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Figure from L. Bottou & C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.



Linear SVM: the problem

Linear SVM are the solution of the following problem (called primal)
Let {(xi,yi); i =1: n} be a set of labelled data with

X € ]Rd,y,' € {1,-1}.

A support vector machine (SVM) is a linear classifier associated with the
following decision function: D(x) = sign(w ' x + b) where w € R and

b € IR a given thought the solution of the following problem:

2 2 _ 1 T
{ T'E 2||WH SW W

with yilw'x; +b) > 1 i=1n

This is a quadratic program (QP):

{ min %ZTAZ —d'z
z

with Bz <e

2= (w,b)T,d=(0,...,0)T, A= [ (’) 8 } B = —[diag(y)X,y] et e = —(1,...,1)7
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A simple example (to begin with)
min J(x) = (x1 — a)® + (x2 — b)?
with

iso cost lines: J(x) = k



A simple example (to begin with)
{ min  J(x) = (x1 — a)? + (x2 — b)?

X1,X2

with H(x) = a(x1 — c)?> + B(x — d)? + yxix0 — 1

Ay
tangent hyperplane

iso cost lines: J(x) = k

VxH(x) = A VxJ(x)



The only one equality constraint case
min  J(x) J(x +ed) ~ J(x) +eVyJ(x)"d
with H(x) =0 H(x + ed) ~ H(x) + eVxH(x)"d
Loss J: dis a descent direction if it exists eg € IR such that
Vee R, 0<e<egg
J(x+ed) < J(x) = ViJ(x)Td <0

constraint H : d is a feasible descent direction if it exists g € R such
that Ve e R, 0 < e < gg

Hix+ed)=0 =  VH(xx)'d=0

If at x*, vectors V,J(x*) and VyxH(x*) are collinear there is no feasible
descent direction d. Therefore, x* is a local solution of the problem.




Lagrange multipliers

Assume J and functions H; are continuously differentials (and independent)

min  J(x)

xeR"

avec Hi(x)=0
P = et Ha(x)=0

Ho(x) = 0



Lagrange multipliers

Assume J and functions H; are continuously differentials (and independent)

min  J(x)
xeR"
avec Hi(x)=0 A1
P = et HQ(X) =0 Ao
Hp(x) =0 Ap

each constraint is associated with \; : the Lagrange multiplier.



Lagrange multipliers

Assume J and functions H; are continuously differentials (and independent)

min  J(x)
x€R"
avec Hi(x)=0 A1
P = et HQ(X) =0 Ao
Hp(x) =0 Ap

each constraint is associated with \; : the Lagrange multiplier.

Theorem (First order optimality conditions)
for x* being a local minima of P, it is necessary that:

p
Vi d(x*) + Z AV Hi(x*) =0 and Hi(x*)=0, i=1,p

i=1
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The only one inequality constraint case
min  J(x) J(x +ed) = J(x) +eV,J(x)"d
with  G(x) <0 G(x+ed) ~ G(x) +eV,G(x)'d

cost J: dis a descent direction if it exists g € IR such that
VeeR, 0<e<egg

J(x +ed) < J(x) = V,J(x)Td <0

constraint G : d is a feasible descent direction if it exists €9 € IR such that
VeeR, 0<e<egg

G(x) <0: no limit here on d

Clx+ed)<0 = =0 V,6(x)Td=0

Two possibilities
If x* lies at the limit of the feasible domain (G(x*) = 0) and if vectors
VxJ(x*) and VxG(x*) are collinear and in opposite directions, there is no

feasible descent direction d at that point. Therefore, x* is a local solution
of the problem... Or if ViJ(x*) =0




Two possibilities for optimality

Ve (x*) = —p1 VG (x¥) and u>0;G(x*)=0
or
VxJ(x*) =0 and £ =0;G(x")<0

This alternative is summarized in the so called complementarity condition:

o=
=
N
N
o
=
v
o



First order optimality condition (1)

min  J(x)
xeR"
problem P = ¢ \ith h;j(x)

=0
and gi(x)<0i=1,...

Definition: Karush, Kuhn and Tucker (KKT) conditions

stationarity VJ(x*) + Z AV hi(x*) + Z pivVei(x*) =

primal admissibility h;(x*) = 0 j=1...,p
gi(x*) <0 i=1,...,q

dual admissibility p; >0 i=1,...,q
complementarity pigi(x*) =0 i=1,...,q

A; and p; are called the Lagrange multipliers of problem P



First order optimality condition (2)

Theorem (12.1 Nocedal & Wright pp 321)

If a vector x* is a stationary point of problem P
Then there exists? Lagrange multipliers such that (x*, {\;}j=1.p, {i}i=1:q)
fulfill KKT conditions

a - . . . s
under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the
problem

A quadratic program (QP) is convex when. ..
min 1zTAz—d'z
P z 2
(QP) { with Bz<e

...when matrix A is positive definite




KKT condition - Lagrangian (3)

problem P = ¢ with  h;(x)

Definition: Lagrangian
The lagrangian of problem P is the following function:

p q

£(x A1) = S0 + 3O N0 + 3 ()

=1

The importance of being a lagrangian
o the stationarity condition can be written: VL(x*, \, ) =0

@ the lagrangian saddle point max min L£(x, A, 1)
TR S

Primal variables: x and dual variables \, ;1 (the Lagrange multipliers)



Duality — definitions (1)

Primal and (Lagrange) dual problems

min  J(x)
xeR"
P=9q with hi(x)=0 j=

1 D= { /\eRrL]i)(eRq QA p)
and  gi(x)<0 i=1

with p >0 j=1.4q

Dual objective function:

QN p) = inf L(x, A M)

|nf J(x) —I—Z)\h(x —I—Z,ug,(x

j=1
Wolf dual problem
X AP R £0xA 1)
W with >0 j= 1 ,q
and VJ(x*) +ZA "V hi(x +Zu,Vg, x*) =0

=1 =1




Duality — theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal & Wright pp 346)

If f,g and h are convex and continuously differentiable?, then the solution
of the dual problem is the same as the solution of the primal

a . . . A R ]
under some conditions e.g. linear independence constraint qualification

(A\*,n*) = solution of problem D
x* =argmin L(x, \*, ")

Q(A*, u*) = argmin L(x, A", ") = L(x*, \*, 1)

J(x*) + AT H(X) + 176 (x*) = J(x)

and for any feasible point x

Q()\, M) < J(X) - 0< J(X) - Q()‘:u)

The duality gap is the difference between the primal and dual cost functions
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Figure from L. Bottou & C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.



Linear SVM dual formulation - The lagrangian

min %||w||2
with y;(w'x; +b)>1 i=1,n

Looking for the lagrangian saddle point max min £(w, b, &) with so called

a  w,b

lagrange multipliers a; > 0

n

1
E(Wa bv Oé) = EHWH2 - Zai(}’i(WTxi + b) - 1)
i=1

«; represents the influence of constraint thus the influence of the training
example (x;, y;)




Stationarity conditions

n

1
L(w, b, o) = §||w||2 =Y ai(yi(w'x; + b) — 1)
i=1
vw['(wv ba Oé) =W — Z Q;YiXj
i=1

OL(w,b,a)
T 7Zi=1al.yl

Computing the gradients:

we have the following optimality conditions

VwL(w,b,a) =0 = w= Z Qi YiXi
=1

OL(w,b,0) ~
T =0 = ;a,y,—o



KKT conditions for SVM

n n
stationarity w — Z a;yix; =0 and Z a;yi=0
i=1 i=1

primal admissibility y;(w'x; + b) > 1

dual admissibility «; >0

complementarity «; <y,-(wa,' +b) — 1) =0

The complementary condition split the data into two sets

@ A be the set of active constraints: usefull points

A={ie[L,n]|y(wTx +b*) =1}

@ its complementary A useless points

ifi%A,a;ZO




The KKT conditions for SVM

The same KKT but using matrix notations and the active set A
stationarity w — XTDyoz =0
a'y=0
primal admissibility D, (Xw + bT) >1T
dual admissibility a >0
complementarity Dy (Xaw + bl4) =14
az=0
Knowing A, the solution verifies the following linear system:

w ~X1Dya =0
7DyXAW 7byA = —€ey
—y i =0

with D, = diag(ya), a4 = a(A) , ya =y(A) et X4 = X(X4;:).



The KKT conditions as a linear system
w —XJIDyOz_A =0
—DyXAW —byA = —€ey
—y o =0
with D, = diag(y4), a4 = a(A) , ya = y(A) et X4 = X(Xa4;:).

I -X3Dy, 0| |w 0
~ DyXf 0 YA |4 = Teq
0 —viJo] [b] o]

we can work on it to separate w from (a4, b)



The SVM dual formulation
The SVM Wolfe dual

n

max i[|w]? — Za,-(y,-(wa,- +b) —1)

w,b,« P

with «; >0 i=1,...,n
n

and W—Za;y,-x;zoand Z":oz,-y;zo

using the fact: w = Z Qi YiXi
i=1

The SVM Wolfe dual without w and b

mo?x ZZO@ Qi YiYiX; x,—|—Za,

i=1 j=1
with «; >0 i=1,...,n

and ia; Yi = 0
i=1




Linear SVM dual formulation

n

1
L(w, b,a) = 5||w||2 =Y ai(yi(w'xi + b) — 1)

i=1

n n
Optimality: w = Z Q;iyiX; Z @ yi =0
i=1 i=1

n n n n
L(a) =3 Z Z Oéjaiy,'ijjTXi -2 ai}’iz OéjijjT x; — b Z Qiyi+ 20
i=1 j=1 j=1 i=1
——— N——
wT =0

1 anw n
_E Z Z aja,'y,'ijJTX,' + Zl o
i=

i=1 j=1

Dual linear SVM is also a quadratic program

mifrg %aT Ga—e'a
acR"”
problem D with yTa=0

and 0<q; i=1,n

with G a symmetric matrix n x n such that G; = yiy;x; x;




SVM primal vs. dual

Primal J Dual J
min w2 min. ja'Ga—e'a
weR? beR aeR” T
with yi(wTx; +b) > 1 with y'a=0 _
i=1.n and 0 <q; i=1,n
@ n unknown
® d+1 unknown e G Gram matrix (pairwise
@ n constraints influence matrix)
o classical QP @ n box constraints
e perfect when d << n @ easy to solve
@ to be used when d > n



SVM primal vs. dual

Primal J Dual J
min w2 min 1o’ Ga—e'a
weR9 beR acR™  °_
with yilw x4+ b) > 1 with y a=0
i=1n and 0 < i=1,n

@ n unknown

o d +1 unknown e G Gram matrix (pairwise
@ n constraints influence matrix)

@ classical QP @ n box constraints

e perfect when d << n @ easy to solve

@ to be used when d > n

d n
Fx) = Y wixi+b=> ajy(x'x;)+b
j=1 i=1



The bi dual (the dual of the dual)

%aT Ga—e'a

min
acR"
with yTa=0
and 0<q; i=1,n
Lo\ p) = %aTGa—eTaqL)\yTozfuTa
Vol(la,\p) = Ga—e+Ay—pu
The bidual
max —%aT Ga
(e W)
with Ga—e+Ay—pu=0
and 0<p

since [w|[? = 1aT Ga and DXw = G

max —%||WH2
w,A
with DXw+ Ay >e

by identification (possibly up to a sign)
b = A is the Lagrange multiplier of the equality constraint




Cold case: the least square problem

Linear model

d
Yi = E W;Xj +€; i=1,n
Jj=1

n data and d variables; d < n

n d 2
mvjn = Z (Z XijWj — }/i) = [[Xw — Y||2
i—1 \j=1
Solution: w = (XTX)"1XTy
f(x)= x" (XTX)_IXTy
—_—

w

What is the influence of each data point (matrix X lines) ?



data point influence (contribution)
for any new data point x

f(x) =x" (XTX)(XTX)"1(XTX)"IxTy
—

w
=x' XT X(X"X)"}(XTX)1x Ty

a

I
d variables

d
fF(x) = > Wx;
j=1

n examples
—_—

XT

Q)




data point influence (contribution)

for any new data point x

f(x) =x" (XTX)XTX) (X X)Xy n examples
0
w .-
=x" XT X(XTX)"{(XTX)" X Ty K XT
a < -
Cx" 1 | XX
d n
Flx) = ) Wi =>_ @ (x'x)
j=1 i=1
from variables to examples
a=X(X"X)"tw et w=X'a
N—_————
d variables

n examples

what if d > n |

Q)

!




SVM primal vs. dual

Primal J Dual J
min w2 min 1o’ Ga—e'a
weR9 beR acR™  °_
with yilw x4+ b) > 1 with y a=0
i=1n and 0 < i=1,n

@ n unknown

o d +1 unknown e G Gram matrix (pairwise
@ n constraints influence matrix)

@ classical QP @ n box constraints

e perfect when d << n @ easy to solve

@ to be used when d > n

d n
Fx) = Y wixi+b=> ajy(x'x;)+b
j=1 i=1
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Figure from L. Bottou & C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.



Solving the dual (1)

Data point influence
@ «; = 0 this point is useless

@ «; # 0 this point is said to be
support




Solving the dual (1)

Data point influence
@ «; = 0 this point is useless

@ «; # 0 this point is said to be
support

d 3
F(x) = Y wixi+b=> ajy(x'x;)+b
j=1 i=1

Decison border only depends on 3 points (d + 1)




Solving the dual (2)

Assume we know these 3 data points

with y'a=0

and 0 <q; =1,

g 1T T
min ;o Ga—e'« .
acR" 2 min %aT Ga—e'a
—
i—1n with yla=0

1
L(«a, b) = Ea—r Ga—e'a+by'a

solve the following linear system U = chol(G); 7% upper
a = U\ (U’\e);
c = U\ (U\y);
b =

Ga+ by =e
yTa =0 (y?*a)\(y’*c)

alpha = U\ (U’\(e - bxy));




Conclusion: variables or data point?

@ seeking for a universal learning algorithm
» no model for P(x, y)

o the linear case: data is separable
» the non separable case

@ double objective: minimizing the error together with the regularity of
the solution

» multi objective optimisation

@ dualiy : variable — example

» use the primal when d < n (in the liner case) or when matrix G is hard
to compute
» otherwise use the dual

@ universality = nonlinearity
> kernels
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