Advanced Continuous Optimization

Abstract : This course starts with the presentation of the optimality conditions of an optimization problem described in a rather abstract manner, so that these can be useful for dealing with a large variety of problems. Next, the course describes and analyzes various advanced algorithms to solve optimization problems (nonsmooth methods, linearization methods, proximal and augmented Lagrangian methods, interior point methods) and shows how they can be used to solve a few classical optimization problems (linear optimization, convex quadratic optimization, semidefinite optimization (SDO), nonlinear optimization). Along the way, various tools from convex and nonsmooth analysis will be presented. Everything is conceptualized in finite dimension. The goal of the lectures is therefore to consolidate basic knowledge in optimization, on both theoretical and algorithmic aspects.
Type de document :
Master. France. 2015
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger
Contributeur : Jean Charles Gilbert <>
Soumis le : lundi 4 janvier 2016 - 19:37:55
Dernière modification le : vendredi 25 mai 2018 - 12:02:07
Document(s) archivé(s) le : jeudi 7 avril 2016 - 16:50:14


  • HAL Id : cel-01249369, version 1



Jean Charles Gilbert. Advanced Continuous Optimization. Master. France. 2015. 〈cel-01249369〉



Consultations de la notice


Téléchargements de fichiers