore, x⋆ is a local solution
of the problem... Or if ∇xJ(x

⋆) = 0



Two possibilities for optimality

∇xJ(x
⋆) = −µ ∇xG (x⋆) and µ > 0;G (x⋆) = 0

or
∇xJ(x

⋆) = 0 and µ = 0;G (x⋆) < 0

This alternative is summarized in the so called complementarity condition:

µ G (x⋆) = 0

µ = 0
G (x⋆) < 0

G (x⋆) = 0
µ > 0



First order optimality condition (1)

problem P =





min
x∈IRn

J(x)

with hj(x) = 0 j = 1, . . . , p
and gi (x) ≤ 0 i = 1, . . . , q

Definition: Karush, Kuhn and Tucker (KKT) conditions

stationarity ∇J(x⋆) +

p∑

j=1

λj∇hj(x
⋆) +

q∑

i=1

µi∇gi (x
⋆) = 0

primal admissibility hj(x
⋆) = 0 j = 1, . . . , p

gi (x
⋆) ≤ 0 i = 1, . . . , q

dual admissibility µi ≥ 0 i = 1, . . . , q

complementarity µigi (x
⋆) = 0 i = 1, . . . , q

λj and µi are called the Lagrange multipliers of problem P



First order optimality condition (2)

Theorem (12.1 Nocedal & Wright pp 321)

If a vector x⋆ is a stationary point of problem P

Then there existsa Lagrange multipliers such that
(
x⋆, {λj}j=1:p, {µi}i=1:q

)

fulfill KKT conditions

a
under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the
problem

A quadratic program (QP) is convex when. . .

(QP)

{
min

z

1

2
z⊤Az − d⊤z

with Bz ≤ e

. . . when matrix A is positive definite



KKT condition - Lagrangian (3)

problem P =





min
x∈IRn

J(x)

with hj(x) = 0 j = 1, . . . , p
and gi (x) ≤ 0 i = 1, . . . , q

Definition: Lagrangian

The lagrangian of problem P is the following function:

L(x, λ, µ) = J(x) +

p∑

j=1

λjhj(x) +

q∑

i=1

µigi (x)

The importance of being a lagrangian

the stationarity condition can be written: ∇L(x⋆, λ, µ) = 0

the lagrangian saddle point max
λ,µ

min
x

L(x, λ, µ)

Primal variables: x and dual variables λ, µ (the Lagrange multipliers)



Duality – definitions (1)

Primal and (Lagrange) dual problems

P =





min
x∈IRn

J(x)

with hj(x) = 0 j = 1, p
and gi (x) ≤ 0 i = 1, q

D =

{
max

λ∈IRp,µ∈IRq

Q(λ, µ)

with µj ≥ 0 j = 1, q

Dual objective function:

Q(λ, µ) = inf
x

L(x, λ, µ)

= inf
x

J(x) +

p∑

j=1

λjhj(x) +

q∑

i=1

µigi (x)

Wolf dual problem

W =





max
x,λ∈IRp,µ∈IRq

L(x, λ, µ)

with µj ≥ 0 j = 1, q

and ∇J(x⋆) +

p∑

j=1

λj∇hj(x
⋆) +

q∑

i=1

µi∇gi (x
⋆) = 0



Duality – theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal & Wright pp 346)

If f , g and h are convex and continuously differentiablea, then the solution
of the dual problem is the same as the solution of the primal

a
under some conditions e.g. linear independence constraint qualification

(λ⋆, µ⋆) = solution of problem D
x⋆ = arg min

x

L(x, λ⋆, µ⋆)

Q(λ⋆, µ⋆) = arg min
x

L(x, λ⋆, µ⋆) = L(x⋆, λ⋆, µ⋆)

= J(x⋆) + λ⋆H(x⋆) + µ⋆G (x⋆) = J(x⋆)

and for any feasible point x

Q(λ, µ) ≤ J(x) → 0 ≤ J(x)− Q(λ, µ)

The duality gap is the difference between the primal and dual cost functions
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Linear SVM dual formulation - The lagrangian

{
min
w,b

1
2‖w‖2

with yi (w
⊤xi + b) ≥ 1 i = 1, n

Looking for the lagrangian saddle point max
α

min
w,b

L(w, b, α) with so called

lagrange multipliers αi ≥ 0

L(w, b, α) =
1

2
‖w‖2 −

n∑

i=1

αi

(
yi (w

⊤xi + b)− 1
)

αi represents the influence of constraint thus the influence of the training
example (xi , yi )



Stationarity conditions

L(w, b, α) =
1

2
‖w‖2 −

n∑

i=1

αi

(
yi (w

⊤xi + b)− 1
)

Computing the gradients:





∇wL(w, b, α) = w −

n∑

i=1

αiyixi

∂L(w, b, α)

∂b
=

∑n

i=1
αi yi

we have the following optimality conditions





∇wL(w, b, α) = 0 ⇒ w =

n∑

i=1

αiyixi

∂L(w, b, α)

∂b
= 0 ⇒

n∑

i=1

αi yi = 0



KKT conditions for SVM

stationarity w −

n∑

i=1

αiyixi = 0 and

n∑

i=1

αi yi = 0

primal admissibility yi (w
⊤xi + b) ≥ 1 i = 1, . . . , n

dual admissibility αi ≥ 0 i = 1, . . . , n

complementarity αi

(
yi (w

⊤xi + b)− 1
)
= 0 i = 1, . . . , n

The complementary condition split the data into two sets

A be the set of active constraints: usefull points

A = {i ∈ [1, n]
∣∣ yi (w

∗⊤xi + b∗) = 1}

its complementary Ā useless points

if i /∈ A, αi = 0



The KKT conditions for SVM

The same KKT but using matrix notations and the active set A

stationarity w − X⊤Dyα = 0

α⊤y = 0

primal admissibility Dy (Xw + b I1) ≥ I1

dual admissibility α ≥ 0

complementarity Dy (XAw + b I1A) = I1A

αĀ = 0

Knowing A, the solution verifies the following linear system:





w −X⊤
ADyαA = 0

−DyXAw −byA = −eA
−y⊤AαA = 0

with Dy = diag(yA), αA = α(A) , yA = y(A) et XA = X (XA; :).



The KKT conditions as a linear system




w −X⊤
ADyαA = 0

−DyXAw −byA = −eA
−y⊤AαA = 0

with Dy = diag(yA), αA = α(A) , yA = y(A) et XA = X (XA; :).

=

I −X⊤
ADy 0

−DyXA 0 −yA

0 −y⊤A 0

w

αA

b

0

−eA

0

we can work on it to separate w from (αA, b)



The SVM dual formulation

The SVM Wolfe dual




max
w,b,α

1

2
‖w‖2 −

n∑

i=1

αi

(
yi (w

⊤xi + b)− 1
)

with αi ≥ 0 i = 1, . . . , n

and w −

n∑

i=1

αiyixi = 0 and

n∑

i=1

αi yi = 0

using the fact: w =
n∑

i=1

αiyixi

The SVM Wolfe dual without w and b




max
α

− 1

2

n∑

i=1

n∑

j=1

αjαiyiyjx
⊤
j xi +

n∑

i=1

αi

with αi ≥ 0 i = 1, . . . , n

and

n∑

i=1

αi yi = 0



Linear SVM dual formulation

L(w, b, α) =
1

2
‖w‖2 −

n∑

i=1

αi

(
yi (w

⊤xi + b)− 1
)

Optimality: w =

n∑

i=1

αiyixi

n∑

i=1

αi yi = 0

L(α) = 1

2

n∑

i=1

n∑

j=1

αjαiyiyjx
⊤
j xi

︸ ︷︷ ︸
w

⊤
w

−
∑n

i=1
αiyi

n∑

j=1

αjyjx
⊤
j

︸ ︷︷ ︸
w

⊤

xi − b

n∑

i=1

αiyi

︸ ︷︷ ︸
=0

+
∑n

i=1
αi

= −
1

2

n∑

i=1

n∑

j=1

αjαiyiyjx
⊤
j xi +

n∑

i=1

αi

Dual linear SVM is also a quadratic program

problem D





min
α∈IRn

1

2
α⊤Gα− e⊤α

with y⊤α = 0
and 0 ≤ αi i = 1, n

with G a symmetric matrix n × n such that Gij = yiyjx
⊤
j xi



SVM primal vs. dual

Primal





min
w∈IR

d
,b∈IR

1
2‖w‖2

with yi (w
⊤xi + b) ≥ 1

i = 1, n

d + 1 unknown

n constraints

classical QP

perfect when d << n

Dual





min
α∈IR

n

1
2α

⊤Gα− e⊤α

with y⊤α = 0
and 0 ≤ αi i = 1, n

n unknown

G Gram matrix (pairwise
influence matrix)

n box constraints

easy to solve

to be used when d > n



SVM primal vs. dual

Primal





min
w∈IR

d
,b∈IR

1
2‖w‖2

with yi (w
⊤xi + b) ≥ 1

i = 1, n

d + 1 unknown

n constraints

classical QP

perfect when d << n

Dual





min
α∈IR

n

1
2α

⊤Gα− e⊤α

with y⊤α = 0
and 0 ≤ αi i = 1, n

n unknown

G Gram matrix (pairwise
influence matrix)

n box constraints

easy to solve

to be used when d > n

f (x) =
d∑

j=1

wjxj + b =
n∑

i=1

αi yi (x
⊤xi ) + b



The bi dual (the dual of the dual)



min
α∈IRn

1

2
α⊤Gα− e⊤α

with y⊤α = 0
and 0 ≤ αi i = 1, n

L(α, λ, µ) = 1

2
α⊤Gα− e⊤α+ λ y⊤α− µ⊤α

∇αL(α, λ, µ) = Gα− e + λ y − µ

The bidual 



max
α,λ,µ

− 1

2
α⊤Gα

with Gα− e + λ y − µ = 0
and 0 ≤ µ

since ‖w‖2 = 1

2
α⊤Gα and DXw = Gα

{
max
w,λ

− 1

2
‖w‖2

with DXw + λ y ≥ e

by identification (possibly up to a sign)

b = λ is the Lagrange multiplier of the equality constraint



Cold case: the least square problem

Linear model

yi =

d∑

j=1

wjxij + εi , i = 1, n

n data and d variables; d < n

min
w

=
n∑

i=1




d∑

j=1

xijwj − yi




2

= ‖Xw − y‖2

Solution: w̃ = (X⊤X )−1X⊤y

f (x) = x⊤ (X⊤X )−1X⊤y︸ ︷︷ ︸
w̃

What is the influence of each data point (matrix X lines) ?

Shawe-Taylor & Cristianini’s Book, 2004



data point influence (contribution)

for any new data point x

f (x) = x⊤ (X⊤X )(X⊤X )−1 (X⊤X )−1X⊤y︸ ︷︷ ︸
w̃

= x⊤ X⊤ X (X⊤X )−1(X⊤X )−1X⊤y︸ ︷︷ ︸
α̂

x
⊤

n examples

d
va

ri
a
b
le

s

X⊤

α̂

w̃

f (x) =
d∑

j=1

w̃jxj



data point influence (contribution)

for any new data point x

f (x) = x⊤ (X⊤X )(X⊤X )−1 (X⊤X )−1X⊤y︸ ︷︷ ︸
w̃

= x⊤ X⊤ X (X⊤X )−1(X⊤X )−1X⊤y︸ ︷︷ ︸
α̂

x
⊤

n examples

d
va

ri
a
b
le

s

X⊤

α̂

w̃

x⊤xi

f (x) =
d∑

j=1

w̃jxj =
n∑

i=1

α̂i (x
⊤xi )

from variables to examples

α̂ = X (X⊤X )−1w̃︸ ︷︷ ︸
n examples

et w̃ = X⊤α̂︸ ︷︷ ︸
d variables

what if d ≥ n !



SVM primal vs. dual

Primal





min
w∈IR

d
,b∈IR

1
2‖w‖2

with yi (w
⊤xi + b) ≥ 1

i = 1, n

d + 1 unknown

n constraints

classical QP

perfect when d << n

Dual





min
α∈IR

n

1
2α

⊤Gα− e⊤α

with y⊤α = 0
and 0 ≤ αi i = 1, n

n unknown

G Gram matrix (pairwise
influence matrix)

n box constraints

easy to solve

to be used when d > n

f (x) =
d∑

j=1

wjxj + b =
n∑

i=1

αi yi (x
⊤xi ) + b
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Solving the dual (1)

Data point influence

αi = 0 this point is useless

αi 6= 0 this point is said to be
support

f (x) =
d∑

j=1

wjxj + b =
n∑

i=1

αi yi (x
⊤xi ) + b



Solving the dual (1)

Data point influence

αi = 0 this point is useless

αi 6= 0 this point is said to be
support

f (x) =
d∑

j=1

wjxj + b =
3∑

i=1

αi yi (x
⊤xi ) + b

Decison border only depends on 3 points (d + 1)



Solving the dual (2)

Assume we know these 3 data points





min
α∈IR

n

1
2α

⊤Gα− e⊤α

with y⊤α = 0
and 0 ≤ αi i = 1, n

=⇒

{
min
α∈IR

3

1
2α

⊤Gα− e⊤α

with y⊤α = 0

L(α, b) =
1

2
α⊤Gα− e⊤α+ b y⊤α

solve the following linear system
{

Gα + b y = e

y⊤α = 0

U = chol(G); % upper

a = U\ (U’\e);

c = U\ (U’\y);

b = (y’*a)\(y’*c)

alpha = U\ (U’\(e - b*y));



Conclusion: variables or data point?
seeking for a universal learning algorithm

◮ no model for IP(x, y)

the linear case: data is separable
◮ the non separable case

double objective: minimizing the error together with the regularity of
the solution

◮ multi objective optimisation

dualiy : variable – example
◮ use the primal when d < n (in the liner case) or when matrix G is hard

to compute
◮ otherwise use the dual

universality = nonlinearity
◮ kernels
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