D. Aldous and R. Lyons, Processes on Unimodular Random Networks, Electronic Journal of Probability, vol.12, issue.0, pp.1454-1508, 2007.
DOI : 10.1214/EJP.v12-463

D. Aldous and J. M. Steele, The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence, Probability on discrete structures, pp.1-72, 2004.
DOI : 10.1007/978-3-662-09444-0_1

K. B. Athreya and P. Ney, Branching processes, Originally, vol.published, 1972.

F. Baccelli and B. Bb-laszczyszyn, Stochastic Geometry and Wireless Networks, Volume I ? Theory?4 of Foundations and Trends in Networking, 2009.

F. Baccelli, B. Bb, and M. Karry, Random Measures, Point Processes and Stochastic Geometry. 2017. working project available as the lecture supplementary material

A. Baddeley, R. Turner, and E. Rubak, Datasets provided for spatstat. https://cran. r-project

I. Benjamini, Coarse geometry and randomness? ´ Ecole d' ´ Eté de Probabilités de Saint-Flour, Lecture Notes in Mathematics, vol.2100, 2011.

N. Berglund, La probabilité d'extinction d'une espèce menacée. http://images.math.cnrs. fr/La-probabilite-d-extinction-d-une.html, 2013.

B. Bb-laszczyszyn and D. Yogeshwaran, Clustering Comparison of Point Processes, with Applications to Random Geometric Models, Lecture Notes in Mathematics, vol.2120, issue.2, pp.31-71, 2014.
DOI : 10.1007/978-3-319-10064-7_2

B. Bb-laszczyszyn, M. Haenggi, P. Keeler, and S. Mukherjee, Stochastic Geometry Analysis of Cellular Networks, 2018.

O. Bobrowski and M. Kahle, Topology of random geometric complexes: a survey, 2014.

B. Bollobás, A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs, European Journal of Combinatorics, vol.1, issue.4, pp.311-316, 1980.
DOI : 10.1016/S0195-6698(80)80030-8

S. R. Broadbent and J. M. Hammersley, Percolation processes, Mathematical Proceedings of the Cambridge Philosophical Society, vol.16, issue.03, pp.629-641, 1957.
DOI : 10.1017/S0305004100032680

S. N. Chiu, D. Stoyan, W. Kendall, and J. Mecke, Stochastic geometry and its applications, 2013.
DOI : 10.1002/9781118658222

D. J. Daley, D. Vere, and -. , An Introduction to the Theory of Point Processes, vol. I. Probability and Its Applications, 2003.

D. J. Daley, D. Vere, and -. , An introduction to the theory of point processes: volume II: general theory and structure, 2007.

O. Dousse, M. Franceschetti, N. Macris, R. Meester, and P. Thiran, Percolation in the signal to interference ratio graph, Journal of Applied Probability, vol.9, issue.02, pp.552-562, 2006.
DOI : 10.2307/3211843

M. Draief and L. Massoulié, Epidemics and Rumours in Complex Networks, 2010.
DOI : 10.1017/CBO9780511806018

H. Duminil-copin and V. Tassion, A new proof of the sharpness of the phase transition for bernoulli percolation on Z d . arXiv preprint, 2015.

P. Erds and A. Rényi, On random graphs I, Publicationes Mathematicae, vol.6, pp.290-297, 1959.

B. Forghani and K. Mallahi-karai, Amenability of trees. Groups, Graphs and Random Walks, p.176, 2017.

M. Franceschetti and R. Meester, Random networks for communication: from statistical physics to information systems, 2008.
DOI : 10.1017/CBO9780511619632

E. N. Gilbert, Random graphs. The Annals of Mathematical Statistics, pp.1141-1144, 1959.

G. Grimmett, Random labelled trees and their branching networks, Journal of the Australian Mathematical Society, vol.15, issue.02, pp.229-237, 1980.
DOI : 10.1007/BF01896073

G. Grimmett, Percolation. Grundlehren der mathematischen Wissenschaften, 2013.

P. Hall, Introduction to the Theory of Coverage Processes, 1988.

H. Hermann and A. Elsner, Geometric Models for Isotropic Random Porous Media: A Review, Advances in Materials Science and Engineering, vol.4, issue.10, 2014.
DOI : 10.1016/j.memsci.2012.01.005

M. Heveling and G. Last, Characterization of palm measures via bijective point-shifts. The Annals of Probability, pp.1698-1715, 2005.

C. Hirsch and G. Last, On maximal hard-core thinnings of stationary particle processes, 2017.

P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social Networks, vol.5, issue.2, pp.109-137, 1983.
DOI : 10.1016/0378-8733(83)90021-7

P. Jacquet and W. Szpankowski, Analytical depoissonization and its applications, Theoretical Computer Science, vol.201, issue.1-2, pp.1-62, 1998.
DOI : 10.1016/S0304-3975(97)00167-9

S. Janson, Random coverings in several dimensions, Acta Mathematica, vol.156, issue.0, pp.83-118, 1986.
DOI : 10.1007/BF02399201

S. Janson and M. J. Luczak, A new approach to the giant component problem. Random Structures and Algorithms, pp.197-216, 2009.

O. Kallenberg, Random measures. Academic Pr, 1983.

O. Kallenberg, Foundations of modern probability, 2002.
DOI : 10.1007/978-1-4757-4015-8

J. L. Kelley, General Topology, 1955.

R. Grandi and . Cruddace, Non-gaussian morphology on large scales: Minkowski functionals of the reflex cluster catalogue, Astronomy & Astrophysics, vol.377, issue.1, pp.1-160004, 2001.

G. Last and M. Penrose, Lectures on the Poisson Process Institute of Mathematical Statistics Textbooks

L. Gadar, Generate (random) graphs with igraph. https://rpubs.com/lgadar/ generate-graphs. Accessed, pp.2017-2027

J. Boudec, Understanding the simulation of mobility models with palm calculus. Performance Evaluation, pp.126-147, 2007.

G. Matheron, Random sets and integral geometry, 1975.

J. Mecke, Stationäre zufällige maße auf lokalkompakten abelschen gruppen. Probability Theory and Related Fields, pp.36-58, 1967.

K. R. Mecke, Morphology of spatial patterns-porous media, spinodal decomposition and dissipative structures, Acta Physica Polonica. Series B, vol.28, issue.8, pp.1747-1782, 1997.

R. Meester and R. Roy, Continuum percolation, 1996.
DOI : 10.1017/CBO9780511895357

I. Molchanov, Theory of random sets, 2005.
DOI : 10.1007/978-1-4471-7349-6

M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence. Random structures & algorithms, pp.161-180, 1995.

M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree sequence. Combinatorics, probability and computing, pp.295-305, 1998.

R. A. Neher, K. Mecke, and H. Wagner, Topological estimation of percolation thresholds, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.01, pp.1011-1021, 1011.
DOI : 10.1088/1742-5468/2008/01/P01011

B. L. Okun, Euler characteristic in percolation theory, Journal of Statistical Physics, vol.309, issue.1-2, pp.523-527, 1990.
DOI : 10.1007/BF01015581

T. S. Package, Spatstat quick reference guide, 2017.

M. Penrose, The longest edge of the random minimal spanning tree, The Annals of Applied Probability, vol.7, issue.2, pp.340-361, 1997.
DOI : 10.1214/aoap/1034625335

E. Roubin and J. Colliat, Critical probability of percolation over bounded region in N-dimensional Euclidean space, Journal of Statistical Mechanics: Theory and Experiment, vol.2016, issue.3, p.33306, 2016.
DOI : 10.1088/1742-5468/2016/03/033306

URL : https://hal.archives-ouvertes.fr/hal-01305745

Y. A. Rozanov, Markov Random Fields, pp.978-979, 1982.

R. Schneider and W. Weil, Stochastic and integral geometry, 2008.
DOI : 10.1007/978-3-540-78859-1

C. Song, P. Wang, and H. A. Makse, A phase diagram for jammed matter, Nature, vol.76, issue.7195, pp.629-632, 2008.
DOI : 10.1038/nature06981

D. Stauffer and A. Aharony, Introduction To Percolation Theory, 2003.

J. M. Stoyanov, Counterexamples in probability, Courier Corporation, 2013.

S. Torquato, O. Uche, and F. Stillinger, Random sequential addition of hard spheres in high Euclidean dimensions, Physical Review E, vol.5, issue.6, p.61308, 2006.
DOI : 10.1063/1.1480864

R. Turner, Package deldir. https://cran.r-project, p.2017

R. Van-der and . Hofstad, Random graphs and complex networks In preparation , preliminary version available on the author's web page http, 2014.

R. Van-der and . Hofstad, of Cambridge Series in Statistical and probabilistic Mathematics Available on the author's web page http, 2017.

H. W. Watson and F. Galton, On the Probability of the Extinction of Families., The Journal of the Anthropological Institute of Great Britain and Ireland, vol.4, pp.138-144
DOI : 10.2307/2841222