Augmented precision square roots, 2-D norms, and discussion on correctly rounding $\sqrt{x^2+y^2}$

Abstract : Define an “augmented precision” algorithm as an algorithm that returns, in precision-p floating-point arithmetic, its result as the unevaluated sum of two floating-point numbers, with a relative error of the order of 2^(−2p). Assuming an FMA instruction is available, we perform a tight error analysis of an augmented precision algorithm for the square root, and introduce two slightly different augmented precision algorithms for the 2D-norm sqrt(x^2 + y^2). Then we give tight lower bounds on the minimum distance (in ulps) between sqrt(x^2 + y^2) and a midpoint when sqrt(x^2 + y^2) is not itself a midpoint. This allows us to determine cases when our algorithms make it possible to return correctly-rounded 2D-norms.
Type de document :
Pré-publication, Document de travail
2010
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00545591
Contributeur : Jean-Michel Muller <>
Soumis le : vendredi 10 décembre 2010 - 16:50:56
Dernière modification le : vendredi 6 février 2015 - 12:44:44
Document(s) archivé(s) le : lundi 5 novembre 2012 - 13:15:15

Fichier

CompensatedNorms.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-00545591, version 1

Collections

Citation

Nicolas Brisebarre, Mioara Joldes, Peter Kornerup, Erik Martin-Dorel, Jean-Michel Muller. Augmented precision square roots, 2-D norms, and discussion on correctly rounding $\sqrt{x^2+y^2}$. 2010. <ensl-00545591v1>

Partager

Métriques

Consultations de
la notice

92

Téléchargements du document

53