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(Reçu le 16 novembre 1984, accepté le 8 mars 1985)

Résumé. 2014 Le freinage d’un ion ponctuel non relativiste par un fluide dense et homogène d’électrons est calculé
en utilisant l’expression exacte de la fonction diélectrique R.P.A. (rs  1) à température arbitraire. Les résultats
sont donnés en fonction de 03B1e = 03BC/kB T, paramètre de dégénérescence. Des formules d’interpolations sont don-
nées permettant de regrouper les expressions asymptotiques à grande et faible vitesse respectivement. La compa-
raison entre la statistique de Fermi et celle de Boltzmann est faite à température quelconque. Le rapport avec
d’autres approximations antérieures, basse et haute température est mis en évidence. En particulier, le calcul de
Jackson (T ~ ~) est modifié pour minimiser l’écart avec l’approximation Born R.P.A. dans un large domaine
de densité et de vitesse. L’intérêt de cette étude pour la fusion inertielle par ions lourds est mis en évidence.

Abstract. 2014 The full R.P.A. dielectric function (rs  1) is introduced in a calculation for stopping of pointlike
and nonrelativistic positive ions in a homogeneous and dense electron fluid at any temperature. Results are given
for values of degeneracy 03B1e = 03BC/kB T. Accurate asymptotic expressions are worked out in the small and large
projectile velocity limits. Simple interpolation formulae are displayed. The replacement of Fermi statistics by
Boltzmann is also investigated for any temperature. Contact is achieved with previous high- and low-temperature
approximations. The Jackson limit is recovered at T ~ ~ and is modified in order to fit the full range of target
densities and projectile velocities of interest. Relevance to heavy ion driven fusion is stressed throughout.
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1. Introduction.

In close connection with beam-target interaction pro-
blems encountered in inertial confinement fusion

(ICF) driven by particle beams [1-7], we intend to
solve exactly the model for the stopping of nonrela-
tivistic pointlike and positive ions in a homogeneous,
and dense electron fluid taken at any temperature.
Such a model is usually considered as the simplest
in providing a coherent theoretical framework with
reliable estimates for the beam-target interaction

parameters. The rational underlying this view is

based on the observation that many, if not most, of
the compressed pellet states encountered during a full
compression lie in the parameter space close to

weakly coupled systems indexed by a dimensionless
quantity

(+) Associ6 au C.N.R.S.
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with qF, YF, TF denoting Fermi wave number, velo-
city and temperature respectively. ao, Yo, IH refer to
Bohr wavelength, velocity and energy rs = (4/3 7rn)- 113
ao ’ in terms of the free electron number density n,
while a = (9 7r/4)- 1/3 . At high temperature (T &#x3E;&#x3E; Tp),
equation (1) becomes (Te = T/TF)

in terms of Ree = (1nn)-1/3 and of the classical plasma
parameter reo At any degeneracy (or temperature),
the Random Phase Approximation (R.P.A.) is valid
in a (T, n) domain defined by

so that the potential energy content of an electron
pair located at the screening distance always remains
much smaller than the kinetic energy per particle.
As restricted as it looks at first sight, inequality (3)
allows us to encompass a huge number of different

71

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:019850046070111300

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:019850046070111300


1114

systems ranging from high-temperature Tokomaks to
dense and moderately hot plasmas envisioned in

particle beam driven ICF.
Another fundamental point, stressing the basic

importance of a simple but efficient modelling for
the free electron component of an otherwise strongly
coupled ionic mixture in the target, lies on the obser-
vation that although the bound electrons always
provide a non-negligible amount to stopping, the
free electrons are expected to give the largest part
within the usual temperature range of interest [1, 7],
i.e.

Therefore, energetic ions impinging on the target are
supposed to yield most of their energy to free elec-
trons, which display more flexibility in exchanging
momentum and energy during elastic collisions with
projectiles. In this respect, the Born approximation
is fundamental to treat the electron-ion encounter.
The projectile is then considered, at variance, as

pointlike, or as a quantum plane wave-packet. At
last, it should be mentioned that we are fully entitled
to reduce the complex beam-target interaction to a
single ion-target interaction, in agreement with the
fact that whatever its intensity (kiloamps up to

megaamps/cm2), any beam will appear as dilute in
dense matter. The inbeam ion-ion average distance
is likely to remain at least two orders of magnitude
larger than the Thomas-Fermi screening length in
cold matter.

The present paper is organized as follows :
- the exact R.P.A. dielectric formalism is briefly

reviewed and adapted to our purposes in section 2,
- stopping calculations are performed for free

electrons within R.P.A. in section 3,
- pseudoanalytic expressions as well as compa-

risons with previous results restricted to the high-
and low-temperature domains are discussed in sec-
tion 4. A certain emphasis is given to the small and
large projectile velocity (V) dependence, respectively.
A distinctive feature of the present approach lies in
its uniformity with respect to V. Making use of a
fully dynamic dielectric function allows us to com-
pute stopping at any projectile velocity.
A preliminary account for some of these results

has already been given [6, 7] ; limit behaviours at high
and low T, respectively, are stressed in section 5
where contact is made with previous works.

2. R.P.A. dielectric function.

We start with the usual assumption that the Coulomb
interaction between a projectile and the stopping
free electron is essentially elastic, so there are no such
things as electron pair creation or other inelastic

processes. So, we are entitled to consider the given

interaction within the standard framework of linear

response theory satisfying the usual relation

and it remains to compute the fully dynamical die-
lectric function s(q, w). For this goal, we shall follow
the exact R.P.A. treatment previously worked out by
Gouedard and Deutsch [11].

2.1 GENERAL RESULTS. - They pertain to an homo-
geneous electron fluid which remains weakly coupled
for any degeneracy

It is the obvious finite-temperature extension of the
standard Lindhard quantity valid at T = 0, for

rg  1. It smoothly joins the T -+ oo and classical
Fried-Conte expressions. Within the framework of
linear response theory, it is also introduced as [11].

and a free electron response

where 17 is a small positive quantity,

To simplify the discussion, we make use of the dimen-
sionless variables

so that
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The other dimensionless parameters are

f1(z, u) is computed through the Kramers-Kronig
relation

which can be transformed through

With equations (7), (8), (9) one recovers the two well-
known temperature limits :
- Te  1 (Lindhard [8])

Z(p) being the usual Fried and Conte function [9, 13]

which can also be easily computed through Pad6
approximants [14].
At arbitrary temperatures, the following technical

remarks are useful :

-f1, and f2 are essentially significant on a range
in u (or z) measured by ao(T e), with [11]

1

The thermal velocity reads 1

- f1 and f2 have their respective maxima, in u
and z, located between 0 and 1/(1 + Te), so

2.2 ASYMPTOTIC EXPANSIONS. - In order to check

rapidly the extensive numerical calculations required
in the sequel, we think it convenient to work out the
following expansions :

fo rp  ao(ote) with ae expressed in terms of Fermi
function.

(computed accurately through Pad6 approximants
[12]) as (3) Te 3/2 = F1/2(rxe), which yields the chemi-
cal potential in terms of the electron temperature and
density.

For small z, one thus derives useful expansions such as

at high frequency (u &#x3E;&#x3E; ao(Te)), and

in the low frequency range (u  ao(Te)).
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Relations (14) and (19) give us an important para-
meter : the location of the resonance (e(zr’ ur) = 0) at

3. Born R.P.A. (B.R.P.A.) stopping. power.
In dimensionless units (z and u) the B.P.R.A. stopping
power

is written in the form

with Le also dimensionless. Le depends on Te through
e(z, u) only.
At this point, we have to make clear a few obvious

assumptions.
On most part of their range the projectiles are more

energetic than target particles. So, their trajectory may
be taken as linear, in view of the very small energy
exchange at each encounter. The projectile ions are
supposed to be pointlike with a given charge.
Equation (24) is free from divergences at z &#x3E;&#x3E; ao(Te),

diffraction effects yield f2 = 0, while shielding through
I e(z, u) I2 secures the opposite limit z  aa(Te). With
R.P.A., one has

and one divides the z-domain into two regions :
- z  ao(Te), where the test charge yields its

energy to the collective modes with a resonance at
z = zr when u &#x3E; ao(Te), and energy exchange close
to nror h(op,

2013 z - u I  ao(Te), which pertains to binary
collisions. For u &#x3E; ao(Te), shielding vanishes. The

corresponding energy exchange is now 1;ro = h2 q2
These two domains remain distinct when u &#x3E; ao( Te) ;

i.e. for an energy exchange larger than the kinetic
energy N kB TF(l + T e). This basic property accounts
for the weak coupling character of the R.P.A. Collective
modes retain less energy than the particle kinetic
energy.
Moreover the usual Z2-dependence of the stopping

formula yields the well-known scaling relation

so we restrict to protons in the sequel.

It should be appreciated that one of the main outputs
of the present work is the possibility to compute S
for any velocity ratio V /Vth’ because partial degeneracy
is treated exactly.
For instance, in the large V limit

one may check that, for Te =1= 0, there are, as in the

Te = 0 case [8, 9], two equal contributions of S :
- exchange of energy with a plasmon mode around

z - z,;
- exchange of energy through binary encounters

around z = u.

4. Numerical results and approximations.

In order to get orders of magnitude for the most
relevant parameters, we put them in numerical cor-
respondence in table I.

The numerical analysis of equation (24) is mostly
performed through
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Table I. - Relations between ae and Te, and n, X2 and TF. ae is given by the normalizations condition for the
Boltzmann statistics.

h and /3 are evaluated numerically, while 12 can be
given an analytic expression. For instance, for

Figs. la-e. - Stopping power - dE/n dx (MeV, cm2) as a
function of proton energy E for various electron densities
n = 1024_1028 cm-3, and several degeneracy parameters (1.e.
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is displayed on figure 1 for various

densities n in the target as a function of the projectile
(proton) energy, for a given degeneracy parameter a°.
Basic trends are as follows :
- Maximum stopping efficiency is achieved for

4.1 LOW PROJECTILE VELOCITY

Equation (24) then becomes :

when xll(l + T.)  1 we can use the additional

assumption :

Equation (27) for Zc2 allows to rewrite Le as

lags within 15 % in a cold solid.

4.2 HIGH PROJECTILE VELOCITY (X &#x3E;&#x3E; 1). - Extend-
ing the T = 0 Lindhard-Winther procedure to any
temperature we make use of

and

to derive

which, when combined to equation (23) through

yields (m = electron mass)

The full V- 2-expansions are thus recovered from

(33) already gives a one percent accuracy for
Y &#x3E; 2 P’th* The sum rule result (32) lies remarkably
close to this full asymptotic one.

4. 3 INTERPOLATION FORMULA (ANY V). - To a large
extent, the numerical gap between (33) and (26) (i.e.
between low V and high Y) can be bridged through

where G is fixed by L;(Vint) = L;(Vint).
Equation (34) is plotted on figure 2 for

with a relative error (any T) smaller than five percent

4.4 STATISTICAL EFFECTS. - At this point, we think
it worthwhile to investigate quantitative modifications
of stopping when one replaces Fermi statistics by
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Figs. 2a-d. - Same caption as for figure 1 with dotted lines
referring to the interpolation formula (34).

Figs. 3a-b. - Comparison of Fermi (full line) and Boltz-
mann (dotted line) stopping power for same target density
and projectile velocity, at various degeneracies.

Boltzmann at an arbitrary temperature. For instance,
on figure 3, we compare jx respectively computed
with a Fermi distribution 

a Boltzmann distribution

(n, T) data through,

Fried-Conte expression) and

with ae plotted on the last line in table I. a° = ae at
Te &#x3E; 1.

Moreover we recover dE - dE 
B 

at h , .Moreover, we recover dx 
= dx high velocity.

Statistical effects are thus mostly significant in the low
velocity regime.
- As expected discrepancies increase with increas-
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ing ae. For instance maxima exhibit a 6% discrepancy
for Te = 1 and a 12 % one for Te = 0.5 respectively.

B
Also, the maximum and slope of dE tend to shiftdx

gradually away from their Fermi homologues.
- Fermi statistics gradually freezes out the free

electron degrees of freedom, altogether with the corres-
ponding stopping. All in all, a Fermi plasma tends to
be more transparent than a Maxwellian one.

However, it should be noted that for low T and Y,
the classical Debye screening is more efficient than the

Thomas-Fermi screening, which reduces dEB .

5. Limit behaviours.

- In view of the obvious fact that previous calcula-
tions were essentially restricted to the high- and low-
temperature domains, respectively, we consider here
these limit behaviours.

5.1 T -+ oo. - At high-temperature, we can make
a quantitative assessment of the well-known Jackson
procedure [2, 15], which essentially consists in a linear
superposition of the binary collision theory within
a Debye sphere around the projectile in matter with
collective plasma oscillations beyond the Debye
radius. Within the present formalism, the Jackson
limit is retrieved through

and

from which one gets when 6 - 0

The product ql(x) A (x) accounts for the discrepancy
between the Jackson and R.P.A. results in the 6 = 0

limit Equation (37) easily simplifies at high and low
projectile velocities. One thus gets

Table II. - Values of A used in table II. ,
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in table II. A(x) is connected with A i and d 2 tabulated
by May [16] :

Again, it is possible to bridge the gap between (38a)
and (38b) through

Figs. 4a-b. - Comparison of present stopping power (full
line) with Jackson approximation (37) (dashed line) and
interpolation formula (39) (dotted line).

On figures 4a, b, we compare Le, L’ and Le. Le
exhibits serious discrepancies in the low V limit, at
high n. On the other hand, Ll remains very accurate
in the whole parameter range.

5. 2 T e -+ 0. - In the opposite situation of full

degeneracy, we make now a connection with a calcu-
lation performed by Dar et al. [24]. These authors
used the T = 0 limit, (Lindard) of e(q, ro) to compute
cross-sections for the stopping of deuteron beams in
very dense electron fluids at various densities.
On figure 5, we retrieve their results, and the checking

is performed at best for E = 1 MeV, where - ! dE isp 
n dx

equivalent to a cross-section.

Fig. 5. - Stopping of deuterons in dense electrons. Results
of Dar et al. [26] are recovered at E = 1 MeV.

6. Concluding remarks.

In the above treatment, we have completely worked
out the stopping of non relativistic and pointlike ions in
an arbitrarily degenerate electron fluid, within the
theoretical framework provided by the Born approxi-
mation for the projectile and R.P.A. for the target
plasma (B.R.P.A.).
When the projectile charge Z is such that the Born

parameter

is no longer small as compared to unity, we have to go
beyond the present approximation (referred to as

Bom I) and include higher-order Bom corrections
in the usual form :

where Lo denotes the previous B.R.P.A. contribution.
ZLi is the Bom II correction equivalent to a Barkas
term [19,22],/(Z2) is the Bloch term [23] which

bridges the gap between quantum and classical

theories. f (Z2) has been computed in the nonde-
generate limit [17,18].
From (41) one can see that all theories start from the

B.R.P.A. results. So our conclusions remain valid in a
more general framework than the Bom approximation
one.
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