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Step by step design of an interior-point solver in self-dual

conic optimization – Application to the Shor relaxation of

some small OPF problems

Jean Charles Gilbert, INRIA

December 17, 2016

These notes present a project in numerical optimization dealing with the implemen-
tation of an interior-point method for solving a self-dual conic optimization (SDCO)
problem. The cone is the Cartesian product of semidefinite cones of various dimensions
(imposing matrices to be positive semidefinite) and of a positive orthant (imposing vari-
ables to be nonnegative). Therefore, the solved problem encompasses semidefinite and
linear optimization.

The project was given in a course entitled Advanced Continuous Optimization II at
the University Paris-Saclay, in 2016-1017. The solver is designed step by step during a
series of 5 sessions of 4 hours each. Each session corresponds to a chapter of these notes.
The correctness of the SDCO solver is verified during each session on small academic
problems, having diverse properties. During the last session, the developed piece of
software is used to solve a few small size Shor relaxations of QCQP (quadratically
constrained quadratic programming) problems, modeling various instances of the OPF
(optimal power flow) problem.

These notes are actually carrying on with those of the year 2015-2016 [11], by adding
some features to the preceeding developped solver. The main one is that the primal
variable is no longer a single positive semidefinite symmetric matrix but is formed of
several positive semidefinite symmetric matrices and a nonnegative vector.

The goal of the project is not to design an SDCO solver that would beat the best
existing solver but to help the students to understand and demystify what there is
inside such a piece of software. As a side outcome, this course also shows that a rather
performent SDCO solver can be realized in a relatively short time. In addition the
student will be able to improve the developed piece of software, in case this is required by
professionel needs. For a review of SDCO codes and more details on their development,
we refer the reader to [42, 1], in particular [25, 40].
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1 The NT direction

The goal of this first session is to compute the Nesterov-Todd (NT) direction of an
interior point algorithm to solve a self-dual conic optimization problem.

1.1 The problem to solve

1.1.1 Space structures

We denote by E the Euclidean vector space of the variables defining the primal form of
the convex optimization considered in all this project; see section 1.1.2. It is equipped
with a scalar product denoted by 〈·, ·〉E. Conic optimization is formulated thanks to
a cone of E, which is denoted by K. By definition a cone K of E is a set verifying
R++K ⊂ K, where R++ := {x ∈ R

n : x > 0} is the positive orthant (vectorial
inequalities must be understand componentwise; hence x > 0 means that xi > 0 for all
i ∈ [1 :n]). The dual cone of K is the closed convex cone defined by

K+ := {y ∈ E : 〈y, x〉E > 0 for all x ∈ K}.

The cone K is said to be self-dual if K+ = K. Hence, a self-dual cone is necessarily
closed and convex. The unknowns of the optimization problem we consider below are
elements of a vector space E that are constrained to belong to some self-dual cone K
and to satisfy some affine constraint.

More specifically, the vector space E considered in this project is the Cartesian
product

E := Sn1 × · · · × Sns × R
nl ,

where, for j ∈ [1 : s], Snj is the space of symmetric real matrices of order nj; it has di-
mension nj(nj+1)/2. This means that the unknowns of the optimization problem below
are s symmetric matrices of order n1, . . . , ns and a vector of variables of dimension nl.
An element x ∈ E will be denoted by

x = (xs,1, . . . , xs,s, xl),

where xs,j ∈ Snj , for j ∈ [1 : s], and xl ∈ R
nl (unusually, we have chosen to represent

matrices by lower case letters, because in E they are assembled with a vector denoted
by a lower case letter).

The scalar product on some Snj is defined and denoted by

5



6 1. The NT direction

〈·, ·〉Snj : (a, b) ∈ Snj × Snj 7→ 〈a, b〉Snj := tr ab =

nj∑

k,l=1

aklbkl,

where tr a :=
∑

i aii denotes the trace of the matrix a ∈ R
nj×nj . The associated norm

is the so-called Frobenius norm; its value at a ∈ Snj is denoted by

‖a‖Snj =





nj∑

k,l=1

a2kl





1/2

.

The Euclidean scalar product is supposed to equip R
nl . Finally the scalar product on

E takes at (x, s) ∈ E× E the value

〈x, s〉E :=
s∑

j=1

〈xs,j, ss,j〉Snj + (xl)T(sl).

The associated norm is

‖x‖E :=





s∑

j=1

‖xs,j‖2Snj + ‖xl‖22





1/2

.

A product of two symmetric matrices is not necessary symmetric. Since these prod-
ucts will appear below, it is natural to introduce the vector space

F := R
n1×n1 × · · · × R

ns×ns × R
nl,

where R
nj×nj denotes the set of square real matrices of order nj. Of course, E ⊂ F. The

dimension of F is given by

nF :=

s∑

j=1

n2j + nl. (1.1)

The space F has its own scalar product, which takes at (x, s) ∈ F× F the value

〈x, s〉F :=
s∑

j=1

tr(xs,j)T(ss,j) + (xl)T(sl). (1.2)

The associated norm is ‖x‖F := 〈x, x〉
1/2
F

. Clearly, when x and s ∈ E, 〈x, s〉F = 〈x, s〉E.
The vector space F appears for example, when one defines the Hadamard product of two
vectors x and s ∈ E, which is the vector

x s = (xs,1ss,1, . . . , xs,sss,s, xl · sl) ∈ F,

where xs,jss,j is the product of the matrices xs,j and ss,j and xl · sl is the standard
Hadamard product of two vectors, which is (xl · sl)i = xlis

l
i for all i ∈ [1 :nl]. The fact
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that x s may not be in E when x and s ∈ E will be a source of trouble in the sequel.
The double Hadamard product

x s v

is equivalently defined by (x s) v or x (s v).
The self-dual cone K of E considered in this project is a Cartesian product of cones,

namely
K := Sn1

+ × · · · × Sns
+ × R

nl
+ ,

where S
nj

+ is the of Snj and R
nl
+ := {x ∈ R

nl : x > 0} is the nonnegative orthant

(vector inequalities have to be understood componentwise: x > 0 iff xi > 0 for all i).
The cone K is self-dual since this is the case for S

nj

+ and R
nl
+ . This choice of K im-

plies that the unknown matrices in Snj of the optimization problem are forced to be
positive semidefinite and that the unknown vector in R

nl is forced to have nonnegative
components. We associate with K the operator minK : E → R defined at x ∈ E by

minK(x) = min

(

λmin(x
s,1), . . . , λmin(x

s,s), min
i∈[1 :nl]

xli

)

, (1.3)

where λmin(x
s,j) is the smallest eigenvalue of the symmetric matrix xs,j. Therefore

x ∈ K if and only if minK(x) > 0. The strict feasible sets of the optimization problems
(P ) and (D) defined below make use of the strict cone

Ks := Sn1

++ × · · · × Sns
++ × R

nl
++,

where S
nj

++ is the cone of positive definite matrices of Snj and R
nl
++ := {x ∈ R

nl : x > 0}
is the positive orthant (strict inequalities also act componentwise: x > 0 iff xi > 0 for
all i). Clearly, x ∈ Ks if and only if minK(x) > 0. For x = (xs,1, . . . , xs,s, xl) in Ks, one
can define

x−1 := ((xs,1)−1, . . . , (xs,s)−1, (xl)−1) ∈ Ks,

x1/2 := ((xs,1)1/2, . . . , (xs,s)1/2, (xl)1/2) ∈ Ks,

where the exponent −1 (resp. 1/2) refers to the inverse (resp. square root) of a positive
definite matrix or the componentwise inverse (resp. square root) of a positive vector.

A particular element of Ks, which is used continually below, is

e := (In1 , . . . , Ins , el),

where Inj is the identity matrix of order nj and el is the vector of all ones in R
nl.

Observe that

〈x s, e〉E = 〈x, s〉E and nc := ‖e‖2E =

s∑

j=1

nj + nl. (1.4)

The number nc is called the complexity module of the problem (hence the index c).
Note the difference with the dimension nF of the space F, defined in (1.1), in which the
square of the dimensions nj appears instead. We will see with (2.9) that the number of
iterations to reach optimality at a given precision depends on the square root of nc.
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1.1.2 The primal and dual SDCO problems

The primal (P ) and dual (D) self-dual conic optimization (SDCO) problems read

(P )







inf 〈c, x〉E
A(x) = b
x ∈ K

and (D)







sup bTy
A∗(y) + s = c
s ∈ K,

(1.5)

where c ∈ E, A : E → R
m is a linear map, b ∈ R

m, and A∗ : Rm → E is the adjoint
of A when R

m is equipped with the Euclidean scalar product. These problems are
Lagrangian dual to each other. They are convex in the sense that their objective is
convex and their feasible set is also convex. When s = 0 and nl 6= 0, one recovers the
linear optimization (LO) problem; when s = 1 and nl = 0, one recovers the standard
semidefinite optimization (SDO) problem.

The feasible sets of (P ) and (D) are respectively denoted by

FP := {x ∈ K : A(x) = b} and FD := {(y, s) ∈ R
m ×K : A∗(y) + s = c},

and their strictly feasible sets are denoted by

Fs
P := {x ∈ Ks : A(x) = b} and Fs

D := {(y, s) ∈ R
m ×Ks : A∗(y) + s = c}.

Accordingly, a point x ∈ Fs
P is said to be strictly feasible for (P ) and a pair (y, s) ∈ Fs

D

is said to be strictly feasible for (D). We also introduce the following Cartesian products

F := FP ×FD and Fs := Fs
P
×Fs

D
.

The solution sets of these problems are denoted by

Sol(P ) and Sol(D)

and their optimal values by

val(P ) and val(D).

The duality gap is zero if val(D) = val(P ) (with possible infinite values) and, otherwise,
is the nonnegative difference val(P )− val(D) > 0.

By the Riesz-Fréchet theorem, there are elements ai ∈ E such that for all x ∈ E,
there holds

A(x) =






〈a1, x〉E
...

〈am, x〉E




 . (1.6)

Each ai ∈ E is therefore an assembling of s matrices as,ji ∈ Snj , for j ∈ [1 : s], and a
vector in R

nl . It will be also assumed that the Euclidean scalar product is used on R
m,

in which case A∗(y) is a weighted sum of the vectors ai (see question 1.1):

A∗(y) =
m∑

i=1

yiai ∈ E. (1.7)
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1.1.3 The central path

It is known that when Fs 6= ∅, z := (x, y, s) is a primal-dual solution to (P ) and (D)
if and only if







A∗(y) + s = c, s ∈ K
A(x) = b, x ∈ K
〈x, s〉E = 0.

(1.8)

These may be considered as the necessary and sufficient optimality conditions of the
convex problems (P ) or (D), under the “constraint qualification condition” Fs 6= ∅ (it
is known, indeed, that “Fs 6= ∅ and the surjectivity of A” is equivalent to Robinson’s
constraint qualification [34] at one or any point of the feasible sets of the problems (P )
and (D) [10]). It can be shown (see question 1.2) that for x and s ∈ K, there holds

〈x, s〉E = 0 ⇐⇒ x s = 0. (1.9)

Therefore, (1.8) also reads







A∗(y) + s = c, s ∈ K
A(x) = b, x ∈ K
x s = 0.

(1.10)

We prefer (1.10) to (1.8), since then the “number of equations” in (1.10) is equal to the
“number of unknowns”. Indeed, the triple (x, y, s) lies in E× R

m × E and the equation
values are in the same space when x s ∈ E (this is certainly the case when x s = 0).

When A is surjective, the central path is the (image of the) map µ ∈ R++ 7→ z(µ) ∈
E×R

m×E, where z = z(µ) is the unique solution to the perturbed optimality conditions
(see question 1.3)







A∗(y) + s = c, s ∈ Ks

A(x) = b, x ∈ Ks

x s = µe.
(1.11)

When Fs 6= ∅, the central path converges to a primal-dual solution, when µ ↓ 0. The
goal of the path-following algorithms that we shall consider is to follow the central path
to reach a solution asymptotically.

1.2 The NT direction

1.2.1 Overview

Given a strictly feasible point z = (x, y, s) ∈ Fs ⊂ E×R
m×E, the goal of one iteration

of the primal-dual path-following interior-point (IP) algorithm we consider is to make a
displacement d in E×R

m×E towards a central point z(µ), for some µ > 0, that is “closer”
to the solution than the current iterate z. This displacement d = (dx, dy, ds) ∈ E×R

m×E

is a Newton step on the perturbed system (1.11) without its conic conditions x ∈ Ks

and s ∈ Ks (these will be enforced at each iteration), namely
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





A∗(y) + s = c
A(x) = b
x s = µe.

(1.12)

When z ∈ F is not on the central path, the point x s may not be in E, since its
matrix components may not be symmetric matrices. In that case, one should work with
more equations than unknowns in (1.12), which we wish to avoid. To tell it otherwise,
consider the linearization of the system (1.12) at z = (x, y, s), which is the system in
d = (dx, dy, ds): 





A∗(dy) + ds = c−A∗(y)− s
A(dx) = b−A(x)
dx s+ x ds = µe− x s.

If ds is in E by the first equation (since A∗ takes its values in E), there are examples [23]
showing that dx might not be in E (because x ds s−1 in the third equation is not
necessarily in E, by lack of symmetry of its matrix components). For this reason a
“symmetrization” operation must be introduced in addition to the linearization of the
system, in order to keep x+dx in E. This can be done using a large number of methods,
leading to many different IP directions. The one we consider in this project is the
Nesterov-Todd (NT) direction (called that way because of [28, 29, 39; 1997-1998], but
the direction might have been proposed independently and earlier in the later published
paper [38; 1999]). It is often implemented and it has the following features:

it preserves the primal and dual displacements dx and ds in E,
it is uniquely defined for any strictly feasible iterate z,
it is scale invariant,
it is less computation demanding than many other directions.

Another efficient direction is the so-called HKM direction (obtained independently in
[13, 18], see also [32]). It is also implemented in SDPT3, for instance.

1.2.2 Derivation of the NT direction

The NT direction d at z = (x, y, s) ∈ Ks × R
m ×Ks can be shortly presented as the

result of three operations [7].

1. Scaling. A weight w ∈ Ks is introduced, which is the unique element in Ks that
satisfies the identity (see question 1.4)

w s w = x. (1.13)

It is given by the formulas

w := x1/2
(

x1/2 s x1/2
)−1/2

x1/2 = s−1/2
(

s1/2 x s1/2
)1/2

s−1/2. (1.14)

Let us also introduce the scaled variable

v := w−1/2 x w−1/2 = w1/2 s w1/2 ∈ Ks. (1.15)
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Note that the vector component of w and v simply read

wl = (xl)1/2 · (sl)−1/2 and vl = (xl)1/2 · (sl)1/2. (1.16)

2. Symmetrization. If z = (x, y, s) is the current iterate, one would like to find a
displacement d = (dx, dy, ds) such that the third equation in (1.12) is satisfied at
z + d, namely

(x+ dx) (s + ds) = µe,

for some µ > 0 to be defined. After a left-Hadamard-multiplication by w−1/2 and a
right-Hadamard-multiplication by w1/2, this equation takes the equivalent form

(v + d̃x) (v + d̃s) = µe,

where
d̃x = w−1/2 dx w−1/2 and d̃s = w1/2 ds w1/2.

We now symmetrize the lhs of this equation as follows

1

2

[

(v + d̃x) (v + d̃s) + (v + d̃s) (v + d̃x)
]

= µe.

3. Pseudo-linearization (the term “pseudo” is used because the weight w, which de-
pends on the current iterate, is not linearized). The linearization consists in dropping
the Hadamard products d̃x d̃s and d̃s d̃x from the last identity, which then becomes

1

2

[

v (d̃x + d̃s) + (d̃x + d̃s) v
]

= µe− v v.

This is a Lyapunov equation in the unknown d̃x + d̃s. Since v ∈ Ks, it has a unique
solution, which is

d̃x + d̃s = µv−1 − v.

Left and right-Hadamard-multiplication of the two sides of this last equation by w1/2

yield the symmetric pseudo-linearization at z of the third equation in (1.12):

dx + w ds w = µs−1 − x.

Therefore, when z ∈ Fs, the NT direction is obtained by solving the following linear
system in d = (dx, dy, ds) ∈ E×R

m × E:

A∗(dy) + ds = 0 (1.17a)

A(dx) = 0 (1.17b)

dx +w ds w = µs−1 − x, (1.17c)

in which the value of µ still needs to be specified. We will see in section 1.2.4, that
when A is surjective, the system (1.17) has a unique solution, whatever is the right-
hand side (in particular, whatever is µ ∈ R).
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1.2.3 Computation of the weight w

The weight w given by (1.14) intervenes in the computation of the NT direction and
must be computed explicitly.

Each matrix components ws,j of w can be computed using two Cholesky factoriza-
tions and one singular value decompositions (SVD) [39; § 4.1]. The Cholesky factoriza-
tions are those of the matrix components in x ∈ Ks and s ∈ Ks:

xs,j = Lxs,jLT

xs,j and ss,j = Lss,jL
T

ss,j ,

where Lxs,j and Lss,j are lower triangular nonsingular matrices of order nj. The SVD
is the one of LT

ss,jLxs,j :

LT

ss,jLxs,j = UjΣjV
T

j .

where Uj and Vj are orthogonal matrices and Σj is the diagonal matrix formed of the
positive singular values of the nonsingular matrix LT

ss,jLxs,j . Define

Qj := L−1
xs,j(x

s,j)1/2,

which is an orthogonal matrix. It needs not be computed. Now, there holds

(xs,j)1/2ss,j(xs,j)1/2 = (xs,j)1/2 L−T

xs,jL
T

xs,j

︸ ︷︷ ︸

Inj

Lss,jL
T

ss,j
︸ ︷︷ ︸

ss,j

Lxs,jL−1
xs,j

︸ ︷︷ ︸

Inj

(xs,j)1/2

= QT

j L
T

xs,jLss,j
︸ ︷︷ ︸

VjΣjUT

j

LT

ss,jLxs,j

︸ ︷︷ ︸

UjΣjV T

j

Qj

= QT

j VjΣ
2
j V

T

j Qj .

From this identity and the orthogonality of QT

j Vj, it results

((xs,j)1/2ss,j(xs,j)1/2)−1/2 = QT

j VjΣ
−1
j V T

j Qj .

From the first identity in (1.13), we get

ws,j = (xs,j)1/2QT

j
︸ ︷︷ ︸

L
xs,j

VjΣ
−1
j V T

j Qj(x
s,j)1/2

︸ ︷︷ ︸

LT

xs,j

= Lxs,jVjΣ
−1
j V T

j L
T

xs,j .

Finally

ws,j = GjG
T

j , where Gj := Lxs,jVjΣ
−1/2
j . (1.18)

The vector component wl of w is easily computed by (1.16).
The matrices Gj and their transpose intervene below in (1.23), for which it is useful

to introduce the vectors in E :

g := (G1, . . . , Gs, (w
l)1/2) and g̃ := (GT

1 , . . . , G
T

s , (w
l)1/2), (1.19)

allowing us to write
w = g g̃. (1.20)
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1.2.4 Computation of the NT direction

A standard way of solving the system (1.17) defining the NT direction d consists in
eliminating first dx using the second and third equation, to get

A(w ds w) = A(µs−1 − x)

and eliminating next ds using the first equation:

A(w A∗(dy) w) = A(x− µs−1) (1.21)

Once dy is known, ds can be computed by the first equation in (1.17) and then dx by
the third equation in (1.17). So let us concentrate on ways of computing dy by (1.21).

We assume that A is surjective, which implies that (1.21) is a linear system in dy
with a positive definite linear operator, hence having a unique solution. Here are two
ways of computing dy by (1.21).

A first way of computing the solution dy to (1.21) is to write this equation as the
linear system in dy:

M(dy) = A(x− µs−1), (1.22)

where M : dy ∈ R
m 7→ A(w A∗(dy) w) ∈ R

m is a symmetric positive definite
(hence nonsingular) linear map and to form the “compact” (when m is small) m×m
coefficient matrix M. For i and j ∈ [1 :m], there holds

Mkl = [A(w A∗(el) w)]k

= 〈ak, w al w〉E [(1.6) and (1.7)]

= 〈ak, g g̃ al g g̃〉E [(1.20)]

= 〈g̃ ak g, g̃ al g〉E. (1.23)

Then, one takes the Cholesky factorization M = LMLT

M and solve (1.21).

Another way of computing dy is to observe that (1.21) or . . .

1.3 Implementation

1.3.1 Data representation

We propose to follow the apparent data structure used in SeDuMi.

An element x ∈ E is represented by a large vector of dimension nF. This large vector
is formed of the matrices xs,j ∈ Snj represented by a vector containing its nj × nj
elements (not only its symmetric part having nj(nj + 1)/2 elements) and the vector
xl ∈ R

nl .

This representation has the advantage of making many computations easy. For in-
stance the scalar product 〈x, s〉, for x and s ∈ E, is obtained in Matlab by x’*s if x
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is the nF vector representing x and s is the nF vector representing s. This makes the
design of the piece of software easier and also makes it more efficient computationally
(since there is no loop).

The above representation of the elements of E makes it necessary to often switch
between the vector and matrix representations of matrices. This can be done with
the Matlab functions mat and vec (see below), probably inexpensively if the result is
not safeguarded.

The linear operator A : E → R
m introduced in the primal and dual problems in (1.5)

is first represented by the vectors ai ∈ E, for i ∈ [1 :m], using (1.6). Then each vector
ai ∈ E is represented as an nF vector, as described in the first point, whose transpose
forms the ith row of a matrix A.

With these representations of A and x, the value A(x) is obtained in Matlab by A*x

and the value of A∗(y) is obtained by A’*y, which are elegant expressions, easy to
program and debug, and computationally efficient.

1.3.2 Calling statement

We propose to give to the sdco solver, the following Matlab function structure

[x,y,s,info] = sdco (A,b,c,K,x0,y0,options)

where

A is an m× nF representation of the linear operator A, as described in section 1.3.1;
b is an m real vector, representing the right hand side of the equality constraint in
(P );
c is an nF vector representing the vector c ∈ E, which determines the linear objective
in (P );
K is a Matlab structure describing the structure of the vectors x ∈ E:

◦ K.s is the Matlab vector [n1; n2; ...; ns], providing the orders nj = nj, for
j ∈ [1 : s], of the matrices xs,j;

◦ K.l is the length nl of the vector xl;

x0 is an nF vector representing the vector x0 ∈ E, which is the initial guess of the
primal solution x;
y0 is an m-vector, which is the initial guess of the dual solution y ∈ R

m; s0 is then
deduced form y0 by s0 := c−A∗(y0);
options is a structure of possible options, which will be described in other session;
this one can be used to select some features of the algorithm, like the threshold to
decide optimality;
x is an nF vector representing a vector x ∈ E, which gives the primal solution x if
any;
y is an m vector, giving the dual solution y if any;
s is an nF vector, giving the dual solution s if any; it is linked to y by s = c−A∗(y);
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info is a structure providing information of the run (success, failure, primal/dual
infeasibility, primal/dual unboundedness, duality gap, etc).

1.3.3 Matlab functions

Here are a few useful Matlab functions.

L = chol(A,’lower’) computes the Cholesky factorization of A = LLT, where L
is lower triangular (only the lower triangular part of A is used).
[U,S,V] = svd(A) computes the singular value decomposition (SVD) of a real nF×
nF matrix A = USV T, where U and V are orthogonal matrices and S is diagonal
with nonnegative entries (the singular values of A).
M = mat(v) converts an n2 vector v into an n× n matrix M, such that the columns
of M are stacked below each other in v. In some version of Matlab, this function does
not exist but can be simulated using reshape. The reverse operation is realized by
vec.
[Q,R] = qr(A,0) computes the QR factorization of a real m× n matrix A = QR,
where Q is orthogonal and R is upper triangular. The second zero argument is useful
when m > n (our case), in which case, only the first n column of Q and the first n
rows of R are computed.
v = vec(M) converts an m×n matrix M into an mn vector v, stacking the columns
of M below each other in v. In some version of Matlab, this function does not exist
but can be simulated using reshape. The reverse operation is realized by mat.

It is useful to introduce a Matlab function computing the Hadamard product of two
vectors x and s in E:

[hdot] = sdco_hdot (x,s,K)

Using this function and introducing a matrix B whose kth column is g̃ ak g, the
expression (1.23) of M simply reads BTB.

1.3.4 Test case 1a: an easy SDO problem of dimension 3

Consider the semidefinite optimization (SDO) problem in y ∈ R
3, written in standard

dual form 





sup eTy




1− y1 −y3 −y2
−y3 1− y2 0
−y2 0 1− y3



 < 0,

where e ∈ R
3 is the vector of all ones. It is easily verified that x0 = I3 and (y0, s0) =

(0, I3) are strictly feasible for the primal and dual problems respectively, so that these
problems have a solution without duality gap. There holds bTy0 = 0 < 3 = 〈c, x0〉, so
that z0 := (x0, y0, s0) is not a primal-dual solution.
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1.3.5 Test case 1b: a simple LO problem of dimension 2

Consider the following linear optimization (LO) problem in only 2 variables and a single
affine constraint, which reads







inf x1 + x2
x1 + 2x2 = 1
x > 0.

The initial primal and dual variables are

x0 :=

(
1/3
1/3

)

and y0 := 0,

which are strictly feasible points.

1.3.6 Test case 1c: two SDO problems and one LO problem in parallel

The goal of this problem is to test to capacity of the developed solver to deal simulta-
neously with two positive semidefinite matrices and one nonnegative vector as primal
variables. The problem consists in solving in parallel two copies of the semidefinite op-
timization problems of test case 1a, each one starting from a different matrix, and one
addition linear optimization (LO) problem.

Denote by c the gradient of the objective of the primal expression of test case 1a
and by A(x) = b its affine constraint. Then the primal expression of test case 1c is the
following problem in x = (xs,1, xs,2, xl) ∈ S3 × S3 × R

2







inf 〈c, xs,1〉+ 〈c, xs,2〉+ (e2)Txl

A(xs,1) = b
A(xs,2) = b
xl1 + 2xl2 = 1
xs,1 < 0, xs,2 < 0, xl > 0,

The initial primal and dual variables are

xs,10 := I3, xs,10 :=





1 0 1/4
0 1/2 0
1/4 0 1



 , xl0 :=

(
5−

√
17

2
−3+

√
17

4

)

, and y0 := −1+
√
17

4 ,

which are strictly feasible points.

Notes

There are various Matlab SDCO solvers. Having a look at SeDuMi [37, 35] is certainly a
good idea, since sdco may be viewed as a reduced feature version of that solver. Another
source of inspiration is SDPT3 [40].
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Questions

When a question starts with a number within braces, the number gives an indication on
the difficulty of the question, with respect to the chapter (some questions will be easier
to answer when subsequent chapters will be known). This indication ranges from 1
to 5: 1 for easy-or-classical and short arguments, 2 for easy-or-classical arguments, 3
for arguments requiring specific knowledge, 4 for more difficult arguments, 5 for very
difficult arguments or when a advanced computer program must be written to answer
the question.

1.1. {1} Adjoint of A. Show that the adjoint of the linear map A : E → R
m defined by

(1.6) is given by (1.7) when R
m is equipped with the Euclidean scalar product.

1.2. {2} Towards a square optimality system. Show the equivalence (1.9) when x and s
are in the cone K.

1.3. {2} Unique central point. Show that (1.11) has a unique solution z = (x, y, s) ∈
E× R

m × E, provided A is surjective.

1.4. {2} Weight w. Show that, when x and s ∈ Ks, the identity (1.13) has a unique
solution w ∈ Ks, which is given by (1.14).

1.5. {5} On test cases 1a, 1b, and 1c. Consider test cases 1a, 1b, and 1c. Let z0 :=
(x0, y0, s0) and d0 be the NT direction computed at z0 for some µ.

1) {1} Is z0 on the central path?
2) {5} Compute the NT direction for µ = 0 by a computer program.
3) {1} Is z1 = z0 + d0 a primal-dual solution to the problem if µ = 0?





2 A predictor-corrector algorithm

2.1 Algorithmic techniques

2.1.1 The closest central point

In a path-following algorithm, the first question that arises deals with the determination
of the central point z(µ) to which the current iterate z := (x, y, s) is the closest. Indeed,
in such an algorithm, the next iterate aims a point on the central path C and gets close
to it by a Newton step, provided this central point is not too far from z. If we want the
iteration to make a progress towards the solution it is necessary that this aimed central
point be closer to the solution than the central point that is the closest to z, hence the
necessity to determine the latter.

Finding the closest central point is not a well defined concept, actually, since the
central path is not a convex set, making the projection on C not well defined. To
overcome the difficulty, we look instead to the closest central point in a transformed
space in which the central path becomes a half-line. The transformation is

τ : z = (x, y, s) ∈ F 7→ x s ∈ F.

This transformation is certainly not a bijection, but it turns out to be useful, which
is enough to make it appropriate. Since C := {z ∈ F : x s ∈ R++I}, it follows that
τ(C ) = R++I. Then, by the convexity and closedness of τ(C ), it makes sense to look
for the point in τ(C ) that is the closest to τ(z). That problem simply reads

min
µ>0

‖x s− µe‖2F. (2.1)

It has a unique solution (see question 2.1), which is

µ(z) :=
〈x, s〉E
nc

, (2.2a)

where nc is given by (1.4). The closest central point is therefore “considered” to be the
one on the central path with the parameter µ = µ(z). This is not irrelevant, since when
z ∈ C , it is clear that the closest central point to z in the preceding sense is z itself;
reassuring.

19
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2.1.2 Neighborhood of the central path

Experimentation has convinced the algorithmicians that it is not good to let the iterates
going too far from the central path C or, more correctly, too close to the boundary of
the feasible set F (it is not the same thing actually, since the “central” path may be
close to the boundary of F [8]). When z is close to that boundary, the stepsize along
the Newton direction may be very small, so much as to prevent any progress to the
solution: the iterates get stuck on the boundary of F . For this reason, the iterates are
maintained in some neighborhood of the central path, often the one that we now define.
Recall that the central path is an analytic concept (not a geometric one, depending only
on the feasible set), so that this is a second best solution.

Observe first that for a point z ∈ Fs:

x s = µI ⇐⇒ v v = µI ⇐⇒ µ1/2v−1 = µ−1/2v, (2.3)

where v := w−1/2 x w−1/2 = w1/2 s w1/2 ∈ Ks was already defined in (1.15) and
w ∈ Ks was already defined in (1.14) as the unique solution to (1.13). Then one defines
a proximity measure of the central point z(µ) by ([15] and [7; § 7.1]):

δµ : z ∈ Fs 7→ δµ(z) :=
1

2

∥
∥
∥µ1/2v−1 − µ−1/2v

∥
∥
∥
E

∈ R. (2.4)

Observe now that for a point z ∈ Fs:

z ∈ C ⇐⇒ x s = µ(z)I. (2.5)

Therefore, it makes sense to define a proximity measure of the central path by

δ : z ∈ Fs 7→ δ(z) := δµ(z)(z). (2.6)

Accordingly, for θ ∈ [0, 1[, one introduces the following neighborhood of the central path

V(θ) := {z ∈ Fs : δ(z) 6 θ}.

We note that, since w = g g̃ by (1.20), there holds

δ(z) =
1

2

∥
∥
∥g̃

(

µ(z)1/2x−1 − µ(z)−1/2s
)

g
∥
∥
∥
E

, (2.7)

so that the distance can be computed efficiently.

2.1.3 A predictor-corrector algorithm

The predictor-corrector algorithms are the most often implemented interior-point meth-
ods. We essentially give the description of the Mizuno-Todd-Ye predictor-corrector

method [26, 7], whose iteration is composed of two phases: a corrector phase, followed
by a predictor phase (in reverse order, in a way).
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The corrector phase starts with an iterate z ∈ V(1/3). Its goal is to compute an
intermediate iterate z′, close enough to the central path, so that the predictor step
that follows will compute a subsequent iterate z+ again in the neighborhood V(1/3).
This goal is achieved by making a displacement along the NT direction with µ =
µ(z), say dc (known as the centering direction), and a unit stepsize. The intermediate
iterate is then

z′ := z + dc.

The predictor phase, which follows the corrector step, starts with z′ ∈ Fs and
consists in making a displacement along the NT direction with µ = 0, say da (known
as the affine-scaling direction). The stepsize α > 0 along that direction is given by
the formula (no need of linesearch, provided a condition given below is fulfilled)

α =
2

1 + [1 + 13‖d̃ax d̃as + d̃as d̃ax‖E/(2µ(z
′))]1/2

, (2.8a)

where
d̃ax = w−1/2 dax w−1/2 and d̃as = w1/2 das w1/2.

Note that the matrix w is computed at z′, not at z (hence by (1.14) with (x, s)
changed into (x′, s′)). It can be shown that

‖d̃ax d̃as + d̃as d̃ax‖E = ‖g−1 dax das g + g̃ das dax g̃−1‖E, (2.8b)

where g and g̃ are defined by (1.19), so that the computation of this norm can be
done efficiently.

Note that for the vector parts of dax and das , there holds

d̃axl · d̃
a
sl = d̃asl · d̃

a
xl = daxl · d

a
sl ,

so that the weight w does not intervene.

The stepsize (2.8) is small enough to ensure that the next iterate

z+ := z′ + αda

is in the neighborhood V(1/3) and large enough to ensure the polynomiality of the
algorithm (see below).

Algorithm 2.1.1 (predictor-corrector) A tolerance ε > 0 on µ(z) is given to
determine when stopping the iterations. The iteration from z to z+ starts at some
z ∈ V(1/3).

1. Stopping test. If µ(z) 6 ε, stop.
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2. Corrector phase. Compute the NT direction at z with µ = µ(z), denote it dc

(centering direction). Take as next iterate

z′ := z + dc.

3. Predictor phase. Compute the NT direction at z′ with µ = 0, denote it da

(affine-scaling direction), and the stepsize α given by (2.8). Set

z+ := z′ + αda.

It can be shown [7] that α given by (2.8) satisfies

α >
2

1 + [1 + 13nc/2]1/2
,

which implies the polynomiality of the algorithm, with the iteration complexity

K :=

⌈(

1 +

√

1 +
13nc
2

)

log
µ(z0)

ε

⌉

. (2.9)

This means that if the algorithm starts with z0 ∈ V(1/3), it ends up with zK satisfying
µ(zK) 6 ε, where the number K of iterations is given by (2.9).

2.2 Implementation

2.2.1 Recommendations

It is important to check numerically that the following formula is verified after each
step αd from a point z ∈ Fs, where α > 0 and d is the NT direction computed for
a certain µ (see question 2.2):

µ(z + αd) = (1− α)µ(z) + αµ. (2.10)

In particular, µ(z′) = µ(z) and µ(z+) = (1 − α)µ(z), showing that the progress to
the solution is made by the prediction step. Observe indeed that z∗ is a solution if
and only if z∗ ∈ Fs and µ(z∗) = 0, so that the goal of the algorithm is to force the
decrease of µ(z).

Note finally that if µ = µ(z), then (2.10) shows that µ(z+αd) is the constant µ(z),
whatever is α > 0.

The value of α given by (2.8) may be very close to one, or even equal to one. This
usually yields vectors x and/or s that are no longer in the cone K. In this case, the
algorithm gets stuck in a Cholesky factorization. Limiting this computed value to

options.max_stepsize = 0.999

or so, may help the algorithm to go further and compute a more precise solution.
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2.2.2 Test cases 2: minimum matrix norm

We consider the minimum matrix norm problem which reads

min
v∈Rp

‖B(v)‖2 , (2.11)

where B(v) := B0 +
∑p

i=1 viBi, the matrices Bi ∈ R
q×r and ‖ · ‖2 denotes the ℓ2-norm.

This problem is convex, but nonsmooth. It can be expressed as an SDO problem as
follows.

Problem (2.11) can be rewritten mint,v{t : ‖B(v)‖22 6 t2}. Using the Schur com-
plement technique, it can be verified that this last problem can also be written as the
following SDO problem in dual form [41]:







max(t,v)∈R×Rp −t
(

tIq B(v)
B(v)T tIr

)

< 0.
(2.12)

This problem has dimension n = q+ r and m = p+1. One can also easily find a strictly
feasible primal-dual point (question 2.4).

Notes

The proximity measure δ defined by (2.6) was introduced by Jiang [15], extending to
semidefinite optimization a similar measure introduced by Jansen et al. [14] in linear
optimization.

Questions

2.1. {1} Formula of µ(z). Show that the solution to problem (2.1) is given by (2.2).

2.2. {2} Evolution of µ(z) along the NT direction. Show formula (2.10).

2.3. {5} On test cases 1a, 1b, and 1c. Using your solver, find a solution to test cases 1a,
1b, and 1c.

2.4. {5} On test case 2.

1) {1} Show that, in standard notation, z0 = (x0, y0, s0), with

x0 =
1

q+r I
q+r, y0 = (t0, v0) = (‖B0‖2 + 1, 0), and s0 =

(
t0I

q B0

BT
0 t0I

r

)

is a strictly feasible primal-dual point for problem (2.12).
2) {5} Using your solver, find a solution to problem (2.11), equivalent to prob-

lem (2.12), with, say p = 2, q = 2, r = 2, and random data for the matrices
Bi ∈ R

q×r, with i ∈ [0 : 2].





3 Finding an appropriate starting point

The predictor-corrector algorithm that was presented in section 2.1.3 assumes that the
first iterate is strictly feasible and is in some neighborhood V(θ) of the central path.
In this section, we consider a method to get such a point, provided a strictly feasible
primal-dual point z0 = (x0, y0, s0) is known. This idea is to minimize a primal-dual
merit function that has a central point as unique minimizer, starting the minimization
process at z0. The NT direction can be used to force the decrease of that merit function.

3.1 Getting a feasible point close to the central path

We use on E×R
m × E the scalar product inherited from those on E and R

m, which at
z = (x, y, s) and z′ = (x′, y′, s′) is denoted by and takes the value

〈z, z′〉 = 〈x, x′〉E + yTy′ + 〈s, s′〉E.

The associated norm is denoted by ‖ · ‖.

3.1.1 A primal-dual merit function

We investigate the simple idea that consists in minimizing approximately on Fs a func-
tion

ϕµ : E× R
m × E → R ∪ {+∞},

whose unique minimizer in Fs is the central point z(µ), that is the unique solution to
the perturbed optimality system (1.11). There are several possibilities for ϕµ, including
a function defined only on E (see the indication given for solving exercise 1.3). We prefer,
however, using a function defined on E× R

m × E that can be minimized using the NT
direction, which has already been implemented.

With that objective in mind, we follow [7; § 7.1] by defining the function ϕµ at
z ∈ E× R

m × E by
ϕµ(z) := 〈x, s〉E + µψ(x s), (3.1)

where µ > 0 is a fixed parameter and ψ : F → R ∪ {+∞} is defined at v ∈ F by

ψ(v) =

s∑

j=1

ld vs,j −

nl∑

i=1

log vli.

25
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This expression makes use of the self-concordant barrier [27, 33] ld : Rn×n → R∪{+∞}
of the cone of positive definite matrices that are not necessarily symmetric, defined at
M ∈ R

n×n by

ld(M) =

{
− log detM if detM > 0
+∞ otherwise.

(3.2)

It can be shown that, when Fs 6= ∅ and A is surjective, ϕµ is strictly convex on Fs

and has the central point z(µ) as unique minimizer on Fs (see exercise 3.1). This has
for consequence that generating iterates in Fs that minimize ϕµ will eventually provide
a point in V(θ) for some prescribed θ > 0.

3.1.2 Use of the NT direction

Now, the question arises to see whether ϕµ can be minimized using the NT direction.
The next result shows that the NT direction d defined at z ∈ Fs, with the parameter
µ > 0, is a descent direction of ϕµ. It also provides with (3.3) the value of the directional
derivative of ϕµ along the NT direction.

Proposition 3.1.1 (decrease of the primal-dual barrier along the NT
direction) Let d be the NT direction at a point z ∈ Fs for some µ > 0. Then

〈∇ϕµ(z), d〉 = −4µ δµ(z)
2, (3.3)

where δµ is defined by (2.4). Furthermore, the following properties are equivalent:

(i) z 6= z(µ),
(ii) d 6= 0,
(iii) 〈∇ϕµ(z), d〉 < 0.

Proof. Using point 1 of exercise 3.1, one gets

〈∇ϕµ(z), d〉 = 〈s− µx−1, dx〉E + 〈x− µs−1, ds〉E.

Using the scaling vector w defined by (1.14) and the scaled directions d̃x := w−1/2 dx
w−1/2 and d̃s := w1/2 ds w1/2, one gets

〈∇ϕµ(z), d〉 = 〈s− µx−1, w1/2 d̃x w1/2〉E + 〈x− µs−1, w−1/2 d̃s w−1/2〉E.

It is known, from (1.15), that v := w−1/2 x w−1/2 = w1/2 s w1/2 and, from (1.17c),
that d̃x + d̃s = µv−1 − v, so that

〈∇ϕµ(z), d〉 = 〈v − µv−1, d̃x + d̃s〉E

= −‖v − µv−1‖2E

= −µ‖µ−1/2v − µ1/2v−1‖2E

= −4µδµ(z)
2 [(2.4)],
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which is (3.3). The next equivalences follow easily. ✷

Note that if µ is set to µ(z), if d is the NT direction computed for that µ, and if a
stepsize α > 0 is taken along d to force the decrease of ϕµ, then µ(z + αd) = µ(z) by
(2.10), so that an NT direction at z + αd with µ = µ(z + αd) will also be a descent
direction of the same merit function ϕµ.

Proposition 3.1.2 (distance to the central path after a NT step) Let d be

the NT direction at a point z ∈ Fs for µ := µ(z). Then the distance δ to the central

path satisfies the inequality

δ(z + d) 6
δ(z)2

√

2(1 − δ(z)2)
. (3.4)

Proof. Adapt the proof of [7; lemma 7.4]. ✷

3.1.3 An algorithm

A consequence of the fact that z(µ) uniquely minimizes ϕµ (exercise 3.1) and propo-
sition 3.1.1 is that, to get closer to the central path, it makes sense to minimize the
function ϕµ, with µ = µ(z), along the NT direction, using a linesearch technique. Fur-
thermore, from (3.4) in proposition 3.1.2,

δ(z) 6

√

2τ2

1 + 2τ2
=⇒ δ(z + d) 6 τδ(z),

so that, choosing τ < 1, the distance decreases linearly without the need to make
linesearch, as soon as δ(z) 6

√

2τ2/(1 + 2τ2), which is <
√

2/3. Inequality (3.4) also
tells us that the distance δ(z) converges to zero quadratically.

This discussion leads to the following algorithm, which compute a point in the neigh-
borhood V(θ) of the central path, starting from a point some given z ∈ Fs.

Algorithm 3.1.3 (getting a point in V(θ)) The algorithm uses three parame-
ters: the scalar θ > 0 specifying the neighborhood to reach, a desired linear speed
of convergence τ < 1 close to 1, and a linesearch parameter ω > 0 close to zero.
Typically θ = 1/3, τ ≃ 0.99, and ω ≃ 10−4. Let z ∈ Fs.

Repeat until z ∈ V(θ).

1. NT direction. Compute the NT direction at z with µ := µ(z), denote it dc.
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2. Stepsize α. If δ(z) 6
√

2τ2/(1 + 2τ2), take α = 1. Otherwise, find the largest α
of the form 2−i with i ∈ N such that

ϕµ(z + αdc) 6 ϕµ(z) − 4ω µα δ(z)2. (3.5)

3. Next iterate. Set the next iterate z to z + αdc.

The previous algorithm hides a serious difficulty, which may occur during the line-
search in (3.5), which evaluates the quality of the trial stepsize α. By definition, the
function ϕµ(z) = +∞ when z /∈ Ks. This fact may not be seen by simply evaluating
xs,jss,j (resp. xlis

l
i), which may be positive definite (resp. positive) even when xs,j |≻ 0

or ss,j |≻ 0 (resp. when both xli < 0 and sli < 0). Therefore, the correct evaluation
of ϕµ requires to check that, for all j ∈ [1 : s] and all i ∈ [1 :nl] : x

s,j ≻ 0 and ss,j ≻ 0
(either by the computation of the minimum eigenvalues of xs,j and ss,j or by doing their
Cholesky factorizations) and that xli > 0 and sli > 0.

3.2 Implementation

3.2.1 Test case 3: global minimization of a univariate polynomial

We consider the problem of finding the global minimum of a univariate real polynomial

p ∈ R[x], in the variable x ∈ R, which reads

min
x∈R



p(x) :=
∑

α∈[0 : d]
pα x

α



 , (3.6)

where pα ∈ R and d ∈ N is the degree deg p of the polynomial p. Problem (3.6) can be
rewritten as an SDO problem.

First, we write (3.6) as a problem with an infinite number of constraints:

{
maxs∈R s
p(x) > s, ∀x ∈ R.

This infinite number of constraints “disappears” if we trivially express them in terms of
membership to the cone P of univariate nonnegative polynomials:

{
maxs∈R s
p− s ∈ P.

(3.7)

It turns out that membership to P has an LMI representation (this is no longer true
for multivariate polynomials, but there are bypasses [30, 19, 21, 2, 3, 22]). That fact
is based on the following two properties: a univariate nonnegative polynomial can be
written as a sum of squares (SOS) of polynomials (proposition 3.2.1, which is no longer
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true for multivariate polynomials) and an SOS polynomial can be represented thanks
to a positive semidefinite matrix (proposition 3.2.2, which is still true for multivariate
polynomials).

Proposition 3.2.1 (nonnegative univariate polynomial) A univariate poly-

nomial p ∈ R[x] is nonnegative on R if and only if it is of even degree, say 2m, and

reads p = q2 + r2, with q, r ∈ R[x], deg q = m, and deg r 6 m− 1.

Proof. The given conditions are clearly sufficient. Let us show that they are necessary.
Being nonnegative on R the polynomial is necessary of even degree, say 2m, and the

leading coefficient is positive. There is therefore no loss of generality in supposing that
this leading coefficient is 1. Then the polynomial can be decomposed in m factors of
the form

(x− a)2 + b2.

It is indeed the form of (x− r)(x− r̄) when r and r̄ are complex conjugate roots a± ib.
On the other hand, any real root has an even multiplicity (otherwise the polynomial
would have positive and negative values around the root) and each double root is of the
form above with b = 0.

The m factors of the form q2 + r2 are then multiplied successively, by using the
following formula

(q2j + r2j )(q
2 + r2) = (qjq + rjr)

2 + (qjr − rjq)
2 =: q2j+1 + r2j+1.

By induction, we see that deg qj = j and deg rj 6 j − 1. It is indeed the case for j = 1
since deg q1 = 1 and deg r1 = 0. Now, be r vanishing or not, deg qj+1 = deg qj+1 = j+1.
Finally, if r = 0, deg rj+1 = deg rj+1 6 j and, if r 6= 0, deg rj+1 6 max(deg qj,deg rj+
1) 6 j. ✷

Proposition 3.2.2 (caracterization of SOS polynomials) A polynomial p ∈
R[x] of degree 6 2m is a sum of r squares of polynomials if and only if there exists

a matrix S < 0 of order m + 1 and of rank 6 r such that p(x) = vm(x)TSvm(x),
where vm(x) is the vector of monomials (1 x x2 . . . xm)T.

Proof. [⇒] If p ∈ R[x] is of degree 6 2m and reads
∑r

i=1 σ
2
i , where σi ∈ R[x], the

degrees deg σi 6 m. Therefore, on can find vectors si ∈ R
m+1 such that

p(x) =

r∑

i=1

(sTi vm(x))2 =

r∑

i=1

vm(x)Tsis
T

i vm(x) = vm(x)TSvm(x),

where S :=
∑r

i=1 sis
T

i < 0 is of rank 6 r.
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[⇐] Conversely, suppose that p(x) = vm(x)TSvm(x), with S < 0 of rank 6 r. The
spectral decomposition of S =

∑r
i=1 sis

T

i allows us to write

p(x) =
r∑

i=1

vm(x)Tsis
T

i vm(x) =
r∑

i=1

(sTi vm(x))2,

showing that p is the sum of the squares of at most r polynomials. ✷

Using the above propositions and setting s = −t, problem 3.7 can be written







min(S,t)∈Sm+1×R t

p(x) + t = vm(x)TSvm(x), ∀x ∈ R

S < 0.

(3.8)

Knowing p, the first constraint in (3.8) is an affine constraint on the unknown t ∈ R

and the unknown real coefficients of S, if we impose equality between the coefficients of
the same monomials in both sides of the equality. Therefore, problem (3.8) is almost in
the primal form of an SDO problem. The difference is the free variable t, which is only
constrained by the affine constraint in (3.8), not by a nontrivial cone.

At least two techniques could be considered to solve this problem, which is not in
the standard form of the primal SDO problem.

1. Introduce additional free variables xf ∈ R
p in the SDCO model (1.5) (by free

variables, we mean variables that are forced to satisfy the affine constraint but not
to belong to an additional cone).

2. Write t = u− v and impose u > 0, v > 0. The standard SDCO model (1.5) can be
used with s = 1, n1 = m+ 1, nl = 2,

x =





S
u
v



 , c =





0m+1

1
−1



 , (3.9)

where Om+1 is the zero matrix of order m + 1, and A is the map linking linearly
the cofficients of p(x) + u− v and those of vm(x)TSvm(x).

We suggest using the second approach, which has the advantage of allowing us to use
the so far developped code without modification. Actually, some authors [40] decompose
each free variable into the difference of two nonnegative variables, as we did it for t above,
since their numeerical treatment seems to introduce difficulties.

Notes

Proposition 3.1.1 is taken from [7; p. 117] and proposition 3.1.2 from [7; lemma 7.4].
The proof of proposition 3.2.1 is taken from [31; VI 44].
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Questions

3.1. {3} Computing a central point by primal-dual minimization. Suppose that Fs 6= ∅

and that A is surjective. Let ϕµ be given by (3.1) for some µ > 0 and ld be given
by (3.2). Show that

1) {3} for z and d ∈ F× R
m × F, there hold

∇ϕµ(z) =





s− µx−1

0
x− µs−1



 and ∇2ϕµ(z) d =





µx−1 dx x−1 + ds
0

dx + µ s−1 dx s−1



 ,

2) {3} ϕµ is strictly convex on Fs,
3) {3} the central point z(µ) is the unique minimizer of the problem

inf
z∈Fs

ϕµ(z). (3.10)

3.2. {5} Approaching the central path. Implement algorithm 3.1.3 and try it on the test
case 2 defined in section 2.2.2, with various values of the parameters p, q, r, and
random data for the matrices Bi ∈ R

q×r, with i ∈ [0 : p]. The data of this test case
can be recovered by entering

[A,b,c,K,x0,y0] = testcase_2 (p,q,r);

where p, q, r are the parameters (p, q, r).

3.3. Getting the global minimizer of a univariate polynomial. Write the dual of problem
(3.8) and show that this one yields the global minimizer of p, provided this one is
unique.





4 Dealing with infeasibility with the big M approach

4.1 Starting from an infeasible point

In all this section, we assume that an initial x0 ∈ E is known, which satisfies the equality
constraint

A(x0) = b. (4.1)

Having a pair (y0, s0) satisfying the affine constraint of the dual problem makes no
difficulty, since y0 can be taken arbitrarily and s0 can be set to c − A∗(y0). A way of
getting a point x0 ∈ E satisfying (4.1) is described in section 4.1.1.

We then discuss the so-called big M methods for solving the SDCO problem from
a point z0 = (x0, y0, s0) satisfying (4.1) and A∗(y0) + s0 = c but not the conditions
x0 ∈ Ks and s0 ∈ Ks that would make z0 strictly feasible and for which the algorithm
of chapter 3 could be used. The case when x0 ∈ Ks and s0 /∈ Ks is considered in
section 4.1.2, the case when x0 /∈ Ks and s0 ∈ Ks is considered in section 4.1.3, and
the case when x0 /∈ Ks and s0 /∈ K

s is considered in section 4.1.4.
The contents of this section is adapted from [41; § 6].

4.1.1 Getting primal affine feasibility

We assume below that A : E → R
m has the following natural extension from E to F,

denoted
AF : F → R

m.

This one is constructed as follows. First, we take the expression (1.6) of A, with vectors
ai ∈ E, for i ∈ [1 :m]. Then, for x ∈ F, each component [AF(x)]i of AF(x) is defined
to be [AF(x)]i = 〈ai, x〉F. Obviously, the restriction of AF to E is A, which is what we
mean by “extension”.

Now, if x0 ∈ E satisfying (4.1) is not given by the user of the solver, this one should
compute such a point or claim that (4.1) has no solution x0 ∈ E. The solver can proceed
as follows.

The first step is to check whether b ∈ R(AF). This can be done using linear algebra
techniques. If this is not the case, the primal problem is infeasible and there is no
reason to go further.
Otherwise, we claim that (4.1) has a solution (in E). This one can be obtained by
first computing x ∈ F satisfying the affine constraint

33
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AF(x) = b (4.2a)

and then symmetrizing it by taking

xl0 := xl and xs,j0 =
1

2

(

xs,j + (xs,j)T
)

, ∀ j ∈ [1 : s]. (4.2b)

It is asked in question 4.1 to verify that x0 ∈ E obtained in that manner is indeed a
solution to (4.1).

4.1.2 Starting from a strictly feasible primal point

We assume in this section that a strictly feasible primal point x0 ∈ Fs
P

is known,
meaning that

A(x0) = b and x0 ∈ Ks, (4.3)

but that s0 /∈ Ks.
Generally speaking, the big M method to solve the SDCO problem when a strictly

feasible point is not available, using the technique of chapter 3, consists in introducing a
modified SDCO problem that has the same solutions as the original problem, provided
a parameter M in the modified SDCO problem is “large enough” (hence the words
“big M ”), and for which it is easy to find a strictly feasible point. The technique has
therefore an effect that is similar to an exact penalty method.

In case (4.3) holds, the modified SDCO problem is obtained from a modification of
the dual problem, for which a strictly feasible point is not known. The dual problem
becomes the problem in (y, η, s) ∈ R

m × R× E (the modified parts are in red):







sup bTy −M1η
A∗(y)− ηe+ s = c
s ∈ K
η > 0.

(4.4)

The new parameter η is used to realize feasibility easily (see below). This nonnegative
parameter is then forced to be as small as possible by taking M1 “sufficiently” large (the
rational is that, when η = 0, the original dual problem (D) is recovered). We claim that

problem (4.4) can be cast as a standard dual SDCO problem, for which a strictly
feasible point is easy to determine,
its primal-dual solutions are the same as the original problem, provided M1 is chosen
“sufficiently large” and the dual problem is feasible.

Let us see this.
One can cast problem (4.4) as the standard dual SDCO problem with Ẽ := E × R,

K̃ = K × R+, and the dual variable (ỹ, s̃) ∈ R
m+1 × Ẽ that solves







sup b̃Tỹ

Ã∗(ỹ) + s̃ = c̃

s̃ ∈ K̃.

(4.5)



4.1. Starting from an infeasible point 35

This problem is identical to problem (4.4) provided the vectors b̃ and ỹ ∈ R
m+1, the

adjoint linear map Ã∗ : Rm+1 → Ẽ, and the vectors s̃ and c̃ ∈ Ẽ are defined by

b̃ =

(
b

−M1

)

, ỹ =

(
y
η

)

, Ã∗(ỹ) =

(
A∗(y)− ηe

−η

)

, s̃ =

(
s
σ

)

, and c̃ =

(
c
0

)

.

It is easy to get a strictly feasible point for this model by taking

y0 arbitrary, η0 = σ0 > [minK(c−A∗(y0))]
−, and s0 = c−A∗(y0) + η0e,

where minK has been defined by (1.3) and α− := max(0,−α).
We know that (4.5) is the dual of







inf 〈c̃, x̃〉
Ẽ

Ã(x̃) = b̃

x̃ ∈ K̃,

(4.6)

where x̃ = (x, ξ1) ∈ E× R. Now, Ã : Ẽ → R
m+1 is defined at x̃ by

Ã(x̃) =

(
A(x)

−〈e, x〉E − ξ1

)

.

Therefore, problem (4.6) also reads







inf 〈c, x〉E
A(x) = b
〈e, x〉E + ξ1 =M1

x ∈ K
ξ1 > 0.

(4.7)

A strictly feasible point (x0, ξ1,0) for (4.6)-(4.7) can be

the known x0 and ξ1,0 =M1 − 〈e, x0〉E,

provided M1 > 〈e, x0〉E.
The proposed approach consists in solving (4.7)-(4.4), or equivalently (4.6)-(4.5) in

standard form, from a strictly feasible primal-dual pair hoping that at the primal-dual
solution (x, ξ1, y, η, s, σ) the scalar η vanishes, in which case problem (P ) is actually
solved. If η 6= 0, one increases M1 and solve problem (4.7)-(4.4) again. The process is
stopped when η = 0 is found or when M1 is considered as too large. The latter case
may occur if (D) is infeasible.
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Algorithm 4.1.1 (getting a solution from a strictly feasible primal
point) Let x ∈ Fs

P and let M1 > 〈e, x〉E. One iteration of the algorithm is as
follows.

1. Solve (4.7)-(4.4) from a primal-dual strictly feasible point to get
(x, ξ1, y, η, s, σ).

2. Successful stopping test. If η = 0, stop and declare that (x, y, s) is a primal-dual
solution to (P ).

3. Failure stopping test. If M1 is too large, stop and declare that it is likely that
the dual problem (D) is infeasible.

4. Increase M1.

4.1.3 Starting from a strictly feasible dual point

We assume in this section that a strictly feasible dual pair (y0, s0) ∈ Fs
D

is known,
meaning that

A∗(y0) + s0 = c and s0 ∈ Ks,

but that x0 /∈ Ks, and we determine a modified SDCO problem such that it is easy to
maintain (y0, s0) strictly feasible and to determine a strictly feasible primal point x0.

Consider the following two equivalent modified primal problems in (x, ξ2) ∈ E× R:







inf 〈c, x〉E +M2ξ2
A(x) = b
x+ ξ2e ∈ K
ξ2 > 0

or







inf 〈c, x〉E + (M2 − 〈c, e〉E) ξ2
A(x− ξ2e) = b
x ∈ K
ξ2 > 0.

(4.8)

The problem in the left-hand side in (4.8) shows that one tries to have an as small as
possible perturbation of x in K, namely x + ξee, by forcing the nonnegative scalar ξ2
to be as small as possible thanks to the positive number M2 in the objective, which is
taken “sufficiently” large. This is indeed desirable, since if ξ2 = 0, the original primal
problem (P ) is recovered. The equivalent problem in the right-hand side, obtained by
the redefinition x+ ξ2ey x, is in a form closer to the standard primal SDCO problem.
We claim that

this problem can be cast as the standard primal SDCO problem, for which a strictly
feasible point is easy to define,
its primal-dual solutions are the same as the original problem, provided M2 is chosen
“sufficiently large” and the primal problem is feasible.

Let us see this.
One can cast the problem as the right-hand side of (4.8) in the standard primal

SDCO problem in the variable x̃ ∈ Ẽ := E× R:
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





inf 〈c̃, x̃〉
Ẽ

Ã(x̃) = b

x̃ ∈ K̃.

(4.9)

This problem is identical to problem (4.8) provided the vectors c̃ and x̃ ∈ Ẽ, the linear
map Ã : Ẽ → R

m, and the cone K̃ are defined by

c̃ =

(
c

M2 − 〈c, e〉E

)

, x̃ =

(
x
ξ2

)

, Ã(x̃) = A(x− ξ2e), and K̃ := K × R+.

A strictly feasible point for (4.9) is given by

x̃0 :=

(
x0 + ξ2,0e

ξ2,0

)

,

where

x0 ∈ E is an arbitrary solution to A(x0) = b,

ξ2,0 > [minK(x0)]
−.

We know that (4.9) has for dual the following problem in (y, s̃) ∈ R
m × Ẽ:







sup bTy

Ã∗(y) + s̃ = c̃

s̃ ∈ K̃.

(4.10)

Now, Ã∗ : Rm → Ẽ is defined at x̃ by

Ã∗(y) =

(
A∗(y)

−A(e)Ty

)

.

Writing

s̃ :=

(
s
σ2

)

,

we see that problem (4.10) also reads







sup bTy
A∗(y) + s = c
−A(e)Ty + σ2 =M2 − 〈c, e〉E
s ∈ K
σ2 > 0.

Eliminating σ2, the dual problem (4.10) becomes the following problem in (y, s) ∈
R
m × E: 





sup bTy
A∗(y) + s = c
s ∈ K
〈e, s〉E 6M2.

(4.11)
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It can be shown that the variable ξ2 in (4.8) is a dual variable associated with the
constraint 〈e, s〉E 6 M2 in (4.11). The given strictly feasible dual pair for (y0, s0) for
(D) is still a strictly feasible pair for the modified dual problems (4.10) provided

M2 > 〈e, s0〉E.

Note that this setting ensures that M2 > 0 (since s0 ∈ Ks), as desired.
The proposed approach consists in solving (4.8)-(4.11) from a strictly feasible primal-

dual pair (instead of the original problem (P )) hoping that at the solution (x, ξ2, y, s)
the scalar ξ2 vanishes, in which case problem (P ) is actually solved. If ξ2 6= 0, the
penalty parameter M2 is increased and problem (4.8) is solved again. The process is
stopped when a solution with ξ2 = 0 is found or when M2 is considered as too large,
which may occur if (P ) is infeasible.

Algorithm 4.1.2 (getting a solution from a strictly feasible dual point) Let
(y, s) ∈ Fs

D and let M2 > 〈e, s〉E. One iteration of the algorithm is as follows.

1. Solve (4.8)-(4.11) from a primal-dual strictly feasible point to get (x, ξ2, y, s).

2. Successful stopping test. If ξ2 = 0, then stop and declare that (x, y, s) is a
primal-dual solution to (P ).

3. Failure stopping test. If M2 is too large, stop and declare that it is likely that
the primal is infeasible.

4. Increase M2.

4.1.4 Starting without a strictly feasible point

If no strictly feasible primal and/or dual point is known, then one considers the modified
primal problem, obtained by combining the methods of sections 4.1.2 and 4.1.3:







inf 〈c, x〉E +M2ξ2
A(x) = b
〈e, x〉E + ξ1 =M1

x+ ξ2e ∈ K
ξ1 > 0
ξ2 > 0

or







inf 〈c, x〉E + (M2 − 〈c, e〉E)ξ2
A(x− ξ2e) = b
〈e, x〉E + ξ1 − ncξ2 =M1

x ∈ K
ξ1 > 0
ξ2 > 0,

(4.12)

in which both M1 and M2 are taken “sufficiently” large (initial values are given below).
The problem in the left-hand side in (4.12) satisfies the affine constraint A(x) = b (a
constraint that can be easily verified by the technique proposed in section 4.1.1) without
x ∈ K, but ensures that x+ ξ2e is in K, where ξ2 will be small when M2 is taken large.
Its second affine constraint 〈e, x〉E+ξ1 =M1 is directly inspired from the one appearing
in (4.7) and will allow us to find easily a strictly feasible point for the associated dual
problem. The problem in the left-hand side of (4.12) is not in standard primal form
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because of the constraint x + ξ2e ∈ K, which is the reason why it is rewritten as the
one in the right-hand side, which is obtained after the change of variable x+ ξ2ey x.

Problem in the right-hand side of (4.12) can be cast as the standard primal SDCO
problem in the variable x̃ ∈ K̃ := K × R

2
+ ⊂ Ẽ := E× R

2:







inf 〈c̃, x̃〉
Ẽ

Ã(x̃) = b̃

x̃ ∈ K̃,

(4.13)

where the vectors c̃ and x̃ ∈ Ẽ, the linear map Ã : Ẽ → R
m+1, and the vector b̃ ∈ R

m+1

are defined by

c̃ =





c
0

M2 − 〈c, e〉E



 , x̃ =





x
ξ1
ξ2



 , Ã(x̃) =

(
A(x− ξ2e)

−〈e, x〉E − ξ1 + ncξ2

)

, and b̃ =

(
b

−M1

)

.

The opposite of the second constraint in (4.12) adopted in the definitions above is
motivated by the desire to have −M1 as the last component of b̃, which will result in
requiring M1 > 0, which goes in the same sense as the condition M2 > 0 required above.
A strictly feasible point for the modified primal problems (4.12) or (4.13) is

x̃0 :=





x0 + ξ2,0e
ξ1,0
ξ2,0



 ,

where one takes in order:

x0 ∈ E is an arbitrary solution to A(x0) = b,

ξ2,0 > [minK(x0)]
−,

M1 > [〈e, x0〉E]
+,

ξ1,0 :=M1 − 〈e, x0〉E,

(4.14)

where minK has been defined by (1.3), α+ = max(0, α), and α− = max(0,−α).
We know that the dual of (4.13) reads







sup b̃Tỹ

Ã∗(ỹ) + s̃ = c̃

s̃ ∈ K̃.

(4.15)

where Ã∗ : Rm+4n+3 → Ẽ is defined at ỹ = (y, η) ∈ R
m × R by

Ã∗(ỹ) =





A∗(y)− ηe
−η

−〈e,A∗(y)〉E + ncη



 .
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Therefore, with s̃ = (s, σ1, σ2), problem (4.15) reads







sup bTy −M1η
A∗(y)− ηe+ s = c
−η + σ1 = 0
−〈e,A∗(y)〉E + ncη + σ2 =M2 − 〈c, e〉E
s ∈ K
σ1 > 0
σ2 > 0

or 





sup bTy −M1η
A∗(y)− ηe+ s = c
−η + σ1 = 0
〈e, s〉E + σ2 =M2

s ∈ K
σ1 > 0
σ2 > 0.

(4.16)

Recall that the parameter M1 fixed by (4.14) is positive, which is a desired property,
since one would like to have η = 0 in the above problem. A strictly feasible point for the
modified dual problems (4.15) or (4.16) is ỹ0 = (y0, η0) and s̃0 = (s0, σ1,0, σ2,0), where
one sets successively

y0 arbitrary,

η0 = σ1,0 > [minK(c−A∗(y0))]
−,

s0 := c−A∗(y0) + η0e,

M2 > [〈e, s0〉E]
+,

σ2,0 :=M2 − 〈e, s0〉E,

(4.17)

where minK has been defined by (1.3), α− = max(0,−α), and α+ = max(0, α). The
setting of M2 above also ensures its positivity, which was a desired property of prob-
lems (4.12).

The goal of the following algorithm is to solve a sequence of primal-dual problems
(4.13)-(4.15) or (4.12)-(4.16) by increasing M1 and M2 at each loop in order to have
η = ξ2 = 0, which guarantees that the original primal-dual SDCO problem has been
solved. The form of the problems (4.12) and (4.16) clearly indicates that one must
increase M1 if η > 0 and one must increase M2 when ξ2 > 0.

Algorithm 4.1.3 (getting a solution from a linear feasible point) One loop
of the algorithm is as follows.

1. Solve (4.13)-(4.15) or (4.12)-(4.16) from a primal-dual strictly feasible point to
get (x, ξ1, ξ2, y, η, s, σ1, σ2).
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2. Successful stopping test. If ξ2 = 0 and η = 0, stop and declare that (x, y, s) is
a primal-dual solution to (P ).

3. Failure on dual infeasibility. If M1 is too large, stop and declare that it is likely
that the dual problem is infeasible.

4. Failure on primal infeasibility. If M2 is too large, stop and declare that it is
likely that the primal problem is infeasible.

5. Increase M1 if η > 0.

6. Increase M2 if ξ2 > 0.

4.2 Implementation

4.2.1 Recommendations

Because of the introduction of modified SDCO problems that must be solved by the
developed solver, this one has to deal with SDCO problems of various dimensions
and data in the same run. It is therefore recommended to have a Matlab function that
can find a solution of an SDCO problem when a strictly feasible primal-dual starting
point is given (and when the problem has a solution). It is therefore recommended
to write this function with the code that has been developed so far in the previous
chapter 3. I could have the form

[x,y,s] = sdco_solve (A,b,c,K,x0,y0,s0)

To develop the solver, a good idea is to test it on the easy test cases 1 and 2,
in which the initial values of x and y has been discarded. Once the solver works
correctly on these test cases, you may want to test it on the more special problems
of sections 4.2.2, 4.2.3, and 4.2.4.

The linear operator Ã does not depend on M1 and M2 and can be set outside the
loop described in algorithm 4.1.3.

Check whether the linear constraints Ã(x̃0) = b̃ and Ã∗(ỹ) + s̃ = c̃ are satisfied at
the beginning of each cycle, after the setting of Ã, x̃0, and b̃.

4.2.2 Test case 4a

Consider the problem [41; p. 65]:







sup y1



0 y1 0
y1 y2 0
0 0 y1 + 1



 < 0.
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4.2.3 Test case 4b

Consider the primal SDO problem written in standard form with the following data:

C =

(
0 1
1 0

)

, A1 =

(
−1 0
0 0

)

, A2 =

(
0 0
0 −1

)

, and b =

(
−1
0

)

.

4.2.4 Test case 4c

Consider the primal SDO problem written in standard form with the following data:

C =

(
0 0
0 0

)

, A1 =

(
1 0
0 0

)

, A2 =

(
0 1
1 0

)

, and b =

(
0
2

)

.

Questions

4.1. {1} Getting an affine feasible primal point. Justify the correctness of the procedure
(4.2) to get a vector x0 ∈ E satisfying (4.1).

4.2. {5} Infeasible algorithm. Implement algorithm 4.1.3 and solve/diagnose the test
cases of sections 4.2.2, 4.2.3, and 4.2.4.



5 Shor relaxation of some small OPF problems

5.1 Relaxation of an OPF problem

One of the emblematic instance of the so-called Optimal Power Flow (OPF) prob-
lem, in alternating current, consists in minimizing the Joule heating losses in an elec-
tricity transmission network, while satisfying the electricity demand, by determining
appropriately the powers of the generators installed at given buses (or nodes of the net-
work) [6, 5, 4]. This optimization problem is NP hard, implying that there is (presently)
no algorithm to find the (global) solution in polynomial time (i.e., in a reasonable time
when the network size is like the one in most countries or union of countries), while
there are several good reasons for being only interested in the global solutions.

5.1.1 QCQP formulation

Structurally, one can view (or reduce) the problem to a nonconvex quadratic opti-
mization problem with nonconvex quadratic constraints (sometimes abbreviated by the
acronym QCQP for Quadratically Constrained Quadratic Programming). Recalling that
any polynomial optimization problem can be written that way [36, 9, 24], one under-
stands the potential difficulty of such a problem.

A QCQP representation of an OPF instance can be obtained by the Matlab function
qcqp_opf [16], which should be available soon in Matpower [43] (a Matlab package for
simulating power systems). This function writes a specified OPF instance as a QCQP
problem in complex numbers:







infz z
HCz

zHAkz = ak, for k ∈ [1 :m]
zHBkz 6 bk, for k ∈ [1 : p],

(5.1)

where z ∈ C
n is a complex vector, C, Ak, and Bk ∈ C

n×n are Hermitian matrices1, a
and b are real vectors, and the exponent ·H is used to denote the conjugate transpose.
In this representation, n is the number of buses (or nodes of the network).

To solve (5.1) (more precisely a relaxation of it) by an SDCO solver in real numbers,
the first task is to rewrite the problem in real numbers (see the discussion in [12]
on the interest in having an all-complex approach). For M ∈ C

n×n, we write M =
ℜ(M)+ iℑ(M), where ℜ(M) and ℑ(M) ∈ R

n×n, and i ∈ C the pure imaginary number

1 Recall that M ∈ C
n×n is Hermitian if MH = M .

43

http://www.pserc.cornell.edu//matpower
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(i2 = −1). Similarly, a vector z ∈ C
n is decomposed in z = ℜ(z)+ iℑ(z), with ℜ(z) and

ℑ(z) ∈ R
n. It is easy to see that

M is Hermitian ⇐⇒

{
ℜ(M) is symmetric,
ℑ(M) is skew symmetric.

With this notation and a Hermitian matric M , there holds

zHMz = z̃TM̃ z̃,

where

z̃ :=

(
ℜ(z)
ℑ(z)

)

∈ R
2n and M̃ :=

(
ℜ(M) −ℑ(M)
ℑ(M) ℜ(M)

)

∈ S2n.

Note indeed that M̃ is symmetric. Then, problem (5.1) becomes the QCQP in real
numbers 





inf z̃ z̃
TC̃z̃

z̃TÃkz̃ = ak, for k ∈ [1 :m]

z̃TB̃kz̃ 6 bk, for k ∈ [1 : p].

(5.2)

The dimension of this problem is twice the one of (5.1).

5.1.2 Shor relaxation

The second task is to define an SDO relaxation of (5.2). Recalling that 〈·, ·〉S2n denotes
the scalar product on the space of symmetric matrices (see section 1.1.1), problem (5.2)
reads 





inf z̃ 〈C̃, z̃z̃
T〉S2n

〈Ãk, z̃z̃
T〉S2n = ak, for k ∈ [1 :m]

〈B̃k, z̃z̃
T〉S2n 6 bk, for k ∈ [1 : p]

or 





infX̃ 〈C̃, X̃〉

〈Ãk, X̃〉 = ak, for k ∈ [1 :m]

〈B̃k, X̃〉 6 bk, for k ∈ [1 : p]

X̃ < 0

rank(X̃) 6 1.

The rank constraint of this formulation is very annoying (it takes integer values, hence is
discontinuous). The Shor relaxation of the problem drops that constraint and therefore
reads 





infX̃ 〈C̃, X̃〉

〈Ãk, X̃〉 = ak, for k ∈ [1 :m]

〈B̃k, X̃〉 6 bk, for k ∈ [1 : p]

X̃ < 0.

We still have to write the relaxed problem in the standard primal SDCO form in
(1.5), which looks like the closest to the previous one. This form can be obtained by
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introducing p slack variables vk ∈ R, for k ∈ [1 : p], and by writing the problem as
follows 





inf(X̃,D) 〈C̃, X̃〉

〈Ãk, X̃〉 = ak, for k ∈ [1 :m]

〈B̃k, X̃〉+ vk = bk, for k ∈ [1 : p]

X̃ < 0
v > 0,

(5.3)

which is in the primal form (1.5), in the unknown (X̃, v).

5.2 Test cases

The real SDO relaxation of the OPF problem, namely the standard primal SDCO form
deduced in (5.3), is available by

[A,b,c,K,x0,y0] = testcase_5 (testcase);

where testcase is a string giving the name of a Matpower test case (see the table below
for a short list), A, b, and c stand for the data A, b, and c of the standard primal SDCO
problem in (1.5), while x0 and y0 are empty variables (no initial primal-dual point is
provided).

Table 5.1 lists the Matpower test cases that have been implemented and gives some

Problem name n m p vmips vShor

caseWB2 2 2 8 – 8.9082
caseWB5 5 6 18 13.780 9.9095
case9 9 12 30 373.83 373.83

Table 5.1. Some Matpower test cases.

of their features:

the name of the problem (to put between simple quotes as argument testcase of
the function testcase_5 above),
the dimensions n, m, p of (5.1) (the number n is also the number of buses of the
network),
the optimal value vmips obtained by the Matlab local interior-point solver mips (“–”
means that the solver fails),
and the optimal value vShor obtained by the Shor relaxation (5.3).

The optimal value of the problem is necessarily in the interval [vShor, vmips]. Therefore
the optimal value is obtained by the local solver mips in case9, but the situation is
uncertain in caseWB5.

The Shor relaxation of a QCQP can be viewed as the Lasserre [19] (or moment-sos)
relaxation of degree one [20]. For the OPF problem, when the degree one relaxation of

http://www.pserc.cornell.edu//matpower
http://www.pserc.cornell.edu//matpower
http://www.pserc.cornell.edu//matpower


46 5. Shor relaxation of some small OPF problems

its QCQP formulation is inexact (i.e., it does not provide the solution to the original
QCQP), it is often the case that the degree 2 moment-sos relaxation is exact [17].
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(D), see problem
(P), see problem

big M method, 34

complexity module (nc), 7
cone, 5
– dual, 5
– K, 7
– self-dual, 5
– strict Ks, 7
cone of positive semidefinite matrices, 7

dimension
– nc (complexity module), 7
– nF, 6
– nj (matrix orders), 5
– nl (vector dimension), 5
dual, see cone

E, see vector space

F, see vector space
feasible set, 8
– strict, 7, 8

Hadamard product, 6
– double, 7

linear matrix inequality, 28
LO, see problem
Lyapunov equation, 11

norm
– Frobenius, 6

orthant
– nonnegative, 7
– positive, 7

positive orthant, 5
problem
– dual SDCO (D), 8

– linear optimization (LO), 8
– primal SDCO (P ), 8
– self-dual conic optimization (SDCO), 8
– semidefinite optimization (SDO), 8

SDCO, see problem
SDO, see problem
self-concordant barrier, 26
S

n (space of symmetric real matrices of order
n), 5

S
n
+ (cone of positive semidefinite matrices in
S

n), 7
strictly feasible point
– for (D), 8
– for (P ), 8
sum of squares of polynomials, 28

trace, 6

variable
– free, 30
vector space
– E, 5
– F, 6

49


	The NT direction
	The problem to solve
	Space structures
	The primal and dual SDCO problems
	The central path

	The NT direction
	Overview
	Derivation of the NT direction
	Computation of the weight w
	Computation of the NT direction

	Implementation
	Data representation
	Calling statement
	Matlab functions
	Test case 1a: an easy SDO problem of dimension 3
	Test case 1b: a simple LO problem of dimension 2
	Test case 1c: two SDO problems and one LO problem in parallel

	Notes
	Questions

	A predictor-corrector algorithm
	Algorithmic techniques
	The closest central point
	Neighborhood of the central path
	A predictor-corrector algorithm

	Implementation
	Recommendations
	Test cases 2: minimum matrix norm

	Notes
	Questions

	Finding an appropriate starting point
	Getting a feasible point close to the central path
	A primal-dual merit function
	Use of the NT direction
	An algorithm

	Implementation
	Test case 3: global minimization of a univariate polynomial

	Notes
	Questions

	Dealing with infeasibility with the big M approach
	Starting from an infeasible point
	Getting primal affine feasibility
	Starting from a strictly feasible primal point
	Starting from a strictly feasible dual point
	Starting without a strictly feasible point

	Implementation
	Recommendations
	Test case 4a
	Test case 4b
	Test case 4c

	Questions

	Shor relaxation of some small OPF problems
	Relaxation of an OPF problem
	QCQP formulation
	Shor relaxation

	Test cases

	References

