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Berry phase in graphene: a semiclassical perspective
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We derive a semiclassical expression for the Green’s function in graphene, in which the presence
of a semiclassical phase is made apparent. The relationship between this semiclassical phase and
the adiabatic Berry phase, usually referred to in this context, is discussed. These phases coincide
for the perfectly linear Dirac dispersion relation. They differ however when a gap is opened at
the Dirac point. We furthermore present several applications of our semiclassical formalism. In
particular we provide, for various configurations, a semiclassical derivation of the electron’s Landau
levels, illustrating the role of the semiclassical “Berry-like” phase.

PACS numbers: 73.22.Dj, 03.65.Sq, 03.65.Vf

I. INTRODUCTION

Graphene [1, 2], a two-dimensional carbon based ma-
terial forming a honeycomb lattice, has attracted a lot of
attention since its experimental isolation has been proved
possible [3, 4]. It is a gapless semiconductor in which,
near half filling, electrons behave like massless Dirac par-
ticles, obeying a linear dispersion relation. Among the
unusual properties of this two-dimensional carbon mate-
rial stand out very distinctive quantum Hall properties,
and in particular the

√
n dependence of the energy in

terms of the Landau level number n, and the existence
of a Landau level with zero energy, which is associated
with the presence of a Berry phase [1, 5].

The existence of this Berry phase and its implications
for the Landau levels have been discussed in many places
in different contexts (see e.g. [5, 6, 7]). The direct connec-
tion between the Berry phase and the observable quanti-
ties under discussion is however not always as transparent
as one may wish, and situations where, either because of
disorder, or because one would like to confine the elec-
trons into a finite region of space, a position dependent
electrostatic potential or mass term is introduced, are
usually not addressed.

The aim in this paper is to revisit this question of
Berry phase in graphene within a semiclassical, and more
specifically semiclassical Green’s function, perspective.
For sake of clarity, our emphasis in this present work
will be more in providing this new point of view, and we
shall therefore mainly illustrate it with the discussion of
the standard problem of the Landau levels of electrons
in a perpendicular and uniform magnetic field. Even in
this familiar framework, we shall see however that our
semiclassical approach makes it possible to address some
non-trivial questions, such as the role of the Berry phase
in situations for which a small mass term has to be in-
cluded, opening in this way a gap at the Dirac point.

This article is therefore organized as follows. In sec-
tion II, we derive, following closely the formalism of Bolte
and Keppeler [8], the expression for the semiclassical
Green’s function in graphene. In particular we discuss
in details the origin of the term corresponding to the

Berry phase. These results are extended in section III to
a bilayer of graphene. We furthermore provide both for
the monolayer and the bilayer cases the expression of the
Gutzwiller trace formula for the semiclassical density of
states, valid when classical periodic orbits are isolated.
As an illustration of the Green’s function formalism, we
then apply it in section IV to the computation of Landau
levels for a graphene sheet in constant magnetic field. We
will see in particular that the modifications brought in by,
for instance, trigonal warping, are easily included within
our semiclassical formalism. We then come back in sec-
tion V to the discussion of the relationship between the
semiclassical “Berry-like” phase obtained in our approach
and the adiabatic Berry phase [9] usually discussed in this
context.

II. SEMICLASSICAL GREEN’S FUNCTION
FOR GRAPHENE

Starting from a tight-binding nearest neighbor model,
the graphene Hamiltonian at low energies can be ob-
tained by expanding the momentum near the Dirac
points K and K′ of the Brillouin zone. For pure
graphene, one obtains in this way in momentum repre-
sentation [10, 11, 12, 13]

H0
g = vF (ασxpx + σypy) = vF

(

0 αpx − ipy

αpx + ipy 0

)

,

(1)
where the matrix structure originates from the exis-
tence of two sub-lattices (denoted A and B below) in
the graphene honeycomb structure. In this equation,
vF = 3ta/(2~) is the Fermi velocity, with t the hopping
parameter and a the lattice constant, α is the valley index
(α = ±1) labelling the two inequivalent points K and K′

in the Brillouin zone (not to be confused with the sub-
lattice index), p is the momentum measured from these
points, and σx,y are Pauli matrices. This linear approxi-
mation to the graphene Hamiltonian will be valid as long
as the condition |p| ≪ ~/a is fulfilled.

We are interested here in a more general situation than
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the one of pure graphene, and would like to consider the
case where, because of either disorder or the need to con-
fine the electrons in some part of the graphene sheet, an
electrostatic potential U(r) and/or a [possibly position
dependent] mass m(r) have to be taken into account.
We will not consider however tunneling contributions re-
lated to the Klein paradox, or boundary effects that may
occur at the (zigzag, armchair, or generic) edges of the
graphene sample. The graphene Hamiltonian then takes
the more general form

Hg = vF (ασxΠ̂x + σyΠ̂y) + U(r).12 + m(r)v2
F
σz , (2)

in which the magnetic field B(r) = ∇× A(r) (if any) is
taken into account by the Peierls substitution

p̂ → Π̂ = p̂ + eA(r) , (3)

with A(r) the vector potential and p̂ ≡ −i~ ∂
∂r

.
For this problem, the Green’s function G(r′′, r′) is ac-

tually a 2× 2 matrix defined by the differential equation

(E.12 −Hg)G(r′′, r′; E) = δ(r′′ − r′).12 (4)

(where Hg is applied to the variable r′′). To obtain a
semiclassical solution of this equation, we shall proceed
in two steps. First, assuming r′′ is far from the source
location r′, we solve semiclassically (i.e. in the WKB
approximation) the Schrödinger equation

(E.12 −Hg)G = 0 . (5)

In a second stage we match this general solution to the
exact Green’s function of the “free” (i.e. with constant
potential and mass) problem, valid near the singularity
r′. We proceed now with this derivation.

A. Far from the singularity: the WKB
approximation

Following [8], we seek a semiclassical solution of eq. (4)
with G of the form

G(r′′, r′; E) = Γ(r′′, r′) exp

[

i

~
S(r′′, r′)

]

, (6)

where Γ is a 2x2 matrix. To lighten the notation, we drop
for now the explicit dependence in the source position r′.
Inserting (6) into (5) and expanding in ~ the resulting
expression, we obtain at order O(~0)

(

E.12 − H(
∂S

∂r′′
, r′′)

)

Γ(r′′) = 0 , (7)

and at order O(~1)

∂H

∂p
· ∂

∂r′′
Γ(r′′) = vF (ασx

∂

∂x′′ + σy

∂

∂y′′ )Γ(r′′) = 0 , (8)

where H(p, r) is the classical symbol associated with the
quantum Hamiltonian Hg.

This classical Hamiltonian can be diagonalized, with
the eigenvalues

H±(p, r) = U(r) ±
√

m2(r)v4
F

+ v2
F
Π2 (9)

and the corresponding normalized eigenvectors V ±(p, r)
(whose explicit expressions are given in appendix A).

Writing the matrix Γ(r′′) as [V ±( ∂S
∂r′′

, r′′) · Γ̃±(r′′)], with

Γ̃± a 1 × 2 matrix, the order ~
0 equation becomes

E − H±(
∂S

∂r′′
, r′′) = 0 , (10)

where the ± sign must be taken according to the sign of
E − U(r′′).

Eq. (10) is the usual scalar Hamilton-Jacobi equation,
which can be solved by the method of characteristics
[14]. This amounts to constructing a 2-dimensional La-
grangian manifold L (in the 3-dimensional energy surface
in phase space) built as a 1-parameter family of trajec-
tories following the classical equations of motion

ṙ =
∂H±

∂p
(p, r) ,

ṗ = −∂H±

∂r
(p, r) .

Given any such manifold, the action S(r′′) =
∫ r′′

pdr,
where the integral is taken on an arbitrary path on L, is
a solution of (10).

The specific Lagrangian manifold that will correspond
to the proper boundary conditions for G(r′′, r′) near the
source r′ is the one obtained from the trajectories leaving
r′ with an arbitrary initial momentum p′ at energy E:

L± ={(p(t), r(t)), t ∈ [0,∞),

such that r(0) = r′, H±(p(0), r(0)) = E}
(11)

(each point on the manifold is therefore parameterized
by the time t and the initial momentum p(0)). The cor-
responding action can then be expressed as

S±(r′′, r′) =

∫ r′′

r′
p · ṙ dt (12)

along a trajectory (p(t), r(t)) joining r′ to r′′ at energy
E.

Having obtained a solution of the O(~0) equation, the

prefactor Γ̃ is then determined by the O(~1) equation (8),

which, after multiplication on the left by V ±†(∂S±

∂r′′
, r′′),

can be expressed as �Γ̃± = 0, where

� ≡
(

V ±†(
∂S±

∂r′′
, r′′)

∂H

∂p
.

∂

∂r′′

)

V ±(
∂S±

∂r′′
, r′′) .

The operator � can be decomposed as � = �(1) + �(2)

with

�(1) =

(

V ±† ∂H

∂p
V ±
)

.
∂

∂r′′
(13)
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and

�(2) = V ±† ∂H

∂p
.

(

∂V ±

∂r′′

)

. (14)

Noting that first order perturbation theory implies
V ±†(∂H/∂p)V ± = (∂H±/∂p), one has straightfor-
wardly that

�(1) =
∂H±

∂p
.

∂

∂r′′
(15)

and that

Re(�(2)) =
1

2

∂

∂r′′
.

(

V ±† ∂H

∂p
V ±
)

=
1

2

∂

∂r′′
.
∂H±

∂p
. (16)

(Note here that with respect to spatial derivation, H± ≡
H±(r′′) = H±((∂S±/∂r′′), r′′)). One recovers in this
way, for the real part of �, the usual expression valid for
a scalar quantum system [14], which is expected since it
basically expresses the conservation of probability.

The imaginary part of (�(2)) however is not con-
strained by such a conservation law, as it affects only the
phase of Γ̃, but encodes information about the adiabatic
variation of the eigenvector V ± along the followed trajec-
tory. It needs therefore to be computed from the explicit
expressions of the eigenvector and eigenvalues of H(p, r).
The details of the algebra are given in appendix A. One
obtains

(

∂H±

∂p
.

∂

∂r′′
+

1

2

∂

∂r′′
.
∂H±

∂p
+ iM±

)

Γ̃± = 0 (17)

with

M± =
αv2

F

2(E − U(r′′))

(

eB+

Π× ∂
∂r′′

(m(r′′)v2
F
− U(r′′))

m(r′′)v2
F

+ E − U(r′′)

)

.ez

(18)

(ez is the unit vector in the direction perpendicular to
the graphene sheet).

In the absence of the complex term iM , the scalar

transport equation
(

∂H±

∂p
. ∂
∂r′′

+ 1
2

∂
∂r′′

.∂H±

∂p

)

γ± = 0 has

the usual solution [14]

γ± = C
exp(−iπ

2 µ±)
√

|J±(r′′, r′)|
(19)

J±(r′′, r′) = −ṙ′′‖ ṙ′‖

(

∂2S±

∂r′′⊥∂r′⊥

)−1

= ṙ′′‖ ṙ′‖

(

∂r′′⊥
∂p′⊥

)

(20)

where r‖ and r⊥ are the coordinates parallel and trans-
verse to the trajectory (actually Eq. (20) remains valid

for any system of coordinates) and µ± is the Maslov in-
dex counting the (algebraic) number of caustic points.
Writing

Γ̃± = γ±Σ±

we obtain that

(
∂H±

∂p
.

∂

∂r′′
+ iM±)Σ± ≡ (

d

dt
+ iM±)Σ± = 0

and therefore Σ±(t) = exp (iξsc) Σ±(t = 0), with

ξsc = −
∫ t

0

M±(p(t′) , r(t′))dt′ . (21)

Summing the contributions corresponding to different or-
bits j joining r′ to r′′ we get

G(r′′,r′; E) =
∑

j:r′→r′′

γ±
j V ±

j (r′′)Σ±
j (t = 0)

exp

(

i

~
S±

j (r′′, r′) − i

∫ tj

0

M±
j (p(t′) , r(t′))dt′

)

,

(22)

where V ±
j (r′′) ≡ V ±(∂S±

j /∂r′′, r′′) (and therefore de-

pends not only on r′′ but also on the final momentum
p′′

j of the trajectory j).

The semiclassical phase ξsc Eq. (21) is the analog, in
our context, of a Berry phase [9]. In the same way, it has
its origin in the adiabatic change of the eigenvectors of
the “internal degree of freedom” Hamiltonian H(p(r), r)
along the classical paths contributing to the semiclassical
Green’s function. Furthermore, in some circumstances,
ξsc exactly corresponds to the genuine Berry phase ξad de-
fined for the adiabatic motion along the trajectory. This
will be the case in particular for “pure” (i.e. without
mass term) graphene. In general, however, ξsc and ξad

differ [15, 16]. We will come back to this point in sec-
tion V, and in particular clarify the question of which of
the two phases is relevant for the Landau levels.

B. Matching to the exact solution near the source

Sufficiently close, on the classical scale, to the source
r′, we can neglect the variation of the various potentials
and of the mass, i.e. assume U(r) = U0, m(r) = m0 and
A(r) = 0. In this case we have the expression for the
exact retarded Green’s function:

G =

(

GAA GAB

GBA GBB

)

with
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GAA(r′′, r′, E + iǫ) =

(

−i
m0v

2
F

+
√

ζ2 + m2
0v

4
F

4(~vF )2

)

H0(
ζ

~vF

|r′′ − r′|) , (23)

GAB(r′′, r′, E + iǫ) =

(

α
ζe−iαφ

4(~vF )2

)

H1(
ζ

~vF

|r′′ − r|) (24)

and GBB = GAA(m0 → −m0), GBA = GAB(φ → −φ).

Here ζ =
√

(E + iǫ− U0)2 − m2
0v

4
F
, φ is the phase of

px + ipy and H0 and H1 are Hankel functions of order
0 and 1. Asymptotically, as |r′′ − r′| → +∞, GAA and
GAB take the form

GAA ≃ −i
m0v

2
F

+ E − U0

4(~vF )2

√

2

π

ei(k|r′′−r′|−π
4
)

√

k|r′′ − r′|
(25)

GAB ≃ −iαe−iαφ

√

(E − U0)2 − m2
0v

4
F

4(~vF )2

√

2

π

ei(k|r′′−r′|−π
4
)

√

k|r′′ − r′|
(26)

with ~k = 1
vF

√

(E − U0)2 − m2
0v

4
F

= |p|.
Let us assume E − U0 ≥ 0, so that semiclassically

we consider the positive eigenspace H+. We note first
that, in the free case considered here, the choice of the
Lagrangian manifold L+ given by (11) corresponds to the
action S+(r′′, r′) = |p| · |r′′ − r′| and to

J+(r′′, r′) =
v4

F

(E − U(r′))2
|p|.|r′′ − r′| ,

so that, as anticipated, the expression (22) matches the
asymptotic expressions (25)-(26), provided one chooses
C = 1√

2iπ~

1
i~

and

Σ+(t = 0) = V +†(
∂S+

∂r′
, r′) . (27)

The asymptotic expressions (25)-(26) are valid as soon
as |r′′− r′| is larger than a few Fermi wavelengths, which
can still correspond to a distance short on the classical
scale, and therefore such that the free Green’s function is
a good approximation. We can therefore use this match-
ing condition to fix the prefactors Σ+(t = 0) and C in
the generic case, obtaining finally

G(r′′, r′; E) =
1√
2iπ~

1

i~

∑

j

exp
(

i
~
S±

j − i
∫ tj

0
M±

j dt′ − iπ
2 µ±

j

)

√

|J±
j |

V ±
j (r′′) · V ±†

j (r′) .

(28)

III. BILAYER GRAPHENE AND GUTZWILLER
TRACE FORMULAE

We turn now to a few extensions of the result derived
in section II. We start with a generalization to the bi-

layer graphene case, and then briefly discuss the resulting
Gutzwiller trace formulae for the density of states, valid
when classical periodic orbits are isolated in phase space
(i.e., generically, for chaotic systems).

A. Semiclassical Green’s function for the bilayer
case

The bilayer graphene Hamiltonian can be written at
low energy as [17]

H0
bi = − 1

2m∗

(

0 (px − ipy)
2

(px + ipy)
2 0

)

(29)

with m∗ = γ1/(2v2
F
), where γ1 is the intra-layer coupling

parameter. As before, we would like to include electric
or magnetic fields, as well as a possibly position depen-
dent mass term. We therefore consider the more general
Hamiltonian

Hbi = U(r).12 + m(r)v2
F
σz + H0

bi(p → Π) . (30)

Following the same approach as above, one obtains the
semiclassical Green’s function in the form Eqs. (6)-(22)
except for a different expression of the classical Hamilto-
nian eigenenergies

H± = U(r) ±

√

m(r)2v4
F

+

(

Π2

2m∗

)2

and of the semiclassical (“Berry-like”) phase term

M± =
1

m∗

√

1 − m(r′′)2v4
F

(E − U(r′′))2
(

±eB +
1

2

Π× ∂[m(r′′)v2
F
− U(r′′)]/∂r′′

m(r′′)v2
F

+ E − U(r′′)

)

.ez .

(31)

In the free case (m(r) ≡ m0, U(r) ≡ U0), the exact
Green’s function can be shown to behave asymptotically
as |r′′ − r′| → +∞ as

GAA ≃ −im∗

4~2

√

m0v2
F

+ E − U0

−m0v2
F

+ E − U0

√

2

π

ei(k|r′′−r′|−π
4
)

√

k|r′′ − r′|
GB̃B̃ = GAA(m0 → −m0)

GAB̃ ≃ im∗

4~2
e−2iφ

√

2

π

ei(k|r′′−r′|−π
4
)

√

k|r′′ − r′|
GB̃A = GAB̃(φ → −φ)
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with φ the phase of px + ipy. Matching the exact so-
lution near the source to the semiclassical expression far
from the source eventually gives the semiclassical Green’s
function as a sum over all trajectories j joining r′ to r′′

under the classical Hamiltonian H+ or H− (depending
on the sign of (E − U(r′)))

G(r′′,r′; E) =
1√

2iπ~

1

i~

∑

j

V ±
j (r′′)V ±†

j (r′)

exp
(

i
~
S±

j − i
∫ tj

0
M±

j dt′ − iπ
2 µ±

j

)

√

|J±
j |

,

(32)

with J± given by Eq. (20).

B. Trace formulae for isolated orbits

One important application of the semiclassical expres-
sions for the Green’s functions is that, by taking their
trace, one obtains a semiclassical approximation for the
density of states ρ(E) =

∑

i δ(E − Ei). We have in
mind here a quantum dot defined in a finite region of
a graphene sheet (with the confinement imposed for in-
stance through the mass term), and the Ei are the cor-
responding discrete energies of the confined system. We
will furthermore assume in this subsection the classical
motion within the dot fully chaotic, so that all trajecto-
ries are isolated.

Starting from Eqs. (28) or (32), the semiclassical den-
sity of states can be obtained as the trace

ρ(E) ≡ − 1

π
Im

∫

drTr[G(r, r; E)] , (33)

(where Tr is the trace on the internal structure of the
Green’s function). The smooth (Weyl) part of the density
of states, which is associated with “zero length” orbits,
has the usual expression ρWeyl(E) = ρ+

Weyl(E)+ρ−Weyl(E)
with

ρ±Weyl(E) =

∫

dpdr

(2π~)2
δ(E − H±(p, r)) .

When potential and mass terms are constant this gives

ρ±Weyl(E) =
|E − U0|A
2π(~vF )2

Θ
(

±(E − U0) − m0v
2
F

)

, (34)

with A the area of the graphene sheet and Θ the Heavi-
side step function.

The oscillating part ρosc(E) of the density of states
can then be obtained inserting the semiclassical expres-
sion for the Green’s function in Eq. (33). Performing the
integral on r in the stationary phase approximation im-
poses that, in the semiclassical sums Eqs. (28) or (32),
only the trajectories with identical initial and final mo-
mentum should be kept. As a consequence, the sum
over the index j becomes a sum over periodic orbits.

In particular, in Eqs. (28) or (32), V ±
j (r′′) = V ±

j (r′)
since r′′ = r′ = r and p′′

j = p′
j (remember that

V ±
j (r) ≡ V ±

j (pj(r), r), so the second condition is nec-

essary here). Therefore Tr[V ±
j (r′′) ·V ±†

j (r′)]|r′′=r′=r = 1.
Once this point is recognized, the calculation of ρosc from
the semiclassical Green’s functions is, up to the inclusion
of the semiclassical “Berry-like” phase term

∮

j
M±(t)dt,

essentially the same as in the scalar case [18, 19] (see
also the particularly clear discussion in [20]). We thus
just quote the final results: ρ(E) = ρ+(E) + ρ−(E);
ρ±(E) = ρ±Weyl(E) + ρ±osc(E), with

ρ±osc(E) =
1

π~

∑

p.o.

Tppo
√

|det(M̃po − 1)|

cos

(

S±
po

~
− π

2
σ±

po −
∫ Tpo

0

M±dt′
)

.

(35)

Here M̃ =
∂(p′′

⊥,r′′
⊥)

∂(p′
⊥

,r′
⊥

) is the monodromy matrix, σ± = µ±+

ν± is the topologically invariant Maslov index (ν = 0 or
1, depending on the sign of d2Sj/dr2

⊥, see the discussion
in [20]), and Tppo is the period of the primitive orbit
(Tpo = nTppo if the orbit consists of n repetitions of the
same path).

IV. GRAPHENE IN A CONSTANT MAGNETIC
FIELD

As an illustration of the semiclassical Green’s func-
tion formalism, we consider in this section the simple
(but useful) case of a graphene sheet immersed in a con-
stant magnetic field, and show how some standard (and
less standard) expressions can be easily re-obtained in
this way. We start with the Landau levels in the mono-
layer and the bilayer, without potential or mass term
(U(r) = m(r) = 0), and assuming the low-energy ap-
proximations Eqs. (1)-(29) of the Hamiltonian apply.
We then study the influence of higher order corrections
(e.g. trigonal warping) to this low-energy Hamiltonian.
We finally consider the case where a finite mass term
m(r) = m0 = const., is introduced. This last exam-
ple will be used to introduce the discussion on the dis-
tinction between the semiclassical and adiabatic Berry
phases, with which we shall end this paper in the next
section.

A. Landau levels in monolayer graphene

In the absence of confining potential or mass term, and
with a constant magnetic field, the classical equations of
motion in graphene are integrable and lead to cyclotronic
motion, i.e. circular periodic orbits with period T and
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radius R given in the monolayer case by

T =
2π

v2
F

E

eB
(36)

R =
vF

2π
T . (37)

Since the periodic orbits are not isolated, we cannot use
the Gutzwiller trace formula derived in the previous sec-
tion and we have to obtain the density of states directly
from inserting the semiclassical expression Eq. (28) in
Eq. (33). Here however the classical dynamics is ex-
tremely simple: there is only one primitive orbit, and
the sum over j is actually a sum over the number of
repetitions of this primitive circular orbit. We there-
fore have S±

j = Etj/2, with tj = jT . Two caustics
are furthermore traversed for each iteration of the or-
bit, one midway through the circle, the other when the
orbit comes back to its starting point, and the Maslov
index is thus µ±

j = 2j (note that, as discussed below,

the last caustic should be included). Finally, the semi-
classical “Berry-like” phase term Eq. (18) reduces here
to M±

j (r(t)) = αv2
F
eB/(2E) = const. so that

∮ tj

0

M±
j (t)dt = αjπ . (38)

The only technical point in this calculation is therefore
that since, whatever the initial momentum, all trajecto-
ries initiated in r′ = r eventually return there, the final
point r′′ = r is a caustic (∂r′′⊥/∂p′⊥ = 0) and the prefac-

tor 1/
√

|Jj | diverges. As discussed in the appendix E of
[21], this divergence can be cured using a mixed repre-
sentation of the Green’s function, i.e. by expressing the
Green’s function G(r′′, r′) in terms of its Fourier trans-

form G̃(p′′x, y′′; x′, y′) as

G(x′′, y′′; x′, y′) =

1√
−2iπ~

∫

dp′′xG̃(p′′x, y′′; x′, y′) exp(
i

~
x′′p′′x) .

(39)

A semiclassical expression for G̃ can be derived in exactly
the same way as for G, and leads to the same expression
except for the transformations Sj → S̃j = Sj − p′′xx′′ and

Jj = −ẏ′′ẏ′( ∂2Sj

∂x′′∂x′ )
−1 → J̃j = −ẏ′′ẏ′( ∂2S̃j

∂p′′
x∂x′ )

−1. Thus

J̃j = ẏ′′ẏ′(
∂p′′x
∂p′x

) , (40)

which is not diverging since for the cyclotron motion
∂p′′x/∂p′x = 1. The integral over p′′x in (39) becomes then
straightforward (noting that dp′′x/ẏ′′ = dθ, with θ the an-
gle made by the initial velocity with the x axis, this in-

tegral basically provides a factor
∫ 2π

0
dθ = 2π). Further-

more the integration over position in Eq. (33) amounts
to a multiplication by the area A of the graphene sheet,

and as in section III B, Tr[V ±
j (r′′) · V ±†

j (r′)]|r′′=r′=r = 1

since the final and initial momenta are identical. One
therefore obtains

ρosc(E) =
|E|A

π(~vF )2

+∞
∑

j=1

cos 2πj
E2

2~eBv2
F

. (41)

The total density of states is then ρ(E) = ρWeyl(E) +
ρosc(E) with ρWeyl(E) the smooth density of states
(which is identical to the one without magnetic field)
given by Eq. (34). Using the Poisson formula, we there-
fore have

ρ(E) =
A

2πl2B

+∞
∑

n=−∞
δ(E − En) (42)

with lB =
√

~/(eB) and

En = sign (n)vF

√

|2n~eB| . (43)

We recover in this way the expression of the Landau lev-
els as obtained in a fully quantal derivation [12]. This
approach furthermore provides a direct link between the

phase
∮ tj

0 Mj(t)dt = αjπ and the existence of a zero en-
ergy level, as it cancels out the phase associated with the
Maslov indices (another example of such a cancellation
can be found in [22]). An alternative semiclassical deriva-
tion of the graphene Landau levels can be obtained start-
ing from the Dirac oscillator [23], in the limit of massless
carriers, provided the frequency of the oscillator is taken
to be the cyclotronic one.

B. Landau levels in bilayer graphene

Considering now the bilayer case, we can proceed in
exactly the same way as above except for two differences.
First, the period T and radius R are now given by

T =
2π

ω
= 2π

m∗

eB
(44)

R =

√

|E|
2π2m∗T . (45)

Second, the semiclassical “Berry-like” phase term
Eq. (31) now reduces to M±

j (r(t)) = ±eB/m∗ = const.,
so that

∮ tj

0

Mj(t) dt = 2jπ . (46)

The Berry-like phase does not in this case compensate
the phase associated with the Maslov index. Noting
furthermore that, for the bilayer graphene, ρWeyl(E) =
m∗A/(2π~

2), we obtain

ρ(E) =
A

2πl2B

+∞
∑

n=−∞
δ(E − Esc

n ) (47)
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where

Esc
n = ~ω(n − 1

2
) (48)

is the semiclassical approximation to the exact quantum
values of the Landau levels, En

quant = ~ω
√

n(n − 1) =
~ω(n − 1

2 ) + O( 1
n
). The semiclassical calculation fails

here to account for the O( 1
n
) term. The n = 0 and n = 1

Landau levels, which both have zero energy, are there-
fore not correctly described within this semiclassical ap-
proach. However, for n ≥ 2, the agreement between the
semiclassical approximation and the exact result is quan-
titatively very good.

C. Influence of higher order corrections (in the
parameter (a|p|/~))

The next example to which we shall apply our semi-
classical formalism is the shift of the Landau levels asso-
ciated with deviations, for large momenta, to the linear
approximation of the graphene dispersion relation Eq. (1)
[24].

Starting from a tight-binding description of the
graphene monolayer in which the effect of the next-to-
nearest neighbor hopping is taken into account via the
parameter t′ ≪ t, and expanding the resulting dispersion
relation near the K and K′ points up to third order in
(a|p|/~) (the reason for expanding up to third order will
become clear below), the resulting Hamiltonian reads (in
the absence of electric or magnetic fields) [24]

H′
g = H0

g +

(

h′(p) h(p)∗

h(p) h′(p)

)

(49)

with H0
g given by Eq. (1) and

h′(p) = −3t′ + 6
t′

t
vF |p|

(vF

6t
|p| − 2α(

vF

6t
)2p2 cos 3φp

)

h(p) = −vF

(vF

6t
(αpx − ipy)

2 + 2(
vF

6t
)2p2(αpx + ipy)

)

.

Keeping only terms no greater than third order in
momentum, the eigenvalues of the associated classical
Hamiltonian can be expressed as

H± = h′(p) ± vF |p|
(

1 − α
vF

6t
|p| cos 3φp

− 1

2
(
vF

6t
)2p2(3 + cos2 3φp)

)

,
(50)

with φp = arctan(py/px). The anisotropic terms, pro-
portional to cos 3φp, are often referred to as trigonal
warping. Recall now this expansion is valid if the con-
dition |p| ≪ ~/a is fulfilled. Rewriting the expression
(vF /6t)|p| = |p|a/(4~), higher order terms in H± can
thus be viewed as a perturbation of the original eigen-
value H± = ±vF |p| in the small parameter (λvF |p|),

where λ ≡ α/6t will be used below to identify the order
in the perturbation. In the semiclassical limit (~ → 0),
only the modification of the action needs to be taken into
account since this latter is multiplied by the large param-
eter 1/~. Our aim is therefore to compute the (first and
second order here) corrections to the action in an expan-
sion in λ

S = S0 + λδ(1)S + λ2δ(2)S . (51)

In the presence of a constant magnetic field, the clas-
sical equations of motion derived from the first order
approximation H± = ±vF |Π| are integrable, and this
property is not modified by the addition of terms in H±

depending only on |Π|. This can be easily shown by per-
forming a canonical transformation to the guiding cen-
ter coordinates. For sake of completeness, this canonical
change of variables is detailed in appendix B. The new
coordinates read

R = (
1

eB
Πy, x0)

P = (Πx, eBy0)

with r0 the center of the cyclotron orbit, so that |Π| =
√

P 2
x + (eBX)2 and tanφΠ = eBX/Px. We thus have

H+ = −3t′ + ρ − µ2λρ2 − µ1λ
2ρ3

with vF (Px + ieBX) = ρeiφ, µ2 = (cos 3φ − 6α t′

t
), and

µ1 = 1
2 (3 + cos2 3φ + 6α t′

t
cos 3φ). In this new system of

coordinates, the action is easily calculated as

S =

∫

PdR =

∫

PxdX =
1

2v2
F
eB

∫ 2π

0

ρ2(φ)dφ

with the constraint E = H+. Therefore, to order λ2, and
with E′ = E + 3t′

ρ2 = E′2 + 2µ1λE′3 + (5µ1
2 + 2µ2)λ

2E′4

which gives for the action

S =
1

2v2
F
eB

(

2πE′2 − 24πα
t′

t
λE′3

+ 12π(1 + 30(
t′

t
)2)λ2E′4

)

.

The third order terms had to be taken into account in
the low-energy expansion, since their contribution in the
second order correction of the action is of the same mag-
nitude as that of second order terms. The third order
term in the next-to-nearest neighbor contribution how-
ever cancels out in the calculation of S and thus a second
order expansion in h′(p) would have been sufficient. In-
troducing this shift in the action in the Landau-levels
calculation of section IVA finally gives

E′
n = En

(

1 ± 6α
t′

t
λEn − 3λ2E2

n

)

= En

(

1 ± 3t′√
2t

a

lB

√
n − 3

8
(

a

lB
)2n

) (52)
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(lB =
√

~/(eB) is the magnetic length). This result is
identical to the one obtained purely quantum mechan-
ically in [24]. As discussed in this paper, the resulting
effect is however too small to interpret shift in Landau
levels observed experimentally by Plochocka et al. [24] .

D. Effect of a mass term

To end this section, let us consider the effect of a con-
stant mass term m0v

2
F
σz in the graphene Hamiltonian,

so that

H± = ±
√

m2
0v

4
F

+ v2
F
Π2 . (53)

Interestingly, a constant mass term does not modify the
time derivative M(t) of the semiclassical Berry-like phase
since (see Eq. (18)) it depends only on the gradient of
m(r). Furthermore, as shown by a direct calculation,
the energy dependence of the Landau frequency is not
affected either by the mass term. Therefore

T =
2π

ω
=

2π

v2
F

E

eB
(54)

M(r(t)) = αv2
F

eB

2E
= const. , (55)

and the semiclassical phase
∮ tj

0

Mj(t)dt = jαπ (56)

is the same as without the mass term.
The m0 dependence of the Landau level position is

therefore entirely due to the m0 variation of the action

Sj = jπ
E2

eBv2
F

[

1 −
(

m0v
2
F

E

)2
]

, (57)

which, following the same steps as in section IVA, gives
ρ(E) = (A/(2πl2B))

∑+∞
n=0 δ(E ± En), with

En =
√

E2
n(0) + m2

0v
4
F

(58)

≃ En(0)

(

1 +
1

4n

(m0vF )2

e~B

)

(59)

(En(0) is the value of En at m0 = 0 given by Eq. (43)).
One recovers semiclassically in this way the result origi-
nally derived by Haldane [25].

V. SEMICLASSICAL VERSUS ADIABATIC
BERRY PHASE

We would like to finish this paper with some general
discussion concerning the semiclassical phase

ξsc ≡ −
∮ T

0

Msc(p(t), r(t))dt (60)

Msc(p(t), r(t)) = Im

[

V ±† ∂H

∂p
.

(

∂V ±

∂r

)]

(61)

(see Eq. (14)) computed on a periodic orbit (p(t), r(t))
(of period T ).

That, for a clean graphene monolayer without a mass
term, ξsc = ∓π (as expressed by Eq. (38), with j = 1) is
usually said to be expected since the corresponding con-
figuration is exactly the one discussed in detail by Berry
in his 1984 paper [9]: the path of integration corresponds
to encircling once the Dirac point, where the H+ and
H− manifolds intersect. This argument however relies
on an exact intersection between the two manifolds, and
should a priori not apply when a mass term m0 intro-
duces a gap. From this perspective, one does not expect
the Berry phase to be equal to ±π when m0 6= 0, and
Eq. (56) may come as a surprise. (Note though this was
already observed in [26].)

The resolution of this apparent paradox is that, as dis-
cussed in [15, 16], the semiclassical phase ξsc defined by
Eq. (21) and the adiabatic phase introduced by Berry are
closely related, but eventually different, quantities. Both
of them are induced by the adiabatic variation of the
eigenstates V + and V − along the trajectory. However,
the point of view taken in the semiclassical approach is
that both the internal space (associated here with the
sub-lattices (A, B)) and the external space (position r)
are coupled dynamical variables. Treating the coupling
between these variables in the semiclassical approxima-
tion (which indeed implicitly assumes that the “external”
variable is slow and the internal variable fast) leads to the
semiclassical expression (61).

The problem Berry was considering in his seminal ar-
ticle [9] is however different: in that case, only the in-
ternal degree of freedom is considered a dynamical vari-
able, and the external degrees of freedom are actually
a space of parameters assumed to be entirely controlled
by the experimentalist. One may in that case of course
choose this path as the classical trajectory (r(t)) (with
H(r) ≡ H(p(r), r)) determined by the dynamics in the
semiclassical approach. In that case however the corre-
sponding phase is given by [9]

ξad ≡
∮ T

0

Mad(r(t))dt (62)

Mad(r(t)) = iV ±† ∂V ±

∂r
· ṙ (63)

(the normalization of V ± ensures that Mad is real).
Let us assume, for this discussion, that we are inter-

ested in the evolution of the eigenstate V + associated
with the positive eigenvalue H+. Furthermore, let us
switch to the bra/ket notation for the eigenvector and
write V ± ≡ |±〉, V ±† ≡ 〈±|. First order perturbation
theory implies ṙ = ∂H+/∂p = 〈+|(∂H/∂p)|+〉, and there-
fore Eq. (63) can be rewritten as

Mad(r(t)) = i〈+|∂H

∂p
|+〉 · 〈+| ∂

∂r
+〉 . (64)

On the other hand, inserting the identity 12 = |+〉〈+| +
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|−〉〈−| in Eq. (61),

Msc(r(t)) = Im

[

〈+|∂H

∂p
|+〉 · 〈+| ∂

∂r
+〉 + 〈+|∂H

∂p
|−〉 · 〈−| ∂

∂r
+〉
]

.

(65)
Thus, the adiabatic and semiclassical phases actually dif-
fer from the quantity

ξad − ξsc =

∮ T

0

Im

[

〈+|∂H

∂p
|−〉 · 〈−| ∂

∂r
+〉
]

dt . (66)

From this expression, we can see that in the absence of

a mass term, but for an arbitrary electrostatic potential
U(r), the semiclassical and Berry phases are identical.
Indeed, for m(r) ≡ 0, the expressions Eqs. (A2)-(A3) for
the eigenvectors of H(p, r) take the simple form

|+〉 =
1√
2

(

1
αeiαφ

)

(67)

|−〉 =
1√
2

(

αe−iαφ

−1

)

, (68)

with φ the phase of Πx + iΠy. As a consequence

〈+|∂H

∂p
|−〉 · 〈−| ∂

∂r
+〉 =

vF

2
(− sinφ∂xφ + cosφ∂yφ)(69)

〈+|∂H

∂p
|+〉 · 〈+| ∂

∂r
+〉 = i

αvF

2
(cosφ∂xφ + sin φ∂yφ)

=
iα

2

dφ

dt
. (70)

The right hand side of Eq. (69) is purely real, implying
that, in the simple case m = 0 considered here, ξad −
ξsc = 0. Eq. (70) then expresses that, independently
of the nature of the electrostatic potential U(r), the –
here identical – Berry phase and semiclassical phase are
just given by plus or minus (depending on α) half the
angle of rotation of the velocity vector. In particular, as
demonstrated by Berry from geometric arguments [9], we
see here from a direct calculation that for a periodic orbit,
ξad = ξsc = −αjπ, with j the number of windings of the
trajectory. This makes particularly simple the inclusion
of the semiclassical phase in the Gutzwiller trace formula
Eq. (35) when m = 0.

Similarly, for the bilayer Hamiltonian Eq. (30) with
m(r) ≡ 0, we have

|+〉 =
1√
2

(

1
−ei2φ

)

(71)

|−〉 =
1√
2

(

e−i2φ

1

)

, (72)

with φ the phase of Πx + iΠy, and

〈+|∂H

∂p
|−〉 · 〈−| ∂

∂r
+〉 =

|Π|
m∗ (− sin φ∂xφ + cosφ∂yφ)(73)

〈+|∂H

∂p
|+〉 · 〈+| ∂

∂r
+〉 = i

|Π|
m∗ (cosφ∂xφ + sinφ∂yφ)

= i
dφ

dt
. (74)

Again, the Berry phase and semiclassical phase are iden-
tical if m(r) ≡ 0 (as Eq. (73) is purely real), and both
phases are given by the angle of rotation of the velocity
vector.

For both bilayer and monolayer graphene, it has to be
born in mind however that in the generic case m(r) 6= 0,
the semiclassical phase ξsc should in general differ from
the Berry phase ξad. Furthermore, we do not have a gen-
eral argument constraining any of the two phases to be
directly related to the winding of the velocity vector (be-
yond the case where both the mass and the electrostatic
potential are constant).

VI. CONCLUSION

To conclude, we have derived an expression for the
semiclassical Green’s function in graphene and discussed
in particular the semiclassical phase associated with the
internal pseudo-spin structure. If no mass term is in-
cluded in the graphene Hamiltonian, this semiclassical
phase is identical to the corresponding (adiabatic) Berry
phase. In that case both phases are, up to a sign, given
by half the angle of rotation of the velocity vector. For
a bilayer of graphene, the same result holds but with a
phase which is twice as large.

When a mass term is introduced however, the semi-
classical and Berry phases in general differ. In particu-
lar, for a clean graphene sheet in a constant magnetic
field, we have shown that the semiclassical phase re-
mains unmodified upon the inclusion of a constant mass
term m(r) = m0, while the corresponding Berry phase
ξad = [m0/(E − U0) − 1]αjπ shows some dependence on
m0. We have shown furthermore that in this case, what
is relevant to the calculation of the Landau levels is the
semiclassical, rather than the Berry, phase. Other appli-
cations of our semiclassical formalism were also discussed,
including the effect of higher order terms of the graphene
Hamiltonian – e.g. trigonal warping – on the position of
the Landau levels.

The semiclassical approximation to the graphene
Green’s function should prove a useful tool when con-
sidering confined electron systems in graphene, such as
graphene nanoribbons, or more complicated geometries.

We have benefited from helpful discussions with E. Bo-
gomolny, J.-N. Fuchs, M.-O. Goerbig, G. Montambaux
and F. Piéchon, and thank as well all active participants
of the weekly graphene “journal-club” held in LPS, Or-
say.

APPENDIX A: IMAGINARY PART OF THE
OPERATOR (�2)

In this appendix, we give the details of the computa-
tion of the imaginary part Im(�(2)) = M± (see eq. (17))
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of the operator

�(2) = vF V ±† ·
(

ασx

∂V ±

∂x
+ σy

∂V ±

∂y

)

. (A1)

Here

V +(p, r) =

(

m(r)v2
F

+ ǫ(p, r)
vF (αΠx + iΠy)

)

√

2(ǫ(p, r))(m(r)v2
F

+ ǫ(p, r))
(A2)

V −(p, r) =

(

vF (αΠx − iΠy)
−(m(r)v2

F
+ ǫ(p, r))

)

√

2(ǫ(p, r))(m(r)v2
F

+ ǫ(p, r))
(A3)

are the normalized eigenvectors of the classical Hamilto-
nian H± (see Eq. (9)),

ǫ(p, r) = H+(p, r) − U(r) =
√

m(r)2v4
F

+ v2
F
Π2

and, with respect to spatial derivation, it is understood
that V ± ≡ V ±[(∂S±/∂r), r].

We perform here the calculation for M+, the one for
M− being essentially identical. We have

αIm
[

V +†σx(∂xV +)
]

=
α

2ǫ(mv2
F

+ ǫ)
Im

[

(

mv2
F

+ ǫ, vF (αΠx − iΠy)
)

· σx ·
(

∂x(mv2
F

+ ǫ)
vF ∂x(αΠx + iΠy)

)]

=
αvF

2ǫ(mv2
F

+ ǫ)

[

(mv2
F

+ ǫ)∂xΠy − Πy∂x(mv2
F

+ ǫ)
]

, (A4)

and in the same way

Im
[

V +†σy(∂yV +)
]

=
1

2ǫ(mv2
F

+ ǫ)
Im

[

(

mv2
F

+ ǫ, vF (αΠx − iΠy)
)

· σy ·
(

∂y(mv2
F

+ ǫ)
vF ∂y(αΠx + iΠy)

)]

=
αvF

2ǫ(mv2
F

+ ǫ)

[

(mv2
F

+ ǫ)(−∂yΠx) + Πx∂y(mv2
F

+ ǫ)
]

, (A5)

so that

Im(�(2)) =
αv2

F

2ǫ

(

∂

∂r
× Π +

Π× ∂r(mv2
F

+ ǫ)

mv2
F

+ ǫ

)

.ez ,

with ez the unit vector in the direction perpendicular to
the graphene plane.

Using finally that
(

∂

∂r
× A

)

z

= B

(∂r × ∂rS)z = ∂x∂yS − ∂y∂xS = 0

and that the Hamilton-Jacobi equation E −
H+(∂S+

∂r
, r) = 0 implies

∂

∂r

(

ǫ(
∂S+

∂r
, r)

)

= −∂U

∂r

then gives Eq. (18).

APPENDIX B: GUIDING CENTER
COORDINATES

We sketch here the construction of the new canonical
variables (R = (X, Y ),P = (Px, Py)) introduced in sec-
tion IVC. We start first by performing the simple canon-
ical transformation r → r′ = (x, py),p → p′ = (px,−y).

Then, introducing the guiding center r0 = (x0, y0) coor-
dinates

x0 = x − 1

eB
Πy =

x

2
− 1

eB
py

y0 = y +
1

eB
Πx =

y

2
+

1

eB
px

we define the point transformation R(r′) as

R = (
x

2
+

1

eB
py,

x

2
− 1

eB
py) = (

1

eB
Πy , x0) .

This transformation is obtained from the generating
function F (r′,P) = P.R(r′), and therefore the new mo-
mentum is given by

p′ =
∂F

∂r′
=

(

1
2 (Px + Py)

1
eB

(Px − Py)

)

which is easily inverted into

P(p′) = (px − eB

2
y, px +

eB

2
y) = (Πx, eBy0) .

The unperturbed Hamiltonian is then given as
H+(p, r) = vF |Π| = vF

√

P 2
x + (eBX)2.
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