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Abstract

This work describes and evaluates a novel interactive visual clustering system.

It combines a 2D projection with a clustering algorithm that operates on this pro-

jected data. Users can interact directly through the 2D representation, by providing

examples according to their expert ground truth. Each interaction incrementally

updates the 2D projection and the associated clustering. Experiments show the

effectiveness of the method, with as few as one interaction leading to a tangible

influence on the visualization.

1 Introduction

Clustering is a prevalent task for understanding, and summarizing complex data. This

approach is usually taken exploratively, when we do not have any explicit prior knowl-

edge about the data.

Real data sets are often high dimensional. Setting up a visual clustering system

is thus not trivial, and depends on the existence of adequate low dimensional repre-

sentations (preferably 2D). Rather independently of work on the clustering topic, the

projection of high-dimensional data in a 2D space has been thoroughly investigated.

Using this range of techniques, the data becomes affordable for interaction.

We advocate the projection of the data and its clustering in the same 2D view. The

originality of this work lies in an interactive loop, that allows the user to influence the

clustering result directly through the 2D visualization. More specifically, we support

an input based on examples, where the user can provide his expectations regarding

pairs of elements in the 2D projection. Other views of the data (e.g. inspector) may

complement our system, and suggest alternative similarity and clustering patterns to

users. Ultimately, preferences of users with respect to the distribution of the data in

the projection space are expected to influence the clustering structure, e.g. tend to
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Figure 1: Description of the envisioned interactive visual clustering system.

regroup originally dissimilar clusters. The difficulty of this approach lies in an elegant

combination of this subjective supervision, and the intrinsic nature of the data.

In this paper, we operate on data sets through similarity matrices. We hypothesise

that user interaction may be elegantly handled by influencing these matrices. In this

context, kernel-based methods seemed an obvious choice to ground our work. They

focus on processing positive semi-definite similarity matrices (kernel matrices), and

were successfully applied to the problems of projecting data in low-dimensional spaces

(kernel PCA projection) and clustering (spectral clustering algorithms).

We motivate our kernel transformation with a detailed analysis, and the care of

optimizing the effect of user interactions: when a user specifies as few as one or two

constraints, his actions should lead to a tangible feedback on the visualization, and the

current clustering.

After a review of the related work, and an overview of the targeted system, we

give a detailed description of our interactive loop. Specifically, the translation of user

interactions into binary relations is formalised. To maximise the cover of the relations,

and thus the area of influence of user interactions, we derive and justify the use of

transitive closures. Pairwise similarities associated to members of these relations are

transformed by adapted functions; some insight to the desirable properties of such

functions is given, and supports our eventual choice. The complexity of our method is

discussed, and the results of our experimental evaluation are presented. Observations

are drawn, and supported by a statistical analysis. We then conclude this paper with

some perspectives for future work.

2 Related Work

2D projections are a common way to represent high-dimensional numerical data. PCA

is probably the most popular technique in this range. It seeks the linear subspace that

captures the maximal variance from the data. Its good interpretability taken aside, this

method tends to compress the elements in the projection space (i.e. on average, the

normalised pairwise distances are smaller in the projection space than in the original

space). Self Organizing Maps (SOM) and Multi Dimensional Scaling (MDS) are other

popular methods in this domain (see [2] for a more extensive review).

Kernel PCA [10] is somehow affiliated to MDS, as it resorts to the eigen-decomposition

of a kernel similarity matrix (e.g. computed using the data in the original space). This

method can be seen as a linear projection on the 2D principal non-linear manifold that

underlies the similarity matrix. For details and insight about kernel PCA, the interested

reader may refer to [10, 3].
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Figure 2: a) User interactions are formalised in the relations. b) These relations are

extended by their closures. c) The cover is increased by the similarity-augmented rela-

tions.

The projection of d-dimensional (d > 2) data to a 2-dimensional space inevitably

leads to some information loss, materialised by projection artefacts, i.e. distortions

induced by the transformed 2D space with respect to the distribution of pairwise dis-

tances. The reader may consult [2] for a review on this matter. In brief, compression

(respectively stretching) occurs when the normalised pairwise distances in the pro-

jected space are smaller (respectively greater) than their counterpart in the original

space. The typical distortions associated to the kernel PCA 2D projection have already

been shortly discussed [3]. Even if not a primary concern in this paper, projection

artefacts reflect how influential a transformation may be, and will be measured and

discussed in our experimental section.

The present work is loosely related with semi-supervised clustering approaches

(e.g. [4]). These classically convert the user interactions to clustering constraints (i.e.

pre-labelled elements, or pairwise constraints), that are incorporated in an explicit ob-

jective function. Alternatively, we rather propose a principled approach to convey user

interactions as a similarity matrix transformation. This transformed matrix is then pro-

cessed by a standard spectral clustering algorithm [8]. Indeed, projecting data accord-

ing to its similarity matrix may lead to clusters with arbitrary shapes, and the spectral

approach is especially adapted to this case. Interestingly, the latter work highlights

the intricate relationship between kernel PCA and spectral clustering. Actually, the

methods mostly differ on the employed normalisations. The ability of kernel-based

methods to handle both visualisation and clustering motivated our choice: both facets

thus integrate naturally in a unified formalism.

The objective of visual clustering is to go beyond an effective representation, and

also allow a level of interaction. The implicit goal, and expected benefit, is to allow

a user to gain more insight to his data, and clustering algorithm, through intuitive ma-

nipulations. For example, in [1], in the context of spatio-temporal data clustering, the

parameters of the clustering algorithm are adjustable in the user interface, with visual

feedback on the implied clustering result. In contrast, the present paper uses a non-

parametric approach, where users can provide examples through element selection.

[9] is closely related to our work, and proposes to let the user position an auto-

matically selected sample of data elements in the 2D projected space. The rest of the
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collection is then arranged in the 2D space as a compromise between user preference

and data similarity. Their technique uses a combination of clustering and SVM classi-

fiers.

3 Method Description

This work ultimately aims at implementing the interactive clustering system sketched

in Figure 1. The initial 2D projection phase is determined by computing a kernel PCA

on the data in its original space. The data is clustered in the projected 2D space using

a spectral clustering algorithm. As evoked above, this choice is rather natural when

operating on data resulting from a kernel PCA 2D projection. The rest of the section is

dedicated to the core of our contribution: the interactive loop in Figure 1.

3.1 From user interactions to binary relations

To support the discussion, let us define a data set X = {x1, . . . ,xN}, with each x ∈ X

taking values in R
d. We assume the existence of a N × N similarity matrix K, with

values in [0, 1], such that Kij = similarity(xi,xj), and Kii = 1. Specifying pairs of

elements that should be closer (link) or further (not-link) from each other is natural for

users, and requires few prior information about the data distribution. Our intuition is to

guide the clustering process by transforming the projected space it operates on: to do

so, user preferences have to be translated into a transformation of the 2D projection.

The first step in this direction is to formalise user inputs in terms of binary relations.

Let us define the Link (respectively Not-Link) symmetric, irreflexive binary relation

L (respectively N ), so that:

x and x
′ are linked ⇔ xLx′

x and x
′ are not linked ⇔ xNx

′

The intersection between L and N is constrained to be empty. In Figure 2a, we il-

lustrate, with a toy example, how few user-specified constraints translate into instances

of these relations.

As we consider linking constraints, two induction rules seem rather intuitive in this

context:

xiLxj and xjLxk ⇒ xiLxk, (1)

xiLxj and xjNxk ⇒ xiNxk. (2)

Examples of inductions according to (1) and (2) are given in Figure 2b. Let us note

that the augmentation of L by rule (1) is L+, the transitive closure of L. Rule (2) cannot

be expressed in standard binary relations terminology. As the notions of composition

and transitivity intervene, we coin this operation as the composite transitivity of L and

N , and symbolise it by N o+.

We also constrain L+ ∩ N o+ = ∅. In the context of our interactive clustering

system (see Figure 1), L and N are used to record the user interactions. (1) and (2)

are not intended to replace these: a user has to keep an easy track of his actual past
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Figure 3: a) Instances of the families of functions. b) To highlight the properties of

these families, their difference to the similarities they apply to is also plotted. c) The

two candidates for fα
not-link are highlighted. 1) The maximal influence of the trans-

formations occurs close to extreme similarty values (0.1 or 0.9). 2) The families are

continuous at the similarity bounds. 3) The chosen candidate has a weaker slope, for

a smoother influence on the similarity distribution. 4) The location of the maximal

influence better reflects the desired properties for our transformation.

interactions. Rather, they are used to check the consistency of the current L and N .

More specifically, just after an interaction, if we have L+∩N o+ 6= ∅, the current L and

N are said to be inconsistent: the user is then asked to revise his past interactions (see

“consistency check” in Figure 1). If the consistency is verified, the pairwise similarities

associated to couples lying in the closures are modified.

The closures L+ and N o+ are exemplified in Figure 2b. In practice, when several

hundred data points lie in our interactive clustering system, we do not expect a user to

perform more than 5 or 10 interactions: consequently, even after applying inductions,

relations L+ and N o+ are likely to be very sparse.

We propose to use the similarities between elements to augment the cover of X by

L+ and N o+. To this aim, we define the one-sided restriction of a symmetric relation

as:

X|R = {x ∈ X|∃x′ ∈ X, xRx
′}

Intuitively, it seems natural that all elements that are neither in X|L nor in X|N can

be artificially linked to their most similar element found in the restrictions. This may

be seen as a k-NN step, with k = 1. Formally, the similarity-augmented link relation

Ls is derived as follows:

xiLsxj ⇔















(

xi /∈ X|L+∪N o+

and j = argmaxj|xj∈X|
L+∪No+

Kij

)

or xiL
+
xj

The closures L+
s and N o+

s follow mechanically from applying (1) and (2) to Ls and

N , and can also be used for consistency checks. These similarity-augmented relations

are illustrated by Figure 2c.

Yet, such checks are now useless: the consistency of L and N implies that of Ls

and N . The proof can easily be sketched: let us consider the xj selected by the first
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proposition on the right hand side of (3). During a subsequent consistency check of Ls

and N , any instantiation implying one of these xj can match either (1) or (2), but not

both at the same time.

3.2 Transforming the kernel similarity matrix

In the previous section, we formalized the recorded user interactions. Implicit augmen-

tations of the baseline relations were also discussed. Our further intuition may be then

summarised as follows: have linked elements more similar, and not linked elements

more dissimilar.

Formally, functions that implement this intuition have to be determined. We pro-

pose to use the two following function families, for application to similarity values in

[0, 1]:

fα
link(sim) = sim

1
α (3)

fα
not-link(sim) = 1− (1− sim)

1
α (4)

with fα
link (respectively fα

not-link) the family of functions that tends to augment (re-

spectively diminish) the parameterised similarity. Examples of these functions are rep-

resented in Figure 3a for several values of α. Let us remark that a similarity matrix

fully or partly transformed by these functions remains a valid similarity matrix, as the

image of [0, 1] by these functions is also [0, 1].
Figure 3b illustrates the motivations that led us to these monotonic and smooth

functional forms:

• Elements that must be linked, and are already close do not need further similarity

increase. Linked elements with low similarity must be more strongly influenced.

• Reciprocally, close elements that must not be linked need a strong influence, pur-

posely to create an artificial boundary. Couples in N that are already dissimilar

should not be much influenced.

• If a couple in N (respectively in L) is extremely similar (respectively dissimilar),

trying to separate (respectively regroup) it would tear the whole projection apart:

below some threshold, the influence is thus softened. Such violations of user

preferences might be highlighted with a color code.

Eventually, fα
link (respectively fα

not-link) is applied to pairwise similarities of couples

lying in a link (respectively not-link) relation. The application to simple closures (i.e.

L+ and N o+), and to similarity augmented closures (i.e. L+
s and N o+

s ), will both be

tested in our experimental section. Throughout the rest of the paper, α is empirically

set to 6.

fα
not-link was chosen for reasons of symmetry with fα

link. Another candidate would

intuitively have been the simα family. However, as plotted in Figure 3c, the maximal

magnitude of the influence of the latter family of functions tends to occur close to 0.5.

Consequently, similar couples lying in N would not be sufficiently separated.

So far, we have not defined how the similarity values in K are computed. In the

context of kernel methods, this is achieved through the use of a kernel function param-

eterised by a couple of elements given in the original data space. The Gaussian kernel

function kGauss is a typical choice in this context [3].
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The effectiveness of the function families defined by (3) and (4) is somehow con-

ditioned by the uniformity in [0, 1] of the similarity values in K. However, similarity

values distributions, as generated by the Gaussian kernel function, may be data and

dimensionality dependent, and far from uniformity [3]. Thus, we rather compute the

similarity matrix K with the p-Gaussian kernel function kpGauss (see [7, 3] for details).

Let us remark that unlike the widely employed Gaussian kernel, the p-Gaussian does

not lead to positive semi-definite kernel matrices [3]: this may be an issue for some

kernel-based methods, such as SVM classifiers. Yet, kernel PCA only requires the two

major eigenvalues, which are positive, when using kpGauss, for all but extremely degen-

erate data distributions [3]. For example, the p-Gaussian kernel matrix computed on a

sample of 400 points from the Unidat-10 data set (see section 5 for a data set descrip-

tion) has approximately 50% of positive eigenvalues. This amount is not much changed

when considering the similarity augmented transformation (10 random couples in L
and N ). Moreover, the spectral clustering algorithm (see Figure 1) recomputes its own

kernel matrix by analysing the 2D projected data. In this work, kpGauss is thus safe to

use and transform. kpGauss also leads to more stable eigen-decompositions [3], which

supports the robustness of our system.

4 Complexity

The computation of the baseline similarity matrix K is O(dn2), but is only required

once, at the system initialization. Each interaction leads to the modification of L or N .

A naive approach to the update of their closures (see section 3.1) would lead to O(n2)
operations: yet, exploiting the incrementality of this construction ultimately permits a

linear update cost.

The incompressible burden of the method is located in the eigen-decomposition of

the similarity matrix, required afresh at each interaction. Due to its very quick conver-

gence, and the restriction to the two major eigenpairs, the Iteratively Restarted Lanczos

method can be considered as approximately O(dn2), which is in the same order of the

pairwise similarity matrix computation. In practice, on a standard workstation, the

computation is tractable (i.e. interaction taking less than 1 second) when handling up

to a few thousand elements. Beyond this order of magnitude, the relevance of project-

ing such an amount of data points in a closed 2D space may be questioned, and research

would rather be oriented towards combinations with hierarchical data structures (e.g.

dendrogram). Cuts at specific heights would help control the displayed level of detail.

The algorithmic consequences should be studied carefully, and may lead to adapted

optimizations with a O(dn′2), n′ < n cost at each step.

5 Experiments

The actual system, as we envisioned it, is summarised in Figure 1. In this paper, we

choose to focus on evaluating the proposed kernel transformation in itself, and its con-

sequences with respect to metrics such as the intensity of projection artefacts, and the

clustering purity: we thus propose an alternative, batch experimentation protocol. Do-
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Figure 4: Description of our experimental protocol.

data set # attributes # elements # classes

Pima 8 768 2

Isolet 617 1500 5

Unidat-10 10 2000 2

Unidat-500 500 2000 2

Table 1: Description of the data sets used in the experiments

ing so, we expect to evaluate our method more objectively. This protocol is overviewed

in Figure 4.

For this evaluation, we used four numerical data sets, summarised in table 1. Pima

and Isolet are classical UCI data sets. For Isolet, we selected the five classes associated

to the vowels. All but one attributes of the Unidat sets were drawn from a uniform law

in [0, 1]. The two classes of 1000 elements differ by the remaining attribute: it was

drawn uniformly in [0, 0.5] (respectively [0.5, 1]) for the first (respectively last) 1000

elements.

With this data set selection, we tried to cover the most classical difficulties encoun-

tered in machine learning. Pima is well known for its erroneous and missing data [6],

that even state-of-the-art classifiers have some difficulty to process successfully. With

respectively 500 and 617 dimensions, Unidat-500 and Isolet are good representatives

of high dimensional numeric data.

In Figure 4, we see that an experiment is characterised by a specific data set (and

its respective ground truth), a number of interactions nint for each relation L and N ,

and a transformation method. We define a control method for the similarity matrix

transformation, that simply keeps the baseline unchanged. To evaluate the importance

of the similarity augmented approach, we define the simple (respectively augmented)

method, that transforms the similarity matrix according to L+ and N o+ (respectively

L+ and N o+).

We choose to perform each experiment independently 20 times, and record the

relevant output, i.e. the medians of the compression and stretching artefacts (see [2] for

computational details), and the purity of the clustering output by the spectral algorithm.

The latter is parameterised with the ground truth number of classes. As seen in Figure 4,

to clearly measure the influence of the proposed interactions, the distortion artefacts are

computed with respect to the baseline p-Gaussian kernel PCA 2D projection. For more

robust results, a balanced subsample (i.e. that reflects the original class distribution)

was drawn randomly and independently for each experiment (depending on the data

set, ≃ 300 elements).
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Are user interactions influential on distortion or clustering purity? Is the simple

method sufficient? To answer these questions, we define nint and the transformation

method as independent variables of two-way independent ANOVA tests. Accounting

for the amount of independent experiments we carried out, normality and homogeneous

variances of the gathered metrics are not required [5].

Using any method induces significant distortion artefacts. We observe the same

pattern for all data sets, and both artefacts (i.e. compression and stretching): slightly

increasing linear trend with respect to nint using the simple method (e.g. with Pima,

from 0.01 to 0.04 on average), and stronger decreasing linear or quadratic trend with

the augmented method (e.g. with Isolet, from 0.13 to 0.07 on average, F (1, 342) = 58,

p < 10−12).

The observations regarding the clustering purity are much more data set dependent.

Both methods do not make a significant difference for Pima and Unidat-500. As an

explanation, let us note again that Pima is especially difficult for classification tasks [6],

and that Unidat-500 is extremely noisy. For Isolet and Unidat-10, only the augmented

method is influential (e.g. F (1, 342) = 27, p < 10−6 for Isolet). Again, similar

patterns are observed for both data sets: the purity is harmed when nint = 1, but

raises, and overcomes the baseline results with increased interaction. For Unidat-10

and nint = 1, with the augmented method the purity is 56.5%, instead of 62% on

average for the control method. This metric then follows a significant linear trend

(F (1, 342) = 17, p < 10−4) to reach 66.5% purity for nint ≥ 7.

6 Conclusion

In this paper, we proposed and described an interactive visual clustering system, that

grounds on a 2D projection of numerical data sets. Users have the possibility to provide

their preference to the system, by indicating pairs of elements they would like to see

close or far apart. The 2D projection, and subsequently the clustering that operates on

it, incorporates this interaction in a compromise with baseline similarities.

From the experimental results, we see that our proposition, using the similarity-

augmented method, leads to the expected result that as few as one interaction has a

tangible effect on the 2D projection (reflected by increased distortions), and subsequent

clustering. Further interactions, when made according to the ground truth classes, tend

to smoothen this strong prior effect, with improved clustering results.

Due to our random sampling scheme, the resulting clustering quality can be seen as

a lower bound on what could be expected. An actual implementation of the interactive

loop, along with subjective user tests, would refine the assessment of our system.

Beyond naively associating distinguishable shapes and colours to data points ac-

cording to their cluster memberships, it would be desirable to associate a global shape

to each cluster. Yet, spectral approaches do not assume a specific cluster shape (whereas

e.g. elliptic shapes for Gaussian mixture based algorithms). A possibility would be to

adapt work on blob construction, where arbitrary shapes are built from density analysis

[11].
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