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LINEAR THEORY OF DISLOCATIONS IN A SMETIC A

M. KLÉMAN

Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France

(Reçu le 4 février 1974, révisé le 4 mars 1974)

Résumé. 2014 On décrit l’état de distorsion d’un smectique à partir de la structure de référence
planaire par un vecteur déplacement de couches u (et les contraintes associées 03C3ij), ou par la rotation
du directeur en chaque point 03C9 (et les couples associés). En principe, le choix de la variable indé-
pendante 03C9 est justifié dans l’étude des dislocations de rotation, celui de u dans l’étude des dislocations
de translation. Dans le cas de ces dernières, et s’en tenant aux petites déformations, on étend diffé-
rents résultats établis en théorie des dislocations dans les solides au cas des smectiques. En introdui-
sant le champ de contraintes dû à une force unité localisée (fonction de Green), on exprime le champ
de déplacements d’une ligne comme une intégrale de surface, la tension de ligne et l’énergie d’inter-
action avec d’autres lignes sous forme d’intégrales de ligne. En particulier, on montre que deux
segments de ligne perpendiculaires n’ont pas d’énergie d’interaction, on établit le champ de dépla-
cement d’une boucle coin, on obtient la fonction de Green d’un échantillon homéotrope ayant un
bord libre et un bord ancré, on introduit la méthode des forces images.

Abstract. 2014 The distortions of a smectic phase with respect to a planar state of reference are
described either by a displacement u of the layers (and the conjugated stresses 03C3ij), or by a rotation 03C9
of the director (and the conjugated torques). In principle, the choice of 03C9 as an independent variable
is justified for the study of disclinations, and the choice of u for the study of dislocations of trans-
lation. In this latter case, and restricting the theory to small distortions, one extends various results
in dislocation theory in solids to the case of smectics. With the help of the stress field due to an unit
point force (Green’s function), one is able to express the displacement field of a line as a surface
integral, the line tension and the interaction energy with other lines as line integrals. In particular,
one shows as a result that two mutually perpendicular line segments do not interact; one establishes
the displacement field of an edge loop ; one obtains the Green’s function of a homeotropic sample
with one free boundary and one anchored boundary; the force image method is also introduced.
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1. Introduction. - Smectics are characterized in
their ground state by a stacking of plane layers of
constant thickness d [1]. In smectics A, these layers
consist of molecules perpendicular to the layer plane
and distributed at random. This configuration explains
the well-known elastic properties of smectics A,
intermediate between those of nematics and crys-
talline solids : they act as fluids for any translation
of the molecules (or of the layers) parallel to the

layers, but respond like solids to any stress perpen-
dicular to the layers. This elasticity has been given a
theoretical description by Martin et al. [2], where the
equations are set up for any small deformation with
respect to the ground state; the deformation is
described by a continuous scalar variable u(r, t)
which measures the displacement of the layer along
the normal Oz. The molecules stay perpendicular
to the layers in any deformation. Permeation, i. e.

the activated process by which molecules can jump
from one layer to another [3], is not taken into account.

Hence the director n(r, t), which is the unit vector

along the molecules, does not appear as an indepen-
dent parameter variable.

In the frame of such a theory, to any virtual dis-
placement of the scalar u(r, t), viz. bu(r, t) corresponds
a generalized scalar force Y such that the variation
in the total free energy reads

It may be more convenient for the application to
some particular problems to introduce a set of varia-
bles for which the conjugated forces have a more
direct and intuitive meaning ; this is certainly the
case if one wants to deal with dislocations in smectics,
and take advantage of the conceptual frame which
has been worked out for dislocations in solid crystals
(see, for example, [4], Chap. II). We have therefore
re-established the theory of elasticity of smectics
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A using as a variable a vectorial displacement u.

The corresponding forces (conjugated to the ui,j)
are stresses. The director n is also an interesting
independent variable : to its variation would corres-
pond the work of torques, whose consideration

might be useful in order to describe the elastic effects
of disclinations.
We therefore first establish in this article the elastic

theory of smectics in terms of layer displacements
and directors, torques and stresses. Since we restrict
to the case of elastostatics, we shall assume that the
directors are perpendicular to the layers, which intro-
duces a constraint in the form of a Lagrange multi-
plier. Permeation is not taken into account. These

concepts will afterwards be applied to the theory
of dislocations.

2. Torques and stresses in a distorted smectic A. -
We start from a free energy density [5]

where K is the Frank-Oseen elastic constant relative
to splay [6] and B Young’s modulus. u is the projec-
tion of the displacement u on n

We take into account the action of an applied field H
by introducing the third term. The condition of

perpendicularity of n + ôn to the displaced layer
reads :

where

is the small rotation suffered by n when the molecule
moves by a distance bu. Eq. (3) therefore reads :

and we take into account this condition by intro-
ducing a Lagrangian multiplier Jlk.
Another condition comes from the liquid-like

behaviour of the molecules inside the layers. This
can be written as a Lagrange condition, which expres-
ses the fact that the component of the displacement
parallel to the layers corresponds to an incompressible
deformation :

where p is the corresponding Lagrange multiplier.
Instead of the torques corresponding to w, we

use the so-called molecular field h introduced by de
Gennes [7] and conjugated to bn. The development
now follows that already proposed by Ericksen [8].

The virtual variation of the total energy reads

where we have separated in the usual manner body
forces and surface forces. The notations are the

following

À is a Lagrange multiplier taking into account the
condition n’ = 1.
The equilibrium equations read

The algebra makes use of the following points :
the Lagrange multipliers ,uk are obtained from eq. (7)
and substituted in the expression of uij. We are

therefore left with 3 equations of equilibrium (eq. (6)),
for 6 unknowns (p, 2 angular variables for n, and u).
We also must satisfy eq. (5) and the condition of
existence of surfaces normal to n. (Eq. (3), equivalent
to two independent conditions). Since the only phy-
sical component of u is along n, we satisfy eq. (5)
by letting u = un. We get finally the following result :

The problem simplifies greatly if we specialize to
the case in which eq. (6) is linear with respect to u
and its derivatives. Remembering we must find a

solution in which the only independent variable is u,
we first express n as a function of u and its derivatives.
The equation
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expresses the fact that n is normal to the distorted

layers z == z, + u(r) and satisfies n’ = 1,
n. curl n = 0 ( 1 ) ; with such a value of n, it can be
shown that p can be taken equal to zero ; the only
components of (lij which are non-vanishing are

therefore 611, 621, 631. and eq. (6) reduces to only
one equation for the variable u

with the following definition

It is in the framework defined by eq. (9) that we
develop the theory of dislocations in the following
paragraphs.

3. Dislocation theory. - The essential reason why
we can apply most of the theorems of dislocation
theory is that we limit ourselves to the case where

eq. (9) is linear in u. This implies immediately that
the superposition principle holds true.
Hence the distinction between internal stresses

and applied stresses is useful. Internal stresses are

those due to an internal defect with boundary condi-
tions similar to those in the free medium. These

boundary conditions can concem either the surface
forces (J ij dSi or the displacements ui, or the surface

torques Bijk 7tli nk dSl. Applied stresses are generally
due to imposed forces on the boundaries. For any
given sample, the distinction we make will be valid
if there is no interaction energy between these two
kinds of stresses ; we consider this assertion as part
of the definition of internal and external stresses,
since we have here to be more cautious than in the
case of solids, because of the presence of possible
surface torques.

Consider an unit force directed along the z direc-
tion, to which the medium is subjected at ro. It gives
rise at any point r to a displacement field U(ro/r)
which obeys the equation

In an infinite medium, the solution of eq. (10)
in terms of a Fourier expansion is straight forward.
If we assume that there are no applied fields, we get
explicitly

U(ro/r) is a typical Green’s function, even in r-ro.
The corresponding stresses constitute evidently a

set of applied stresses. Such a Green’s function also
exists in a finite medium. The formulae we are now

deriving assume only that the Green’s function

can be chosen in such a way that the corresponding
stresses are applied stresses, and these formulae are
then valid in any medium.

Let us introduce the stress fields li3(r/r’) of a

point source in r, and consider a line of dislocation L,
Burgers’ vector dj. Since there is no interaction

energy, the work u(r) x 1 performed by the point
force when the line L is introduced (giving rise to a
displacement u(r)) is equal and opposite to the work
of the stresses e i3 on the cut surface (cf. for example
[9], Chap. IV or [4], Chap. II); hence :

which reduces to, since

3.1 STRAIGHT SCREW DISLOCATION IN AN INFINITE
MEDIUM. - Assume the line to be located along the
z-axis, and select the y - z half plane (y &#x3E; 0) as

the cut surface. (13) reduces to

Integrating first with respect to z’ leads to

(1) n curl n = 0 is the scalar condition which expresses the fact
that the lines of force of n form a congruence of normals. This
condition replaces eq. (3), which expresses the same property in
the hypothesis that u and n are independent variables.
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The integration proceeds with the change of variables

Using the relation

where Ji(t) is a Bessel function, we find

and finally, since

where § is the polar angle of r in a plane perpendicular
to z. Eq. (14) could of course have been inferred
directly.

3.2 STRAIGHT EDGE DISLOCATION IN AN INFINITE
MEDIUM. - The calculation uses eq. (13) where only
an integration in the x-y plane is necessary. We obtain
de Gennes’ result [10]

3 . 3 CIRCULAR PRISMATIC LOOP. - The same pro-
cess of integration on a circle of radius R in the plane
z = 0 leads to

where

3.4 SELF-ENERGY AND INTERACTION ENERGY. - Let
us consider two loops L and L’, Burgers’ vectors d
and d’. The interaction energy can be calculated

according to a formula well-known in dislocation

theory as a surface integral over one of the loops

where ori3, for instance, are the stresses created on SL
by the loop L’. SL is any surface bounded by L. The
integration does not depend indeed on SL, since a’ i3
is divergence-free.

A similar formula has to be used for a self-energy,
but with a factor 2

Since these formulae do not depend on SL, but
only on L, it is possible to reduce them to line inte-
grals. Such a procedure has already been used in
dislocation theory by Blin [11] and Krôner [12] in
the case of isotropic elasticity. Obviously it is also

possible to transform eq. (13) to a line integral, and
such an effort has also been already made in disloca-
tion theory. In this latter case, a difficulty arises from
the fact that the displacement is a discontinuous
function on the cut surface, whereas a line integral is
not (cf. [13], p. 64). We have not attempted here to
derive line integrals for eq. (15). But it appears that
trying to get such line integrals in the evaluation of
the energies lead to a very simple and interpretable
result.

Let us introduce the operators of differentiation

We therefore from now on write

and, using eq. (13)

With this notation, the interaction energy reads

and the self energy

where SL = SL, in eq. (22).
In these equations the operator lj3 E’i3 dS1 dS;

contains 9 terms. By a general use of Riemann’s

theorem, which allows to transform surface integrals
to line integrals according to the formula



599

and noting that a U + a U = 0, it is a lengthy butôxi ôx’i 
’ g y

easy calculation to obtain the following results (1)

We immediately notice that a screw dislocation has
zero self-energy. This is straightforward if we use

eq. (14) and substitute in the free energy density. In
the frame of linear elasticity a screw dislocation has
core energy only.
More generally, it appears in eq. (23) that only the

edge components of the lines have non-vanishing
energies.

Also, two straight and perpendicular edge disloca-
tions have zero interaction energies.

Applying eq. (23) to the case of an isolated edge
dislocation in an infinite medium, for which we know
the Green function U(r/r’) (eq. 11 ), we get, per unit
length of line

where À. = J K/B is a penetration length and ç the
core radius. The quantity ç appears in the integration
by imposing a cut-off qc = 2 z/j on the variation of
the wave vector. This result is similar to that one
obtained by Kléman and Williams [14] by a direct
integration. The interaction energies calculated in
the same paper are also obtained from eq. (23).
We also obtain the self-energy of a planar loop as

for the energy of the total loop. It is easy to check
that this quantity increases with R.

(’) An easy way of using Riemann’s theorem is to write it with

the notation of exterior calculus dco = ff ddm where, if

dco = A dx + ..., we have

dx A dy, dx A dz, etc... are related to the surface differential
elements dx dy, dx dz, etc... by

3. 5 FINITE MEDIUM : METHOD OF IMAGES. - In a
finite medium, the Green function we have derived
in section 3 is no longer useful. However, the boun-
dary conditions are generally simple enough, in expe-
rimental situations, to allow for an easy guess of
correct images.

Let us consider the case when the boundary is

along a smectic plane. Two conditions are possible,
whether the surface is free or anchored.

3 . 5 .1 1 On the free surface, it is reasonable to assume
that the forces ai3 dSi vanish, i. e. buldz = 0. Accord-
ing to eq. (15), this means that the image of an edge
dislocation line is a dislocation line of opposite sign.
There is therefore an attraction towards the free

surface for any edge dislocation.

3. 5. 2 If the molecules arc anchored on the surface,
the boundary condition reads u = 0. This means

that an edge dislocation is repelled by the surface.
In the language of Green’s functions the image of

a point force with respect to a free surface is a point
force of the same sign, and with respect to the anchor-
ing surface a point force of opposite sign. This appears
clearly if we look at formula (13), where u(r) is obtained

by integration of £/ (r/r’) on the x - y plane for anaz 

edge dislocation.
Consider for example a sample of constant thick-

ness, situated between an anchoring surface at z = 0
and a free surface at z = D. The Green’s function

U(r’/r) corresponds to the effect of point forces of
positive sign in z’, - z’, z’ + 4 D, z’ 2013 4 D, etc...,
and of point forces of negative sign in zl, - zl,

z 1 + 4 D, z 1 - 4 D, etc... (Fig. 1) with z 1 = 2 D - z’

FIG. 1 -

We have, expanding

in a Fourier series
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and the Green’s function we obtain reads :

From this expression it is possible by the methods
we have outlined before (eq. (13) and (23)) to obtain
any quantity relative to a dislocation in the sample.

4. Conclusion. - We have not tried here anything
else than to apply classical results of the theory of
dislocations in solids to the case of smectics. The first
task has been to rewrite the physical quantities in
terms of stresses. The application we make are res-
tricted to the approximation of linear elasticity and
to the case where the state of reference is the perfect
smectic (planar layers). It would be of interest to use
the set of eq. (8), where no assumption is made

concerning the state of reference, in the vicinity of
confocal domains. This certainly would first require
a study and definition of states of reference which
are not planar (1). Another development would be
to apply the Peierls-Nabarro method in order to

study the core splitting of a dislocation and the

anchoring of smectics on surfaces perpendicular to
the layers. A direct application of the Peierls equation

to our case leads to the integrodifferential equation

where y is the surface energy. The presence of the

(z - z’) - 3/2 factor indicates the difficulty of a complete
study. The core splitting is certainly small (very few
layers broken to create the dislocation) and the Peierls-
Nabarro force large.

But to summarize the results of the present study,
let us be reminded that we have been able to express
the energies as line integrals, with the help of a Green’s
function, in a very simple expression. We get also
the results, among others, that the screw parts have
zero energy and that perpendicular edge dislocations
do not interact. These results are certainly true far
from the core where elastic theory breaks down. In
the core region either a Peierls-Nabarro calculation
or use of a more general theory of smectics, such as
that suggested by Parodi, would be necessary (’).
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