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Abstract

We characterize all quasiperiodic Sturmian words: a Sturmian word is not quasiperiodic if
and only if it is a Lyndon word. Moreover, we study links between Sturmian morphisms and
quasiperiodicity.
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1 Introduction

The notion of repetition in Strings is central in a lot of researches, in particular in Combinatorics
on Words and in Text Algorithms (see for instance [9], [10] for recent surveys). In this vein,
Apostolico and Ehrenfeucht introduced the notion of quasiperiodic finite words [2] in the following
way: “a string w is quasiperiodic if there is a second string u 6= w such that every position of w

falls within some occurrence of u in w”. The reader can consult [1] for a short survey of studies
concerning quasiperiodicity. In [12], Marcus extends this notion to right infinite words and he opens
six questions. Four of them are answered in [7].

One of these six questions is: does there exist a non-quasiperiodic Sturmian word? In [7], we
provide an example of such a word, but this positive answer is not completely satisfying. Since a
first feeling can be that there exists no (or at most very few) such word, one can ask for a complete
characterization of such non-quasiperiodic Sturmian words. After some preliminaries in Sections 2,
3 and 4, we provide two answers described below.

Sturmian words have been widely studied because of their many beautiful properties and links
with many fields (see [9, Chapter 2] for a recent survey). One aspect of these words is that they
can be infinitely decomposed over the four morphisms La, Lb, Ra and Rb (see Section 3 for more
details). The first characterization of non-quasiperiodic Sturmian words proposed in this paper is
based on such a decomposition. More precisely, Theorem 5.6 states that a Sturmian word is not
quasiperiodic if and only if it can be decomposed infinitely over {La, Rb} or infinitely over {Lb, Ra}.

Our second characterization (Theorem 6.5) provides a more semantic answer: a Sturmian word
is not quasiperiodic if and only if it is an infinite Lyndon word.

The proof of our first result uses the fact that some morphisms obtained by compositions of
the morphisms La, Lb, Ra and Rb map any infinite words into a quasiperiodic one. We call such a
morphism strongly quasiperiodic. In Section 7, we characterize the Sturmian morphisms which are
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strongly quasiperiodic. Let us quote that any Sturmian morphism f is quasiperiodic, that is there
exists a non-quasiperiodic word w whose image by f is quasiperiodic.

2 Generalities

We assume the reader is familiar with combinatorics on words and morphisms (see, e.g., [8, 9]).
We precise our notations.

Given a set X of words (for instance an alphabet A, that is a non-empty finite set of letters),
X∗ (resp. Xω) is the set of all finite (resp. infinite) words that can be obtained by concatenating
words of X. The empty word ε belongs to X∗. The length of a word w is denoted by |w|. By |w|a
we denote the number of occurrences of the letter a in w. A finite word u is a factor of a finite or
infinite word w if there exist words p and s such that w = pus. If p = ε (resp. s = ε), u is a prefix
(resp. suffix ) of w. A word u is a border of a word w if u is both a prefix and a suffix of w. A
factor u of a word w is said proper if w 6= u.

Given an alphabet A, a(n endo)morphism f on A is an application from A∗ to A∗ such that
f(uv) = f(u)f(v) for any words u, v over A. A morphism on A is entirely defined by the images
of letters of A. All morphisms considered in this paper will be non-erasing: the image of any non-
empty word is never empty. The image of an infinite word is thus infinite and naturally obtained as
the infinite concatenation of the images of the letters of the word. In what follows, we will denote
the composition of morphisms by juxtaposition as for concatenation of words. Given a set X of
morphisms, we will also note X∗ the set of all finite compositions of morphisms of X and Xω the
set of all infinite decompositions of morphisms of X. When a word w is equal to lim

n→∞
f1f2 . . . fn(a),

fi ∈ X, we will say that w can be decomposed (infinitely) over X.
Given a morphism f , powers of f are defined inductively by f0 = Id (the Identity morphism),

f i = ff i−1 for integers i ≥ 1. When for a letter a, f(a) = ax with x 6= ε, the morphism f is said
prolongable on a. In this case, for all n ≥ 0, fn(a) is a prefix of fn+1(a). If moreover, for all n ≥ 0,
|fn(a)| < |fn+1(a)|, the limit lim

n→∞
fn(a) is the infinite word denoted fω(a) having all the fn(a) as

prefixes. This limit is also a fixed point of f .

3 Sturmian words and morphisms

Sturmian words may be defined in many equivalent ways (see [9, chapter 2] for instance). They are
infinite binary words. Here we first consider them as the infinite balanced non ultimately periodic
words. We recall that a (finite or infinite) word w over {a, b} is balanced if for any factors u and v

of same length ||u|a − |v|a| ≤ 1, and that an infinite word w is ultimately periodic if w = uvω for
some finite words u and v.

Many studies of Sturmian words use Sturmian morphisms, that is morphisms that map any
Sturmian word into a Sturmian word. Séébold [17] proved that the set of these morphisms is
{E,La, Lb, Ra, Rb}

∗ where E,La, Lb, Ra, Rb are the morphisms defined by

E :

{

a 7→ b

b 7→ a,
La :

{

a 7→ a

b 7→ ab,
Lb :

{

a 7→ ba

b 7→ b,
Ra :

{

a 7→ a

b 7→ ba,
Rb :

{

a 7→ ab

b 7→ b.

Many relations exist between Sturmian words and Sturmian morphisms. For instance, recently
the following result was proved:
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Theorem 3.1 [5] Any Sturmian word w over {a, b} admits a unique representation of the form

w = lim
n→∞

Ld1−c1
a Rc1

a Ld2−c2
b Rc2

b . . . Ld2n−1−c2n−1

a Rc2n−1

a Ld2n−c2n

b Rc2n

b (a)

where dk ≥ ck ≥ 0 for all integer k ≥ 1, dk ≥ 1 for k ≥ 2 and if ck = dk then ck−1 = 0.

Remark: Let us mention that this representation is not expressed as in [5] where it is written

w = T c1Ld1

a T c2Ld2

b T c3Ld3

a T c4Ld4

b . . .

where T is the shift map defined, for any infinite word (an)n≥0 with an letter for any n ≥ 0, by
T (an)n≥0 = (an+1)n≥0. One can verify that for integers c, d such that d ≥ c ≥ 0 and for any infinite
word w, T cLd

a(w) = Ld−c
a Rc

a(w) and T cLd
b(w) = Ld−c

b Rc
b(w). This explains the links between the

two representations. The interested reader will also find relations between this representation and
the notion of S-adic systems defined by Ferenczi [6] as minimal dynamical systems generated by a
finite number of substitutions.

A particular well-known family of Sturmian words is the set of standard (or characteristic)
Sturmian words. It corresponds to the case where for each k ≥ 0, ck = 0. Hence any standard
Sturmian word admits a unique representation on the form:

w = lim
n→∞

Ld1

a Ld2

b Ld3

a Ld4

b . . . Ld2n−1

a Ld2n

b (a)

where d1 ≥ 0 and dk ≥ 1 for all k ≥ 2.

To end this section, we recall useful relations between Sturmian morphisms.

Theorem 3.2 [9] (see also [15] for a generalization) The monoid {La, Lb, Ra, Rb, E}∗ of Sturmian
morphisms has the following presentation:

(1) EE = Id,
(2) ELa = LbE and ERa = RbE,
(3) LaL

n
b Ra = RaR

n
b La, for any n ≥ 0.

Note that from (2) and (3), we get: LbL
n
aRb = RbR

n
aLb for any n ≥ 0.

4 Word quasiperiodicity and morphisms

In this paper, we consider mainly infinite quasiperiodic words. However we first recall the notion
of finite quasiperiodic words to allow us some comparisons.

We consider definitions from [3]. A word u covers another word w if for every i ∈ {1, . . . , |w|},
there exists j ∈ {1, . . . , |z|} such that there is an occurrence of u starting at position i − j + 1 in
the word w. When u 6= w, we say that u is a quasiperiod of w and that w is quasiperiodic. A word
is superprimitive if it is not quasiperiodic (Marcus [12] calls minimal such words). One can observe
that any word of length 1 is not quasiperiodic. The word

w = abaababaabaababaaba

has aba, abaaba, abaababaaba as quasiperiods. Only aba is superprimitive. More generally in [3],
it is proved that any quasiperiodic finite word has exactly one superprimitive quasiperiod. This is
a consequence of the fact that any quasiperiod of a finite word w is a proper border of w.
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When defining infinite quasiperiodic words, instead of considering the starting indices of the
occurrences of a quasiperiod, for convenience, we choose to consider the words preceding the oc-
currences of a quasiperiod. An infinite word w is quasiperiodic if there exist a finite word u and
words (pn)n≥0 such that p0 = ε and, for n ≥ 0, 0 < |pn+1| − |pn| ≤ |u| and pnu is a prefix of w. We
say that u covers w, or that w is u-quasiperiodic. The word u is also called a quasiperiod and we
say that the sequence (pnu)n≥0 is a covering sequence of prefixes of the word w. The reader will
find several examples of infinite quasiperiodic words in [11, 7]. Let us mention for instance that the
well-known Fibonacci word, the fixed point of the morphism ϕ: a 7→ ab, b 7→ a is aba-quasiperodic.

It is interesting to note that ϕω(a) has an infinity of superprimitive quasiperiods (see [7] for a
characterization of all quasiperiods of ϕω(a)). This shows a great difference between quasiperiodic
finite words and quasiperiodic infinite words. The reader can also note that for any positive integer
n, there exists an infinite word having exactly n quasiperiods (as for example the word (ab)na(ab)ω)),
or having exactly n superprimitive quasiperiods [7].

To end this section, let us observe that any quasiperiod of a (finite of infinite) quasiperiodic word
w is a prefix of w. Hence w has a unique quasiperiod of smallest length that we call the smallest
quasiperiod of w. When w is finite, the smallest quasiperiod of w is necessarily its superprimitive
quasiperiod. When w is infinite, its smallest quasiperiod is also superprimitive, but there can exist
other superprimitive quasiperiods (see above).

Moreover:

Lemma 4.1 If w is an infinite quasiperiodic word with smallest quasiperiod u, then uu is a factor
of w.

Proof. If uu is not a factor of w then the prefix v of u of length |u| − 1 is a quasiperiod of w. This
is not possible if u is the smallest quasiperiod.

Let us observe that Lemma 4.1 is not true for finite words as shown by the aba-quasiperiodic
word ababa.

In the following we will also use the immediate following fact:

Fact 4.2 If w is a (finite or infinite) u-quasiperiodic word and f is a non-erasing morphism, then
f(w) is f(u)-quasiperiodic.

5 Sturmian non-quasiperiodic words

In this section, we prove our main result (Theorem 5.6) which is a characterization of all non-
quasiperiodic Sturmian words. Before this, we prove several useful results.

Let w be a Sturmian word. Denoting by n the least number of a between two consecutive b

in w and by i the initial number of a in w, we can deduce from the balance property of w that
w belongs to ai{ban, ban+1}ω. When 0 < i ≤ n, w belongs to {aiban−i, aiban+1−i}ω and w is
aiban−i+1-quasiperiodic (and aiban−i+1 is the smallest quasiperiod of w). Thus:

Fact 5.1 If w is a non-quasiperiodic Sturmian word, then there exists an integer n such that w

belongs to an+1b{anb, an+1b}ω ∪ {ban, ban+1}ω.
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Of course some Sturmian words in an+1b{anb, an+1b}ω ∪ {ban, ban+1}ω are quasiperiodic: it is
the case of the image of any quasiperiodic Sturmian word starting with a by the Sturmian morphism
Ln

aRb : a 7→ an+1b, b 7→ anb.
A consequence of Fact 5.1 is:

Lemma 5.2 For all Sturmian word w and x ∈ {a, b}, LxRx(w) = RxLx(w) is quasiperiodic.

Proof. Without loss of generality, assume x = a. From Theorem 3.2, LaRa = RaLa. Let us
recall that LaRa(a) = a and LaRa(b) = aba. From Fact 4.2, if w is a quasiperiodic word, then
LaRa(w) is quasiperiodic. Assume now that w is a Sturmian non-quasiperiodic word. By Fact 5.1,
w belongs to an+1b{anb, an+1b}ω ∪ {ban, ban+1}ω for an integer n. Hence LaRa(w) belongs to one
of the sets an+1aba{anaba, an+1aba}ω or {abaan, abaan+1}ω. So LaRa(w) is an+2ba-quasiperiodic
or aban+2-quasiperiodic.

Let us observe that baω and LaRa(ba
ω) = abaω are not quasiperiodic. This shows that

Lemma 5.2 is not true for arbitrary words (even if they are balanced), unlike the next fact which
is a direct consequence of the definition of LaLb: a 7→ aba, b 7→ ab, and LbLa: a 7→ ba, b 7→ bab.

Fact 5.3 For any infinite word w, LaLb(w) is aba-quasiperiodic and LbLa(w) is bab-quasiperiodic.

Lemma 5.2 and Fact 5.3 will be useful to prove that our condition in Theorem 5.6 is necessary.
To show it is sufficient, we now consider situations where the image of a word by a Sturmian
morphism is not necessarily quasiperiodic.

Lemma 5.4 Let x ∈ {a, b} and let w be a balanced word starting with x. The word Lx(w) is
quasiperiodic if and only if w is quasiperiodic. Moreover in this case, the smallest quasiperiod of
Lx(w) is the word Lx(v) where v is the smallest quasiperiod of w.

Proof. Without loss of generality, we consider here that x = a.
From Fact 4.2, if w is quasiperiodic then La(w) is quasiperiodic.
From now on we assume that La(w) is u-quasiperiodic where u is the smallest quasiperiod of

La(w). If w has at most one occurence of b, then w = aω or w = anbaω for an integer n ≥ 0.
Since La(w) is quasiperiodic, we have w = aω and we verify that the smallest quasiperiod of w and
La(w) is a = La(a). From now on we assume that w contains at least two occurrences of the letter
b. Denoting by n the least number of a between two consecutive occurrences of b in w and by i the
number of a before the first b, since w is balanced, w ∈ ai{ban, ban+1}ω and 0 ≤ i ≤ n + 1.

If 0 < i ≤ n, then w and La(w) are quasiperiodic with respective smallest quasiperiod aiban−i+1

and ai+1ban−i+1 = La(a
iban−i+1).

By hypothesis, w starts with a, so we cannot have i = 0.
In the case i = n + 1: w ∈ an+1b{anb, an+1b}ω and La(w) ∈ an+2{ban+1, ban+2}ω. Since u is a

quasiperiod of La(w), u is a prefix of La(w) and starts with an+2b. By Lemma 4.1, uu is a factor
of La(w). It follows that u ends with b and u = La(v) for a word v ∈ {anb, an+1b}∗. Now we prove
that v is a quasiperiod of w. Let (pku)k≥0 be a covering sequence of La(w) (p0 = ε and for all
k ≥ 0, pku is a prefix of La(w) and |pk+1| − |pk| ≤ |u|). Since u starts with an+2b, for each k ≥ 0,
there exists a word p′k such that pk = La(p

′
k). Of course, p′0 = ε. Since v ∈ {anb, an+1b}∗, we can

deduce for each k ≥ 0 that p′kv is a prefix of w. If for a k, |p′k+1| − |p′k| > |v|, then p′k+1 = p′kvy for
a word y and consequently pk+1 = pkuLa(y) which contradicts the fact that |pk+1| − |pk| ≤ |u|. So
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for each k ≥ 0, |p′k+1
| − |p′k| ≤ |v|. We have shown that (p′kv)k≥0 is a covering sequence of w, so v

is a quasiperiod of w. Assume w has a quasiperiod v′ strictly smaller than v. Both v and v′ are
prefixes of w, so v = v′s for a non-empty word s. Then |La(v

′)| = |La(v)| − |La(s)| < |La(v)| and
La(v

′) is a quasiperiod of La(w) strictly smaller than u = La(v). This contradicts the definition of
u, so v is the smallest quasiperiod of w.

Lemma 5.5 Let x, y be letters such that {x, y} = {a, b} and let w be a word starting with x.
The word Ry(w) is quasiperiodic if and only if w is quasiperiodic. Moreover when these words
are quasiperiodic, the smallest quasiperiod of Ry(w) is the word Ry(v) where v is the smallest
quasiperiod of w.

Proof. Without loss of generality, we consider here that x = a and y = b.
From Fact 4.2, if w is quasiperiodic then Rb(w) is quasiperiodic.
Assume now that Rb(w) is quasiperiodic and let u be its smallest quasiperiod. By hypothesis,

w starts with a, so does u. Since aa is not a factor of Rb(w) whereas by Lemma 4.1 uu is a factor
of Rb(w), we deduce that u ends with b. Thus there exists a word v such that u = Rb(v). As done
in the proof of Lemma 5.4 for the case w ∈ an+1{ban, ban+1}ω, we can show that v is a quasiperiod
of u and more precisely that it is its smallest quasiperiod.

The reader can observe one difference between the two previous lemmas: Lemma 5.4 considers
only balanced words when Lemma 5.5 works with arbitrary words (starting with x). Note that
Lemma 5.4 becomes false if we do not consider balanced words. Indeed the word w = abab(aaab)ω

is not quasiperiodic, whereas La(w) = aabaabaa(aabaa)ω is aabaa-quasiperiodic. The two lemmas
become also false if we consider Sturmian words starting with y where {x, y} = {a, b}. Indeed, let us
consider the case x = a, y = b: it is known [7] that the word w = (LbRa)

ω(a) is not quasiperiodic;
this Sturmian word starts with b and the word La(w) (resp. Rb(w)) is aba-quasiperiodic (resp.
bab-quasiperiodic).

We can now establish the announced characterization of non-quasiperiodic Sturmian words.

Theorem 5.6 A Sturmian word w is not quasiperiodic if and only if it can be infinitely decomposed
over {La, Rb} or over {Lb, Ra}. In other words a Sturmian word w is not quasiperiodic if and only
if

w = lim
n→∞

Ld1

a Rd2

b Ld3

a Rd4

b . . . Ld2n−1

a Rd2n

b (a)

or
w = lim

n→∞
Ld1

b Rd2

a Ld3

b Rd4

a . . . Ld2n−1

a Rd2n

b (a)

where dk ≥ 1 for all k ≥ 2 and d1 ≥ 0.

Proof. We first show that the condition is necessary. Let w be a non-quasiperiodic Sturmian word.
By Theorem 3.1,

w = lim
n→∞

Ld1−c1
a Rc1

a Ld2−c2
b Rc2

b . . . Ld2n−1−c2n−1

a Rc2n−1

a Ld2n−c2n

b Rc2n

b (a)

where dk ≥ ck ≥ 0 for all integer k ≥ 1, dk ≥ 1 for k ≥ 2 and if ck = dk then ck−1 = 0.
By Lemma 5.2, for x ∈ {a, b} and any Sturmian word, LxRx(w) is quasiperiodic. By Fact 4.2,

this implies that for all k ≥ 1, ck = dk or ck = 0.
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Assume that ck = 0 and ck+1 = 0 for an integer k ≥ 1. Then w = fLaLb(w
′) or w = fLbLa(w

′)
for a Sturmian word w′ and a morphism f . By Fact 5.3, w is quasiperiodic. So for each k ≥ 1,
ck = 0 implies ck+1 = dk+1.

We know that for each k ≥ 2, ck = dk implies ck−1 = 0. This is equivalent to say that for each
k ≥ 1, ck 6= 0 implies ck+1 6= dk+1. But there for each k, ck = dk or ck = 0. Thus ck = dk implies
ck+1 = 0, the condition is necessary.

Let us now show that any Sturmian word w that can be decomposed infinitely over {La, Rb}
is not quasiperiodic (case {Lb, Ra} is similar). Assume by contradiction that it is not the case.
Let S be the set of all Sturmian words w that can be decomposed over {La, Rb} and that are
quasiperiodic. Let u be a quasiperiod of smallest length among all quasiperiods of words in S, and
let w be an element of S having u as quasiperiod. By definition, w = La(w

′) or w = Rb(w
′) for

a word w′ in S. Since d3 6= 0, w starts with the letter a. By Lemmas 5.4 and 5.5, u = La(v) or
u = Rb(v) where v is the smallest quasiperiod of w′. Since aω and bω are not Sturmian words (they
are balanced but not ultimately quasiperiodic), |v|a 6= 0 and |v|b 6= 0. Consequently |v| < |u|. This
contradicts the choice of u. Hence S is empty.

Given a word w, let us denote X(w) the set of infinite words having the same set of factors
than w: X(w) is invariant by the shift operator and is called the subshift associated with w. When
w is Sturmian, it is known (see [5]) that a word w′ belongs to X(w) if and only if it is Sturmian
and the associated sequence (dk)k≥0 in its decomposition of Theorem 3.1 is the same as the one
involved in the decomposition of w.

To end this section, we observe that any standard Sturmian word (that is a Sturmian word
that can be decomposed using only La and Lb) is necessarily quasiperiodic. This gives a new
proof of a result by T. Monteil [13, 14]: any Sturmian subshift contains a quasiperiodic word
(let us mention that the resutl of T. Monteil is more precisely: any Sturmian subshift contains a
multiscaled quasiperiodic word, that is a word having an infinity of quasiperiods). The interested
reader will find materials in Section 7 to show that any standard Sturmian word has an infinity of
quasiperiods (see Lemma 7.5). Theorem 5.6 also shows that in any Sturmian subshift, there is a
non-quasiperiodic word.

6 A connection with Lyndon words

The aim of this short section is to give another characterization of non-quasiperiodic Sturmian
words related to Lyndon words (see Theorem 6.5 below).

Let us recall notions on finite [8] and infinite [18] Lyndon words . We call suffix of an infinite
word w any word w′ such that w = uw′ for a given word u. When u 6= ε, we say that w′ is a
proper suffix of w. This definition allows us to adopt the same definition for finite and infinite
Lyndon word. Let � be a total order on A (in what follows, {a ≺ b} denotes the alphabet {a, b}
with a ≺ b). This order can be extended into the lexicographic order on words over A. A (finite or
infinite) word over (A,�) is a Lyndon word if and only if w is strictly smaller than all its proper
suffixes. Any infinite Lyndon word has infinitely many prefixes that are (finite) Lyndon words (and
so an infinite Lyndon word can be viewed as a limit of these prefixes). The following basic property
of finite Lyndon words was pointed out by J.P. Duval (see Acknowledgments):

Fact 6.1 Any finite Lyndon word is unbordered, that is the only borders of a Lyndon word w are
ε and w.
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This allows us to state a relation between infinite Lyndon words and non-quasiperiodic infinite
words (cf Corollary 6.3).

Fact 6.2 If w is an infinite u-quasiperiodic word, then any prefix of w of length at least |u| + 1 is
not unbordered.

Proof. If p is a prefix of w of length at least |u|+ 1, then p has for suffix a prefix s of u (of length
at most |u|). Since u is a prefix of w, u is also a prefix of p, and so s is a border of p.

Corollary 6.3 Any Lyndon word is not quasiperiodic.

Our main Theorem 6.5 is a direct consequence of this corollary and the following characteriza-
tion. Following [16] we say that a morphism f preserves (finite) Lyndon words if for any (finite)
Lyndon word u, f(u) is also a Lyndon word. We have:

Proposition 6.4 [16] A Sturmian morphism f preserves Lyndon words over {a ≺ b} if and only
if f ∈ {La, Rb}

∗.

Theorem 6.5 A Sturmian word w over {a, b} is non-quasiperiodic if and only if w is an infinite
Lyndon word over {a ≺ b} or over {b ≺ a}.

Proof. Let w be a Sturmian word. By corollary 6.3, if w is an infinite Lyndon word then w is not
quasiperiodic.

Assume now that w is not quasiperiodic. By Theorem 5.6, w = lim
n→∞

Ld1

a Rd2

b . . . Ld2n−1

a Rd2n

b (a) or

w = lim
n→∞

Ld1

b Rd2

a . . . L
d2n−1

b Rd2n

a (a) for some integers (dk)k≥1 such that dk ≥ 1 for all k ≥ 2 and d1 ≥

0. Proposition 6.4 implies that, since a is a Lyndon word, for each n ≥ 1, Ld1

a Rd2

b . . . L
d2n−1

a Rd2n

b (a)

is a Lyndon word over a ≺ b and Ld1

b Rd2

a . . . L
d2n−1

b Rd2n

a (a) is a Lyndon word over b ≺ a. Hence w

is an infinite Lyndon word over a ≺ b or over b ≺ a.

To end this section we study the converse of Corollary 6.3 and Fact 6.2.
The converse of Corollary 6.3 is not true in general. For instance we can consider any Sturmian

word w over {a, b} and the word p = ababaaa. Then pw is not quasiperiodic since p is not balanced
and so not a factor of w. Moreover, since p starts with the letter a, pw cannot be a Lyndon word
if b ≺ a. It is neither a Lyndon word if a ≺ b since for any prefix p′ of w, aaap′ ≺ w.

The converse of Fact 6.2 is also false: let w be an infinite word and p be an integer, if all prefixes
of w of length greater than p + 1 are unbordered, then w is not necessarily quasiperiodic. To prove
this, it is sufficient to consider the word w = abaω.

A more complex but interesting example, pointed out by P. Séébold (see Aknowledgements),
is the well-known Thue-Morse word T, fixed point of the morphism µ such that µ(a) = ab and
µ(b) = ba. The word T starts with abb and any prefix of length at least 4 ends with a, ab or abb.
But T is not quasiperiodic: indeed it is well-known that T is overlap-free (a word is overlap-free
if it contains no factor of the form xuxux where x is a letter, or equivalently it contains no factor
that can be written both pv and vs with |p| < |v|) and we can observe that:

Fact 6.6 An overlap-free infinite word is never quasiperiodic.
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Proof. Let w be a u-quasiperiodic infinite word and let (pnu)n≥0 be a covering sequence of w.
If there exists n ≥ 0 such that |pn+1| − |pn| < |u|, then pn+1u = pnus for a word s such that
s = |pn+1| − |pn| < |u|. Hence there exists a word p such that us = pu, then w is not overlap-free.
If for all n ≥ 0 we have |pn+1| − |pn| = |u|, then w = uω is also not overlap-free.

Finally let us mention that this fact is not valid for finite words since there exist some overlap-
free words that are square (see [19], cf. also [4] for a characterization of such words).

7 Sturmian morphisms and quasiperiodicity

We say that a morphism f is quasiperiod-free if for any non-quasiperiodic word w, f(w) is also non-
quasiperiodic. A non-quasiperiod-free morphism will just be called quasiperiodic. Let us observe
that all Sturmian morphisms (except E and Id) are quasiperiodic. To verify it, it is sufficient to
show that La, Lb, Ra and Rb are quasiperiodic. For La and Ra (case Lb and Rb are similar) we
have: abaω and abω are non-quasiperiodic although La(abaω) = aba(ab)ω and Ra(abω) = a(ba)ω

are aba-quasiperiodic.
In the previous section, we encounter (Lemma 5.2 and Fact 5.3) two different kinds of Sturmian

morphisms. The morphism LaLb maps any word into a quasiperiodic one, whereas there exists a
non-quasiperiodic word w such that LaRa(w) is not quasiperiodic. Generalizing these two examples
we observe that the set of quasiperiodic morphisms can be partitioned using the following notions:

1. A morphism f on A is called strongly quasiperiodic (resp. on a subset X of Aω) if for each
non-quasiperiodic infinite word w (resp. w ∈ X), f(w) is quasiperiodic.

2. A morphism f on A is called weakly quasiperiodic (resp. on a subset X of Aω) if there exist
two non-quasiperiodic infinite words w,w′ (resp. w,w′ ∈ X) such that f(w) is quasiperiodic,
and f(w′) is non-quasiperiodic.

The aim of this section is to answer the two following questions:

• Which are the strongly (resp. weakly) quasiperiodic Sturmian morphisms?

• Which are the strongly (resp. weakly) quasiperiodic Sturmian morphisms on (the set of)
Sturmian words?

We note that the two questions have different answers. Indeed LaRa as shown by Lemma 5.2 is
strongly quasiperiodic on Sturmian words, but as already said, LaRa(ba

ω) is not quasiperiodic. Of
course, any strongly quasiperiodic Sturmian morphism is strongly quasiperiodic on Sturmian words,
or equivalently (since a Sturmian morphism is quasiperiodic), any weakly quasiperiodic Sturmian
morphism on Sturmian words is weakly quasiperiodic.

7.1 A property of strongly quasiperiodic morphisms

Before going further, we mention the following immediate result:

Lemma 7.1 Let f be a morphism. If there exist morphisms f1, f2, f3 such that f = f1f2f3 and
such that f2 is strongly quasiperiodic, then f is strongly quasiperiodic.
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We observe that (quite naturally) Lemma 7.1 becomes false when replacing strongly quasiperi-
odic by weakly quasiperiodic. For instance, taking f1 = Id, f2 = La and f3 = Lb, we have f2

weakly quasiperiodic and f1f2f3 strongly quasiperiodic. There are cases where we can have f2

weakly quasiperiodic and f1f2f3 quasiperiod-free, but this is not possible when f1, f2 and f3 are
Sturmian morphisms since all Sturmian morphisms are quasiperiodic. To give an example of such
a case, we need the following result:

Lemma 7.2 The morphism g defined by g(a) = abab and g(b) = aaaa is a quasiperiod-free mor-
phism.

Proof. Let w be an infinite word such that g(w) is quasiperiodic. We show that w is also
quasiperiodic. Let u be the smallest quasiperiod of g(w). Since u is a prefix of g(w), u = g(v)p
for a proper prefix p of g(a) = abab or of g(b) = aaaa: p ∈ {ε, a, aa, aaa, ab, aba}. First we observe
that if a or b does not occur in w, then w is quasiperiodic. From now on we assume that both a

and b occur in w. Consequently |v|a 6= 0 and |v|b 6= 0. It follows that g(v) starts with (ab)2naaaa

for an integer n ≥ 0 and with a4mabab for an integer m ≥ 0: of course m = 0 or n = 0. Moreover
g(v) ends with aaaa(ab)2n′

for an integer n′ ≥ 0 and with ababa4m′

for an integer m′ ≥ 0: once
again m′ = 0 or n′ = 0. By Lemma 4.1, uu is a factor of g(w). We then deduce that p = ε since for
all the other potential values, none of the words in {aaaa(ab)2n′

, ababa4m′

}p{(ab)2naaaa, a4mabab}
could be a factor of g(w). Let (plu)l≥0 be a covering sequence of prefixes of g(w). As done in the
proof of Lemma 5.4, we can find a covering sequence (p′lv)l≥0 of prefixes of w: the word v is a
quasiperiod of w.

Now let us consider the morphisms f1 = Id, f2 = La, and f3 defined by f3(a) = bb, f3(b) = aaaa.
By the previous lemma f1f2f3 = g is quasiperiod-free whereas f2 is weakly quasiperiodic.

To end this section, we let the reader verify that f3 is quasiperiod-free and more generally that
any morphism h defined by h(a) = ai, h(b) = bj with i ≥ 1 and j ≥ 1 is quasiperiod-free.

7.2 Weakly and strongly quasiperiodic Sturmian morphisms

In this section, we characterize weakly quasiperiodic Sturmian morphisms. (Equivalently this
characterizes strongly quasiperiodic Sturmian morphisms since any Sturmian morphism is weakly
or strongly quasiperiodic.)

Proposition 7.3 A Sturmian morphism is weakly quasiperiodic if and only if it belongs to the set

{E, Id}{La, Rb}
∗{La, Ra}

∗ ∪ {E, Id}{Lb, Ra}
∗{Lb, Rb}

∗.

The proof, given at the end of the section, is a consequence of the next lemmas.

Lemma 7.4 Let f be a morphism in {La, Lb, Ra, Rb}
∗ different from the identity. The morphism

f belongs to {La, Rb}
∗{La, Ra}

∗ ∪{Lb, Ra}
∗{Lb, Rb}

∗ if and only if f cannot be written f = f1f2f3

with f1, f3 ∈ {La, Lb, Ra, Rb}
∗ and f2 verifying one of the four following properties:

1. f2 ∈ La{La, Lb, Ra, Rb}
∗Lb ∪ Lb{La, Lb, Ra, Rb}

∗La, or

2. f2 = RagLa with g 6∈ {Ra, La}
∗ or f2 = RbgLb with g 6∈ {Rb, Lb}

∗, or

3. f2 ∈ RaR
+

b Ra or f2 ∈ RbR
+
a Rb, or
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4. f2 ∈ R+
a L+

a Rb = L+
a R+

a Rb or f2 ∈ R+

b L+

b Ra = L+

b R+

b Ra.

Proof. First we let the reader verify using Theorem 3.2 that if f belongs to {La, Rb}
∗{La, Ra}

∗ ∪
{Lb, Ra}

∗{Lb, Rb}
∗ then it cannot be written f = f1f2f3 with f1, f2, f3 as in the lemma.

From now on assume that f cannot be written f = f1f2f3 with f1, f2, f3 as in the lemma. Let
g1, . . . , gn (n ≥ 1 since f is not the identity) in {La, Lb, Ra, Rb} such that f = g1 . . . gn.

We first consider the case where g1 = La. By Impossibility 1 for f2, for each i > 1, gi 6= Lb. If
there exists an integer i > 1 such that gi = Ra, then g1 . . . gi = hLaR

l
a or g1 . . . gi = hRbR

l
a for a

morphism h and an integer l ≥ 1. In the first case by Impossibility 4 for f2, for all integer j > i,
fj 6= Rb. In the second case by Impossibilities 3 and 4 for f2, for all integer j > i, we also have
fj 6= Rb. Thus f ∈ La{Rb, La}

∗{La, Ra}
∗.

Assume now the more general case (than g1 = La) where there exists an integer i ≥ 1 such that
gi = La and gj 6= La for 1 ≤ j < i (the first occurrence of La appears at the position i). Samely as
above, we show that g = gi . . . gn ∈ La{Rb, La}

∗{La, Ra}
∗. By Impossibility 1 for f2, for each integer

j, 1 ≤ j < i, gj 6= Lb. Thus gj ∈ {Ra, Rb} for each 1 ≤ j < i. We have three cases: If f ∈ R∗
ag,

then by Impossibility 4 for f2, we have f ∈ La{Rb, La}
∗{La, Ra}

∗ ∪ {Ra, La}
∗. If f ∈ hR+

b R∗
ag for

a morphism h ∈ {Ra, Rb}
∗, then by Impossibility 2 for f2, h ∈ R∗

b and so f ∈ R+

b R∗
ag; then by

Impossibilities 3 and 4 for f2 we have f ∈ {La, Rb}
∗{La, Ra}

∗. If f ∈ R∗
bg, f ∈ {La, Rb}

∗{La, Ra}
∗.

So when there exists an integer i ≥ 1 such that gi = La, f ∈ {La, Rb}
∗{La, Ra}

∗.
The case where there exists an integer i ≥ 1 such that gi = Lb leads similarly to f ∈

{Lb, Ra}
∗{Lb, Rb}

∗.
Now we have to consider the case where for all i, 1 ≤ i ≤ n, gi 6∈ {La, Lb}. Then by Impossibility

3 for f2, necessarily, f ∈ R∗
aR

∗
b ∪ R∗

bR
∗
a.

Lemma 7.5 Every morphism f in La{La, Lb, Ra, Rb}
∗Lb ∪ Lb{La, Lb, Ra, Rb}

∗La is strongly
quasiperiodic.

Proof. We only prove the result for f in La{La, Lb, Ra, Rb}
∗Lb (the other case is similar exchanging

the roles of the letters a and b). Let f = Laf1f2 . . . fnLb with n ≥ 0 and fi in {La, Lb, Ra, Rb}
for all 1 ≤ i ≤ n. We prove by induction on n that there exist morphisms g and h such that
f = gLaLbh (and so from Lemma 7.1 and Fact 5.3, f is strongly quasiperiodic). The property is
immediate for n = 0. Assume now n ≥ 1. If there exists i between 1 and n such that fi = La or
fi = Lb, we can apply the induction hypothesis and Lemma 7.1 to conclude. Now suppose that for
all i, fi 6∈ {La, Lb}. Three cases are possible:

• if f1 = Ra, since LaRa = RaLa from Theorem 3.2, f = RaLaf1 . . . fnLb and we conclude by
the induction hypothesis.

• If fn = Rb we can proceed similarly.

• Assume now f1 = Rb and fn = Ra (this implies n ≥ 2). Let j be the greatest integer
(1 ≤ j ≤ n) such that fj = Rb. Then f = Laf1 . . . fj−1RbR

n−j
a Lb, and by Theorem 3.2

f = Laf1 . . . fj−1LbL
n−j
a Rb. We conclude by the induction hypothesis.

Remark: we could have used another approach observing that LaRb(w) (LaRb(a) = aab,
LaRb(b) = ab) is aba-quasiperiodic for every infinite word w starting with b, and deducing that
every morphism of the form LaRbfLb with f ∈ {La, Ra, Rb}

∗ is strongly quasiperiodic.
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Lemma 7.6 Every morphism f = RagLa with g 6∈ {Ra, La}
∗ or f = RbgLb with g 6∈ {Rb, Lb}

∗ is
strongly quasiperiodic.

Proof. We only prove the first case, the other one is similar. Let g = g1 . . . gn (necessarily n ≥ 1)
such that g 6∈ {Ra, La}

∗ and for each i between 1 and n, gi ∈ {La, Lb, Ra, Rb}. If there exists an
integer i such that gi = Lb then the result is immediate from Lemma 7.5. Consequently we consider
that g ∈ ({La, Ra}

∗Rb)
+{La, Ra}

∗. Thus the morphism f can be decomposed f = f1hf2 with h ∈
RaL

∗
aR

+

b R∗
aLa. If i, j ≥ 0, k ≥ 1 are the integers such that h = Li

aRaR
k
bLaR

j
a, Theorem 3.2 shows

that h = Li
aLaL

k
bRaR

j
a. Consequently Lemmas 7.1 and 7.5 imply that h is strongly quasiperiodic.

Remark: here again we could have used another approach observing that RaRb(w) (RaRb(a) =
aba, RaRb(b) = ba) is aba-quasiperiodic for every infinite word w starting with a, and deducing
that every morphism of the form RaRbfLa with f ∈ {La, Ra, Rb}

∗ is strongly quasiperiodic.

This approach is used to prove:

Lemma 7.7 Any morphism f in RaR
+

b Ra ∪ RbR
+
a Rb is strongly quasiperiodic.

Proof. Let j ≥ 1 be an integer such that f = RaR
j
bRa. Let w be a word. If w starts with b,

RbRa(w) is bab-quasiperiodic, and so f(w) is quasiperiodic. If w starts with a, R
j−1

b Ra(w) also

starts with a. Then RaR
j
bRa(a) is aba-quasiperiodic.

Lemma 7.8 Every morphism f in R+
a L+

a Rb = L+
a R+

a Rb or in R+

b L+

b Ra = L+

b R+

b Ra is strongly
quasiperiodic.

Proof. Theorem 3.2 implies R+
a L+

a Rb = L+
a R+

a Rb and R+

b L+

b Ra = L+

b R+

b Ra.
We prove only the first case, the other one is similar. Let n ≥ 1. It is easy to see that

RaL
n
aRb(w) (RaL

n
aRb(a) = aanba, RaL

n
aRb(b) = anba) is an+1ba-quasiperiodic if w starts with

a, and is anbaa-quasiperiodic if w starts with b. By Lemma 7.1, any morphism in R+
a L+

a Rb is
quasiperiodic.

Proof of Proposition 7.3.
From Theorem 3.2, ELa = LbE and ERa = RbE, so any Sturmian morphism can be written fg

with f ∈ {Id,E} and g ∈ {La, Lb, Ra, Rb}
∗. Thus Proposition 7.3 is a consequence of the following

one: a morphism f in {La, Lb, Ra, Rb}
∗ is weakly quasiperiodic if and only if f belongs to the set

X = {La, Rb}
∗{La, Ra}

∗ ∪ {Lb, Ra}
∗{Lb, Rb}

∗.
To prove this, assume first that f ∈ {La, Lb, Ra, Rb}

∗ is weakly quasiperiodic. By Lemma 7.1,
this morphism cannot be written f = f1f2f3 with f2 a strongly quasiperiodic morphism. Hence by
Lemmas 7.4, 7.5, 7.6, 7.7 and 7.8, f belongs to X.

Assume now that f ∈ X. Since f is Sturmian, it is quasiperiodic and so we just have to prove
the existence of one word such that f(w) is not quasiperiodic. So we just have to prove the existence
of one word w such that f(w) is not quasiperiodic. We do it for f ∈ {La, Rb}

∗{La, Ra}
∗ (the other

case is similar). There exist morphisms g ∈ {La, Rb}
∗ and h ∈ {La, Ra}

∗ such that f = gh. We
can verify that h(abaω) = anbaω for an integer n ≥ 1, and so is a balanced word. By Lemmas 5.4
and 5.5, we thus deduce that (g(h(abaω)) = f(abaω) is not quasiperiodic.
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7.3 Weakly Sturmian morphisms on Sturmian words

Proposition 7.3 and Lemma 5.2 show that some morphisms, as for instance LaRa, are weakly
quasiperiodic whereas they are strongly quasiperiodic on Sturmian words. This section allows us
to characterize all these morphisms. Let us recall that since a Sturmian morphism is quasiperiodic,
any Sturmian morphism is weakly or strongly quasiperiodic on Sturmian words.

Proposition 7.9 A Sturmian morphism different from E and Id is weakly quasiperiodic on Stur-
mian words if and only if it belongs to {E, Id}{La, Rb}

∗ ∪ {E, Id}{Lb, Ra}
∗.

Proof.
Let us make a preliminary remark: for any morphism f , f is weakly quasiperiodic on Sturmian

words if and only if Ef is weakly quasiperiodic on Sturmian words (since for any word w, w is
quasiperiodic if and only if E(w) is quasiperiodic).

Assume first f ∈ {E, Id}{La, Rb}
∗∪{E, Id}{Lb, Ra}

∗. Without loss of generality, we can assume
f ∈ {La, Rb}

∗ ∪ {Lb, Ra}
∗. If f belongs to {La, Rb}

∗ (resp. to {Lb, Ra}
∗), using Theorem 5.6 we

observe that f((LaRb)
ω) (resp. f((LbRa)

ω)) is not quasiperiodic. Since any Sturmian morphism is
quasiperiodic, f is weakly quasiperiodic on Sturmian words.

Now assume f is weakly quasiperiodic on Sturmian words. Observe that from Theorem 3.2(2),
f ∈ {E, Id}{La, Lb, Ra, Rb}

∗. Without loss of generality, from the preliminary remark, we can
assume that f belongs to {La, Lb, Ra, Rb}

∗ and prove that f ∈ {La, Rb}
∗ ∪ {Lb, Ra}

∗. By Propo-
sition 7.3, f belongs to {La, Rb}

∗{La, Ra}
∗ ∪ {Lb, Ra}

∗{Lb, Rb}
∗. Assume by contradiction that

f 6∈ {La, Rb}
∗ ∪ {Lb, Ra}

∗. One of the following four cases holds:

1. f = gLaRa with g ∈ {La, Rb}
∗{La, Ra}

∗;

2. f = gRbR
i
a with g ∈ {La, Rb}

∗, i ≥ 1;

3. f = gLbRb with g ∈ {Lb, Ra}
∗{Lb, Rb}

∗;

4. f = gRaR
i
b with g ∈ {Lb, Ra}

∗, i ≥ 1.

Case 1: Assume f = gLaRa and let w be a non-quasiperiodic Sturmian word. By Lemma 5.2,
f(w) is quasiperiodic.

Case 2: Assume f = gRbR
i
a and let w be a non-quasiperiodic Sturmian word. By The-

orem 5.6, w can be decomposed over {La, Rb} or over {Lb, Ra}. So f(w) = gRbR
i
aLa(w

′) or
f(w) = gRbR

i
aRb(w

′) or f(w) = gRbR
i+j
a Lb(w

′) for a (non-quasiperiodic) Sturmian word w′ and
an integer j ≥ 0. Thus by Lemma 5.2, Lemma 7.7 and Lemma 7.6, f(w) is quasiperiodic.

Cases 3 and 4 are respectively similar to cases 1 and 2. In all cases, f(w) is quasiperiodic for
any non-quasiperiodic Sturmian word w, and so for any Sturmian word (by Fact 4.2). Thus f is
strongly quasiperiodic on Sturmian words. This is a contradiction, so f ∈ {La, Rb}

∗ ∪ {Lb, Ra}
∗.
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