An efficient rounding boundary test for pow(x,y) in double precision

Abstract : The correct rounding of the function pow: (x,y) -> x^y is currently based on Ziv's iterative approximation process. In order to ensure its termination, cases when x^y falls on a rounding boundary must be filtered out. Such rounding boundaries are floating-point numbers and midpoints between two consecutive floating-point numbers. Detecting rounding boundaries for pow is a difficult problem. Previous approaches use repeated square root extraction followed by repeated square and multiply. This article presents a new rounding boundary test for pow in double precision which resumes to a few comparisons with pre-computed constants. These constants are deduced from worst cases for the Table Maker's Dilemma, searched over a small subset of the input domain. This is a novel use of such worst-case bounds. The resulting algorithm has been designed for a fast-on-average correctly rounded implementation of pow, considering the scarcity of rounding boundary cases. It does not stall average computations for rounding boundary detection. The article includes its correction proof and experimental results.
Type de document :
Pré-publication, Document de travail
18 pages. 2007
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger
Contributeur : Christoph Lauter <>
Soumis le : mardi 4 septembre 2007 - 17:27:17
Dernière modification le : mardi 24 avril 2018 - 13:52:26
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:27:15


Fichiers produits par l'(les) auteur(s)


  • HAL Id : ensl-00169409, version 2



Christoph Lauter, Vincent Lefèvre. An efficient rounding boundary test for pow(x,y) in double precision. 18 pages. 2007. 〈ensl-00169409v2〉



Consultations de la notice


Téléchargements de fichiers