
HAL Id: ensl-00758377
https://hal.inria.fr/ensl-00758377

Submitted on 28 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable arithmetic for HPC
Florent de Dinechin, Bogdan Pasca

To cite this version:
Florent de Dinechin, Bogdan Pasca. Reconfigurable arithmetic for HPC. Wim Vanderbauwhede and
Khaled Benkrid. High-Performance Computing using FPGAs, Springer, 2013. �ensl-00758377�

https://hal.inria.fr/ensl-00758377
https://hal.archives-ouvertes.fr

Reconfigurable arithmetic for HPC

Florent de Dinechin and Bogdan Pasca

1 Introduction

An often overlooked way to increase the efficiency of HPC on FPGA is to tailor, as
tightly as possible, the arithmetic to the application. An ideally efficient implemen-
tation would, for each of its operations, toggle and transmit just the number of bits
required by the application at this point. Conventional microprocessors, with their
word-level granularity and fixed memory hierarchy, keep us away from this ideal.
FPGAs, with their bit-level granularity, have the potential to get much closer.

Therefore, reconfigurable computing should systematically investigate, in an
application-specific way, non-standard precisions, but also non-standard number
systems and non-standard arithmetic operations. The purpose of this chapter is to
review these opportunities.

After a brief overview of computer arithmetic and the relevant features of current
FPGAs in Section 2, we first discuss in Section 3 the issues of precision analysis
(what is the precision required for each computation point?) and arithmetic effi-
ciency (do I need to compute this bit?) in the FPGA context. We then review several
approaches to application-specific operator design: operator specialization in Sec-
tion 4, operator fusion in Section 5, and exotic, non-standard operators in Sec-
tion 6. Section 7 discusses the application-specific performance tuning of all these
operators. Finally, Section 8 concludes by listing the open issues and challenges in
reconfigurable arithmetic.

The systematic study of FPGA-specific arithmetic is also the object of the
FloPoCo project (http://flopoco.gforge.inria.fr/). FloPoCo offers open-source im-
plementations of most of the FPGA-specific operators presented in this chapter, and

Florent de Dinechin
École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, e-mail:
Florent.de.Dinechin@ens-lyon.fr

Bogdan Pasca
Altera European Technology Center, High Wycombe, UK, e-mail: bpasca@altera.com

1

2 Florent de Dinechin and Bogdan Pasca

more. It is therefore a good way for the interested reader reader to explore in more
depth the opportunities of FPGA-specific arithmetic.

MSB Most Significant Bit
LSB Least Significant Bit
ulp Unit in the Last Place (weight of the LSB)

HLS High-Level Synthesis
DSP Digital Signal Processing

DSP blocks embedded multiply-and-accumulate resources targetted at DSP
LUT Look-Up Table

HRCS High-radix carry-save

Table 1 Table of acronyms

2 Generalities

Computer arithmetic deals with the representations of numbers in a computer, and
with the implementation of basic operations on these numbers. A good introduction
on these topics are the textbooks by Ercegovac and Lang [36] and Parhami [59].

In this chapter we will focus on the number systems prevalent in HPC: inte-
ger/fixed point, and floating-point. However, many other number representation sys-
tems exist, have been studied on FPGAs, and have proven relevant in some situa-
tions. Here are a few examples.

• For integer, redundant versions of the classical position system enable faster ad-
dition. These will be demonstrated in the sequel.

• The residue number system (RNS) [59] represents an integer by a set of residues
modulo a set of relatively prime numbers. Both addition and multiplication can
be computed in parallel over the residues, but comparisons and division are very
expensive.

• The logarithm number system (LNS) represents a real number as the value of
its logarithm, itself represented in a fixed-point format with e integer bits and f
fractionalbits. The range and precision of such a format are comparable to those
of a floating-point format with e bits of exponent and f bits of fraction. This
system offers high-speed and high-accuracy multiplication, division and square
root, but expensive addition and subtraction [22, 6].

Current FPGAs support classical binary arithmetic extremely well. Addition is
supported in the logic fabric, while the embedded DSP blocks support both addition
and multiplication.

They also support floating-point arithmetic reasonably well. Indeed, a floating-
point format is designed in such a way that the implementation of most operators
in this format reduces to the corresponding binary integer operations, shifts, and
leading zero counting.

Reconfigurable arithmetic for HPC 3

Let us now review the features of current FPGAs that are relevant to arithmetic
design.

2.1 Logic fabric

Figures 1 and 2 provide a schematic overview of the logic fabric of recent FPGAs
from the two main FPGA vendors. The features of interest are the following.

CLB

Cout

SHIFTout Cin Cin

SHIFTin Cout

SLICEM 2

SLICEM 0

SLICEL 1

SLICEL 3

Matrix
Switch

VersaBlock

General
routing
matrix

Cin

Cout

clk

direct

0 0
1

1

0 1

1
0

LUT4

LUT4

MUXFX

REG

REG

MUXF5

Fig. 1 Schematic overview of the logic blocks in the Virtex 4. More recent devices are similar,
with up to 6 inputs to the LUTs

+

+

...

ALM

R20 column

R4 column

interconnect

interconnect

interconnect
C4 column local

interconnect

LAB

interconnect

C12 column

Cinshared arith. in syncload reg. chain in

reg. chain outCoutshared arith. out
clk

LUT3

LUT3

LUT4

LUT3

LUT3

LUT4
REG

REG

Fig. 2 Schematic overview of the logic blocks of recent Altera devices (Stratix II to IV)

4 Florent de Dinechin and Bogdan Pasca

2.1.1 Look-up tables

The logic fabric is based on look-up tables with α inputs and one output, with α =
4..6 for the FPGAs currently on the market, the most recent FPGAs having the
largest α . These LUTs may be combined to form larger LUTs (for instance the
MUXF5 multiplexer visible on Figure 1 serves this purpose). Conversely, they may
be split into smaller LUTs, as is apparent on Figure 2, where two LUT3 may be
combined into a LUT4, and two LUT4 into a LUT5.

As far as arithmetic is concerned, this LUT-based structure means that algorithms
relying on the tabulation of 2α values have very efficient implementations in FPGAs.
Examples of such algorithms include multiplication or division by a constant (see
Section 4.1) and function evaluation (see Section 6.2).

2.1.2 Fast carry propagation

The two families provide a fast connexion between neighbouring cells in a col-
umn, dedicated to carry propagation. This connexion is fast in comparison to the
general programmable routing which is slowed down by all the switches enabling
this programmability. Compared to classical (VLSI oriented) hardware arithmetic,
this considerably changes the rules of the game. For instance, most of the litera-
ture regarding fast integer adders is irrelevant on FPGAs for additions smaller than
32 bits: the simple carry-ripple addition exploiting the fast-carry lines is faster, and
consumes fewer resources, than the “fast adders” of the literature. Even for larger
additions, the optimal solutions on FPGAs are not obtained by blindly applying the
classical techniques, but by revisiting them with these new rules [64, 28, 58].

Fast carries are available on both Altera and Xilinx devices, but the detailed struc-
ture differs. Both device families allow one to merge an addition with some compu-
tations performed in the LUT. Altera devices are designed in such a way to enable
the implementation of a 3-operand adder in one ALM level (see Figure 2).

2.1.3 DSP blocks

Embedded multipliers (18x18-bit signed) first appeared in Xilinx VirtexII devices
in 2000, and were complemented by a DSP-oriented adder network in the Altera
Stratix in 2003.

DSP blocks not only enhance the performance of DSP applications – and, as
we will see, any application using multiplication–, they also make this performance
more predictable.

Reconfigurable arithmetic for HPC 5

Xilinx DSP blocks

A simplified overview of the DSP48 block of Virtex-4 devices is depicted in Figure
3. It consists of one 18x18-bit two’s complement multiplier followed by a 48-bit
sign-extended adder/subtracter or accumulator unit. The multiplier outputs two sub-
products aligned on 36-bits. A 3-input adder unit can be used to add three external
inputs, or the two sub-products and a third addend. The latter can be an accumulator
(hence the feedback path) or an external input, coming either from global routing
or from a neighboring DSP via a dedicated cascading line (PCIN). In this case this
input may be shifted by 17 bits. This enables associating DSP blocks to compute
large multiplications. In this case unsigned multiplications are needed, so the sign
bit is not used, hence the value of 17.

These DSP blocks also feature internal registers (up to four levels) which can be
used to pipeline them to high frequencies.

REG REG

REG REG

REG

X

Y

Z
0

REG

18

18

wire shift by 17 bits

48

18

18

18

36

72

36

36

48

48

48

48

48

48

BCIN

C

B

A

BCOUT PCOUT

P

PCIN

CIN

SUB

Fig. 3 Simplified overview of the Xilinx DSP48

Virtex-5/-6/-7 feature similar DSP blocks (DSP48E), the main difference being
a larger (18x25-bit, signed) multiplier. In addition the adder/accumulator unit can
now perform several other operations such as logic operations or pattern detection.
Virtex-6 and later add pre-multiplication adders within the DSP slice.

Altera DSP blocks

The Altera DSP blocks have a much larger granularity than the Xilinx ones. On
StratixII-IV devices (Figure 4) the DSP block consists of four 18 x 18 bit (signed
or unsigned) multipliers and an adder tree with several possible configurations, rep-
resented on Figure 5. Stratix-III/-IV calls such DSPs half-DSPs, and pack two of
them in a DSP block. In these devices, the limiting factor in terms of configurations
(preventing us, for instance, to use them as 4 fully independent multipliers) is the
number of I/Os to the DSP block. The variable precision DSP block in the StratixV
devices is radically different: it is optimized for 27x27-bit or 18x36-bit, and a 36-bit

6 Florent de Dinechin and Bogdan Pasca

multiplier is implemented in two adjacent blocks. Additionally, all DSPs allow var-
ious sum-of-two/four modes for increased versatility. Here also, neighbouring DSP
blocks can be cascaded, internal registers allow high-frequency pipelining, and a
loopback path enables accumulation. These cascading chains reduce resource con-
sumption, but also latency: a sum-of-two 27-bit multipliers can be clocked at nomi-
nal DSP speed in just 2 cycles.

When designing operators for these devices, it is useful to account for these dif-
ferent features and try to fully exploit them. The full details can be found in the
vendor documentation.

REG

R
ou

nd
/S

at
ur

at
e

44

18

18
18

18
18

18
18

18

P
ip

el
in

e
R

eg
is

te
r

B
an

k

Loopback

CHAIN IN

CHAIN OUT

In
pu

tR
eg

is
te

r
B

an
k

O
ut

pu
tR

eg
is

te
r

B
an

k

Fig. 4 Simplified overview of the StratixII DSP block, Stratix-III/-IV half-DSP block

3872 55

37 37

Fig. 5 Main configurations of Stratix DSP. Leftmost can be used to compute a 36x36 bit product,
rightmost to compute the product of complex numbers.

2.1.4 Embedded memories

Modern FPGAs also include small and fast on-chip embedded memories. In Xil-
inx Virtex4 the embedded memory size is 18Kbits, and 36Kbits for Virtex5/6. The
blocks support various configurations from 16K x 1-bit to 512 x 36-bit (1K for Vir-
tex5/6).

Altera FPGAs offer blocks of different sizes. StratixII has 3 kinds of memory
blocks: M512 (512-bit), M4K (4Kb) and M-RAM (512Kb); StratixIII-IV have a
new family of memory blocks: MLAB (640b ROM/320b RAM), M9K (9Kbit, up

Reconfigurable arithmetic for HPC 7

to 256x36-bit) and M144K (144Kbits, up to 2K x 72-bit); StratixV has MLAB and
M20K (20Kbits, up to 512 x 40-bit).

In both families, these memories can be dual-ported, sometimes with restrictions.

2.2 Floating-point formats for reconfigurable computing

A floating-point (FP) number x is composed of a sign bit S, an exponent field E
on wE bits, and a significand fraction F on wF bits. It is usually mandated that the
significand fraction has a 1 at its MSB: this ensures both uniqueness of representa-
tion, and maximum accuracy in the case of a rounded result. Floating-point has been
standardized in the IEEE-754 standard, updated in 2008 [40]. This standard defines
common formats, the most usual being a 32-bit (the sign bit, 8 exponent bits, 23
significand bits) and a 64-bit format (1+12+53). It precisely specifies the basic op-
erations, in particular the rounding behaviour. It also defines exceptional numbers:
two signed infinities, two signed zeroes, subnormal numbers for a smooth underflow
to zero, and NaN (Not a Number). These exceptional numbers are encoded in the
extremal values of the exponent.

This standard was designed for processor implementations, and makes perfect
sense there. However, for FPGAs, many things can be reconsidered. Firstly, a de-
signer should not restrict himself to the 32-bit and 64-bit formats of IEEE-754: he
should aim at optimizing both exponent and significand size for the application at
hand. The floating-point operators should be fully parameterized to support this.

Secondly, the IEEE-754 encodings were designed to make the most out of a fixed
number of bits. In particular, exceptional cases are encoded in the two extremal
values of the exponent. However, managing these encodings has a cost in terms of
performance and resource consumption [35]. In an FPGA, this encoding/decoding
logic can be saved if the exceptional cases are encoded in two additional bits. This
is the choice made by FloPoCo and other floating-point libraries. A small additional
benefit is that this choice frees the two extremal exponent values, slightly extending
the range of the numbers.

Finally, we choose not to support subnormal numbers support, with flushing to
zero instead. This is the most controversial issue, as subnormals bring with them
important properties such as (x− y = 0) ⇐⇒ (x = y), which is not true for FP
numbers close to zero if subnormals are not supported. However the cost of sup-
porting subnormals is quite high, as they require specific shifters and leading-one
detectors [35]. Besides, one may argue that adding one bit of exponent brings in
all the subnormal numbers, and more, at a fraction of the cost: subnormals are less
relevant if the format is fully parameterized. We believe there hasn’t been a clear
case for subnormal support in FPGA computing yet.

To sum up, Figure 6 depicts a FloPoCo number, whose value (always normalized)
is

x = (−1)S×1.F×2E−E0 with E0 = 2wE−1−1.

8 Florent de Dinechin and Bogdan Pasca

E0 is called the exponent bias. This representation of signed exponents (taken from
the IEEE-754 standard) is prefered over two’s complement, because it brings a use-
ful property: positive floating-point numbers are ordered according to the lexico-
graphic order of their binary representation (exponent and significand).

2 1 wE wF

E Fexn S

Fig. 6 The FloPoCo floating-point format.

3 Arithmetic efficiency and precision analysis

When implementing a given computation on an FPGA, the goal is usually to obtain
an efficient design, be it to maximize performance, minimize the cost of the FPGA
chip able to implement the computation, minimize the power consumption, etc. This
quest for efficiency has many aspects (parallelism, operator sharing, pipeline balanc-
ing, input/output throughputs, FIFO sizes, etc). Here, we focus on an often under-
stated issue, which is fairly specific to numerical computation on FPGAs: arithmetic
efficiency. A design is arithmetic-efficient if the size of each operator is as small as
possible, considering the accuracy requirements of the application. Ideally, no bit
should be flipped, no bit should be transfered that is not relevant to the final result.

Arithmetic efficiency is a relatively new concern, because it is less of an issue
for classical programming: microprocessors offer a limited choice of registers and
operators. The programmer must use 8-, 16-, 32- or 64-bit integer arithmetic, or 32-
or 64-bit floating-point. This is often very inefficient. For instance, both standard
floating-point formats are vastly overkill for most parts of most applications. In a
processor, as soon as you are computing accurately enough, you are very probably
computing much too accurately.

In an FPGA, there are more opportunities to compute just right, to the granularity
of the bit. Arithmetic efficiency not only saves logic resources, it also saves routing
resources. Finally, it also conserves power, all the more as there is typically more
activity on the least significant bits.

Arithmetic efficiency is obtained by bit-width optimization, which in turn re-
quires precision analysis. These issues have been the subject of much research, see
for instance [57, 65, 47, 66] and references therein.

Range and precision analysis can be formulated as follows: given a computation
(expressed as a piece of code or as an abstract circuit), label each of the interme-
diate variables or signals with information about its range and its accuracy. The
range is typically expressed as an interval, for instance variable V lies in the inter-
val [−17,42]. In a fixed-point context, we may deduce from the range of a signal
the value of its most significand bit (MSB) which will prevent the occurence of any
overflow. In a floating-point context, the range entails the maximum exponent that

Reconfigurable arithmetic for HPC 9

the format must accomodate to avoid overflows. In both contexts, accurate determi-
nation of the the ranges enables us to set these parameters just right.

To compute the range, some information must be provided about the range of
the inputs – by default it may be defined by their fixed-point or floating-point for-
mat. Then, there are two main methods for computing the ranges of all the signals:
dynamic analysis, or static analysis.

Dynamic methods are based on simulations. They perform several runs using
different inputs, chosen in a more or less clever way. The minimum and maximum
values taken by a signal over these runs provides an attainable range. However,
there is no guarantee in general that the variable will not take a value out of this
range in a different run. These methods are in principle unsafe, although confidence
can be attained by very large numbers of runs, but then these methods become very
compute-intensive, especially if the input space is large.

Static analysis methods propagate the range information from the inputs through
the computation, using variants of interval analysis (IA) [54]. IA provides range
intervals that cover all the possible runs, and therefore is safe. However, it often
overestimates these ranges, leading to bits at the MSB or exponent bits that will
never be useful to actual computations. This ill-effect is essentially due to correla-
tions between variables, and can be avoided by algebraic rewriting [27] (manual or
automated), or higher-order variants of interval arithmetic such as affine arithmetic
[47], polynomial arithmetic [12] or Taylor models. In case of loops, these methods
must look for a fix point [66]. A general technique in this case is abstract interpre-
tation [18].

Bit-width minimization techniques reduce the size of the data, hence reduce the
size and power consumption of all the operators computing on these data. However,
there are also less frequent, but more radical operator optimization opportunities.
The remainder of this chapter reviews them.

4 Operator specialization

Operator specialization consists in optimizing the structure of an operator when
the context provides some static (compile-time) property on its inputs that can be
usefully exploited. This is best explained with some examples.

First, an operator with a constant operand can often be optimized somehow:

• Even in software, it is well-known that cubing or extracting a square root is sim-
pler than using the pow function xy.

• For hardware or FPGAs, multiplication by a constant has been extensively stud-
ied (although its complexity in the general case is still an open question). There
exist several competing constant multiplication techniques, with different rele-
vance domains: they are reviewed in Section 4.1.

• One of us has worked recently on the division by a small integer constant [25].
• However, on FPGA technology, there seems to be little to win on addition with a

constant operand, except in trivial cases.

10 Florent de Dinechin and Bogdan Pasca

It is also possible to specialize an operator thanks to more subtle relationships
between its inputs. Here are two examples which will be expanded in 5.3:

• In terms of bit flipping, squaring is roughly twice cheaper than multiplying.
• If two numbers have the same sign, their floating-point addition is cheaper to

implement than a standard addition: the cancellation case (which costs one large
leading-zero counter and shifter) never happens [49].

Finally, many functions, even unary ones, can be optimized if their input is stati-
cally known to lie within a certain range. Here are some examples.

• If a floating-point number is known to lie in [−π,π], its sine is much cheaper to
evaluate than in the general case (no argument reduction) [21].

• If the range of the input to an elementary function is small enough, a low-degree
polynomial approximation may suffice.

• etc.

Finally, an operator may have its accuracy degraded, as long as the demand of
the application is matched. The most spectacular example is truncated multipliers:
sacrificing the accuracy of the least significant bit saves almost half the area of a
floating-point multiplier [67, 8]. Of course, in the FPGA context, the loss of preci-
sion can be recovered by adding one bit to the mantissa, which has a much lower
cost.

The remainder of this section focuses on specializations of the multiplication,
but designers on FPGAs should keep in mind this opportunity for many other oper-
ations.

4.1 Multiplication and division by a constant

Multiplication by constants has received much attention in the literature, especially
as many digital signal processing algorithms can be expressed as products by con-
stant matrices [62, 52, 13, 72]. There are two main families of algorithms. Shift-
and-add algorithms start from the construction of a standard multiplier and simplify
it, while LUT-based algorithm tabulate sub-products in LUTs and are thus more
specific to FPGAs.

4.1.1 Shift and add algorithms

Let C be a positive integer constant, written in binary on k bits:

C =
k

∑
i=0

ci2i with ci ∈ {0,1}.

Let X a p-bit integer. The product is written CX =∑
k
i=0 2iciX , and by only consid-

ering the non-zero ci, it is expressed as a sum of 2iX . For instance, 17X = X +24X .

Reconfigurable arithmetic for HPC 11

In the following, we will note this using the shift operator<<, which has higher
priority than + and −. For instance 17X = X +X<<4.

If we allow the digits of the constant to be negative (ci ∈ {−1,0,1}) we obtain a
redundant representation, for instance 15= 01111= 10001 (16−1 written in signed
binary). Among the representations of a given constant C, we may pick up one that
minimises the number of non-zero bits, hence of additions/subtractions. The well-
known canonical signed digits recoding (or CSD, also called Booth recoding [36])
guarantees that at most k/2 bits are non-zero, and in average k/3.

The CSD recoding of a constant may be directly translated into an architecture
with one addition per non-zero bit, for instance 221X = 1001001012X = X<<8+
(−X<<5+(−X<<2+X)). With this right-to-left parenthesing, all the additions are
actually of the same size (the size of X): in an addition X<<s+P, the s lower bits of
the result are those of P and do not need to participate to the addition.

For large constants, a binary tree adder structure can be constructed out of the
CSD recoding of the constant as follows: non-zero bits are first grouped by 2, then
by 4, etc. For instance, 221X = (X<<8−X<<5)+(−X<<2+X). Shifts may also be
reparenthesised: 221X = (X<<3−X)<<5+(−X<<2+X). After doing this, the leaves
of the tree are now multiplications by small constants: 3X ,5X ,7X ,9X ... Such a
smaller multiple will appear many times in a larger constant, but it may be computed
only once: thus the tree is now a DAG (direct acyclic graph), and the number of
additions is reduced. A larger example is shown on Figure 7. This new parenthesing
reduces the critical path: for k non-zero bits, it is now of dlog2 ke additions instead
of k in the previous linear architecture. However, additions in this DAG are larger
and larger.

This simple DAG construction is the current choice in FloPoCo, but finding the
optimal DAG is still an open problem. There is a wide body of literature on con-
stant multiplication, minimizing the number of additions [9, 19, 37, 72, 69], and, for
hardware, also minimizing the total size of these adders (hence the logic consump-
tion in an FPGA) [19, 37, 1, 38]. It has been shown that the number of adders in
constant multiplication problem is sub-linear in the number of non-zero bits [23].
Exhaustive exploration techniques [19, 37, 69] lead to less than 4 additions for any
constant of size smaller than 12 bits, and less than 5 additions for sizes smaller

0 0 0 0 0 0 0 0 00 + 0 + 0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0+ + 0 0 + 0 + − 0 − + + 0 + 0 + + 0 + + + 0

5X5X17X5X−3X 3X9X 127X3X

39854788871587X

884279719003555X

558499X4751061X

−43X1859X 2181X 163X

1768559438007110
<<1

Fig. 7 Binary DAG architecture for a multiplication by 1768559438007110 (the 50 first bits of the
mantissa of π).

12 Florent de Dinechin and Bogdan Pasca

than 19 bits. They become impractical beyond these sizes, and heuristics have to be
used. Lefèvre’s algorithm [48] looks for maximal repeating bit patterns (in direct
or complemented form) in the CSD representation of the constant, then proceeds
recursively on these patterns. Experimentally, the number of additions, on randomly
generated constants of k bits, grows as O(k0.85). However, this algorithm does not
currently try to minimize the total size of the adders [14], contrary to Gustafsson et
al [37].

All the previous dealt with multiplication by an integer constant. Multiplying
by a real constant (in a fixed-point or floating-point context) raises the additional
issue of first approximating this constant by a fixed-point number. Gustafsson and
Qureshi suggested to represent a real constant on more than the required number
of bits, if it leads to a shift-and-add architecture with fewer additions [38]. This
idea was exploited analytically for rational constants, which have a periodic binary
representation [24].

4.1.2 Table-based techniques

On most FPGAs, the basic logic element is the look-up-table, a small memory ad-
dressed by α bits. The KCM algorithm (which probably means “constant (K) Co-
efficient Multiplier”), due to Chapman [15] and further studied by Wirthlin [76]
is an efficient way to use these LUTs to implement a multiplication by an integer
constant.

This algorithm, described on Figure 8, consists in breaking down the binary
decomposition of an n-bit integer X into chunks of α bits. This is written as

X =
d n

α
e−1

∑
i=0

Xi.2αi, where Xi ∈ {0, ...,2α −1}.

+
+
+

CX =
CX0

22αCX2

2αCX1

23αCX3

T3 T2 T1 T0

+
+

+
α

α

α

m+n bits m+n bits

n = 4α bits
X0X1X3 X2X = 23αX3 +22αX2 +2αX1 +X0

m+α

Fig. 8 The KCM LUT-based method (integer × integer)

The product of X by an m-bit integer constant C becomes CX = ∑
d n

α
e

i=0 CXi.2−αi.
We have a sum of (shifted) products CXi, each of which is an m+α integer. The

Reconfigurable arithmetic for HPC 13

KCM trick is to read these CXi from a table of pre-computed values Ti, indexed by
Xi, before summing them.

The cost of each table is one FPGA LUT per output bit. The lowest-area way of
computing the sum is to use a rake of d n

α
e in sequence, as shown on Figure 8: here

again, each adder is of size m+α , because the lower bits of a product CXi can be
output directly. If the constant is large, an adder tree will have a shorter latency at
a slightly larger area cost. The area is always very predictible and, contrary to the
shift-and-add methods, almost independent on the value of the constant (still, some
optimizations in the tables will be found by logic optimizers).

There are many possible variations on the KCM idea.

• As all the tables contain the same data, a sequential version can be designed.
• This algorithm is easy to adapt to signed numbers in two’s complement.
• Wirthlin [76] showed that if we split the input in chunks of α−1 bits, then one

row of LUT can integrate both the table and the corresponding adder, and still
exploit the fast-carry logic of Xilinx circuits: this reduces the overall area. Altera
FPGAs don’t need this trick thanks to their embedded full adder (see Figure 2).

• It can be adapted to fixed-point input and, more interesting, to an arbitrary real
constant C, for instance log(2) in [30] or FFT twiddle factors in [33]. Figure 9
describes this case. Without loss of generality, we assume a fixed-point input
in [0,1): it is now written on n bits as X = ∑

d n
α
e−1

i=0 Xi.2−αi where Xi ∈
{0, ...,2α − 1}. Each product CXi now has an infinite number of bits. Assume
we want an q-bit result with q ≥ n. We tabulate in LUTs each product 2iαCXi
on just the required precision, so that its LSB has value 2−gu where u is the ulp
of the result, and g is a number of guard bits. Each table may hold the correctly
rounded value of the product of Ei by the real value of C to this precision, so en-
tails an error of 2−g−1 ulp. In the first table, we actually store CX0 +u/2, so that
the truncation of the sum will correspond to a rounding of the product. Finally,
the value of g is chosen to ensure 1-ulp accuracy.

CX0

CX1

+
+
+

CX =

2−3αCX3

2−αCX1
2−2αCX2

CX0

+

+

+

T3T2

X0 X1 X2 X3

T1

α

T0

α

n bits
X = X0 +2−αX1 +2−2αX2 +2−3αX3

q+gq bits g bits

Fig. 9 The KCM LUT-based method (real × fixed-point)

14 Florent de Dinechin and Bogdan Pasca

4.1.3 Other variations of single-constant multiplication

Most algorithms can be extended to a floating-point version. As the point of the
constant doesn’t float, the main question is whether normalization and rounding can
be simpler than in a generic multiplication [14].

For simple rational constants such as 1/3 or 7/5, the periodicity of their binary
representations leads to optimizations both in KCM and shift-and-add methods [24].
The special case corresponding to the division by a small integer constant is quite
useful: Integer division by 3 (with remainder) is used in the exponent processing for
cube root, and division by 5 is useful for binary to decimal conversion. Fixed-point
division by 3 (actually 6 or 24, but the power of two doesn’t add to the complexity)
enables efficient implementations of sine and cosine based on parallel evaluation of
their Taylor series. Floating-point division by 3 is used in the Jacobi stencil algo-
rithm. In addition to techniques considering division by a constant as the multipli-
cation by the inverse [24], a specific LUT-based method can be derived from the
division algorithm [25].

4.1.4 Multiple constant multiplication

Some signal-processing transforms, in particular finite impulse response (FIR) fil-
ters, need a given signal needs to be multiplied by several constants. This allows
further optimizations: it is now possible to share sub-constants (such as the in-
termediate nodes of Figure 7) between several constant multipliers. Many heuris-
tics have been proposed for this Multiple Constant Multiplication (MCM) problem
[62, 13, 52, 72, 1].

A technique called Distributed Arithmetic, which predates FPGA [74] , can be
considered a generalization of the KCM technique to the MCM problem.

4.1.5 Choosing the best approach in a given context

To sum up, there is plenty of choice in terms of constant multiplication or division
in an FPGA. Table 2 describes the techniques implemented in the FloPoCo tool at
the time of writing. This is work in progress.

As a rule of thumb, for small inputs, KCM should be preferred, and for simple
constants, shift-and-add should be preferred. In some cases the choice is obvious: for
instance, to evaluate a floating-point exponential, we have to multiply an exponent
(a small integer) by log(2), and we need many more bits on the result: this is a case
for KCM, as we would need to consider many bits of the constant. In most usual
cases, however, the final choice should probably be done on a trial and error basis.

Reconfigurable arithmetic for HPC 15

Format Integer (keep all bits) fixed-point (keep higher bits) floating-point
Shift-and-add IntConstMult [14] FPConstMult [14]

(rational constants) FPConstMultRational [24]
LUT-based IntIntKCM [15, 76] FixRealKCM [33, 30] FPRealKCM

Division-based IntConstDiv [25] FPConstDiv [25]

Table 2 Constant multiplication and division algorithms in FloPoCo 2.3.1

4.2 Squaring

If one computes, using the pen-and-paper algorithm learnt at school, the square of a
large number, one will observe that each of the digit-by-digit products is computed
twice. This holds also in binary: formally, we have

X2 = (
n−1

∑
i=0

2ixi)
2 =

n−1

∑
i=0

22ixi + ∑
0<i< j<n

2i+ j+1xix j

and we have a sum of roughly n2/2 partial products, versus n2 for a standard n-
bit multiplication. This is directly useful if the squarer is implemented as LUTs. In
addition, a similar property holds for a splitting of the input into several subwords:

(2kX1 +X0)
2 = 22kX2

1 +2 ·2kX1X0 +X2
0 (1)

(22kX2 +2kX1 +X0)
2 = 24kX2

2 +22kX2
1 +X2

0
+ 2 ·23kX2X1
+ 2 ·22kX2X0
+ 2kX1X0

(2)

Computing each square or product of the above equation in a DSP block, yields a
reduction of the DSP count from 4 to 3, or from 9 to 6. Besides, this time, it comes at
no arithmetic overhead. Some of the additions can be computed in the DSP blocks,
too. This has been studied in details in [29].

Squaring is a specific case of powering, i.e. computing xp for a constant p. Ad-
hoc, truncated powering units have been used for function evaluation [20]. These
are based on LUTs, and should be reevaluated in the context of DSP blocks.

5 Operator fusion

Operator fusion consists in building an atomic operator for a non-trivial mathe-
matical expression, or a set of such expressions. The recipe is here to consider the
mathematical expression as a whole and to optimize each operator in the context of
the whole expression. The opportunities for operator fusion are unlimited, and the
purpose of this section is simply to provide a few examples which are useful enough
to be provided in an operator generator such as FloPoCo.

16 Florent de Dinechin and Bogdan Pasca

5.1 Floating-point sum-and-difference

In many situations, the most pervasive of which is probably the Fast Fourier Trans-
form (FFT), one needs to compute the sum and the difference of the same two
values. In floating-point, addition or subtraction consists in the following steps [56]:

• alignment of the significands using a shifter, the shift distance being the exponent
difference;

• effective sum or difference (in fixed-point);
• in case of effective subtraction leading to a cancellation, leading zero count

(LZC) and normalization shift, using a second shifter;
• final normalization and rounding.

We may observe that several redundancies exist if we compute in parallel the
sum and the difference of the same values:

• The exponent difference and alignment logic is shared by the two operations.
• The cancellation case will appear at most once, since only one of the operations

will be an effective subtraction, so only one LZC and one normalization shifter
is needed.

Summing up, the additional cost of the second operation, with respect to a clas-
sical floating-point adder, is only its effective addition/subtraction, and its final nor-
malization and rounding logic. Numerically, a combined sum-and-difference opera-
tor needs about one third more logic than a standard adder, and has the same latency.

5.2 Block floating-point

Looking back at the FFT, it is essentially based on multiplication by constants, and
the previous sum-and-difference operations. In a floating-point FFT, operator fusion
can be pushed a bit further, using a technique called block floating-point [41], first
used in the 1950s, when floating point arithmetic was implemented in software, and
more recently applied to FPGAs [3, 5]. It consists in an initial alignment of all the
input significands to the largest one, which brings them all to the same exponent
(hence the phrase “block floating point”). After this alignment, all the computations
(multiplications by constants and accumulation) can be performed in fixed point,
with a single normalization at the end. Another option, if the architecture imple-
ments only one FFT stage and the FFT loops on it, is to perform the normalization
of all the values to the largest (in magnitude) of the stage.

Compared with the same computation using standard floating-point operators,
this approach saves all the shifts and most of the normalization logic in the inter-
mediate results. The argument is that the information lost in the initial shifts would
have been lost in later shifts anyway. However, a typical block floating-point im-
plementation will accumulate the dot product in a fixed-point format slightly larger

Reconfigurable arithmetic for HPC 17

than the input significands, thus ensuring a better accuracy than that achieved using
standard operators.

Block floating-point techniques can be applied to many signal processing trans-
forms involving the product of a signal vector by a constant vector. As it eventually
converts the problem to a fixed-point one, the techniques for multiple constant mul-
tiplication listed in 4.1.4 can be used.

5.3 Floating-point sum of squares

We conclude this section with the example of a large fused operator that combines
several of the FPGA-specific optimizations discussed so far. The datapath described
on Figure 10 inputs three floating-point numbers X , Y and Z, and outputs a floating-
point value for X2 +Y 2 +Z2. Compared to a more naive datapath built out of stan-
dard adders and multiplier, it implements several optimizations:

• It uses squarers instead of multipliers, as suggested in 4.2. These can even be
truncated squarers.

• As squares are positive, it can dispose of the leading-zero counters and shifters
that, in standard floating-point additions, manage the possible cancellation in
case of subtraction [49].

• It saves all the intermediate normalizations and rounding.
• It computes the three squares in parallel and feeds them to a three-operand adder

(which is no more expensive than a two-operand adder in Altera devices) instead
of computing the two additions in sequence.

• It extends the fixed-point datapath width by g = 3 guard bits that ensure that
the result is always last-bit accurate, where a combination of standard operators
would lead to up to 2.5 ulps of error. This is the value of g for a sum of three
squares, but it can be matched to any number of squares to add, as long as this
number is known statically.

• It reflects the symmetry of the mathematical expression X2 +Y 2 +Z2, contrary
to a composition of floating-point operators which computes (X2 +Y 2) + Z2,
leading to slightly different results if X and Z are permuted.

Compared to a naive assembly of three floating-point multipliers and two floating-
point adders, the specific architecture of Figure 10 thus significantly reduces logic
count, DSP block count and latency, while being more accurate than the naive data-
path. For instance, for double-precision inputs and outputs on Virtex-4, slice count
is reduced to 4480 to 1845, DSP count is reduced from 27 to 18, and latency is re-
duced from 46 to 16 cycles, for a frequency of 362 MHz (post-synthesis) which is
nominal on this FPGA.

18 Florent de Dinechin and Bogdan Pasca

1+wF 1+wF 1+wF

2+wF +g2+wF +g

2+wF +g2+wF +g

2+wF +g

2+wF +g

EC

EB
MB2 MC2

X Y Z

MXEZEYEX MY MZ

R

4+wF +g

MA2

wE wE wE

wE +wF

shifter

sort

sort
squarer squarer

shifter

squarer

unit
exception

add

normalize/pack

unpack

Fig. 10 A floating-point sum-of-squares (for wE bits of exponent and wF bits of significand)

5.4 Towards compiler-level operator fusion

Langhammer proposed an optimizing floating-point datapath compiler [46] that:

• detects clusters of similar operations and uses a fused operator for the entire
cluster;

• detects dependent operations and fuses the operators by removing or simplifying
the normalization, rounding steps and alignment steps of the next operation.

To ensure high accuracy in spite of these simplifications, the compiler relies on
additional accuracy provided for free by the DSP blocks. The special floating-point
formats used target accuracy “soft spots” for recent Altera DSP blocks (StratixII-
IV) which is 36 bits. For instance, in single-precision (24 mantissa bits) the adders
use an extended, non-normalized mantissa of up to 31 bits which, when followed by
a multiplier stage uses the 36-bit multiplier mode on the 31-bit operands. For this
stage as well, an extended mantissa allows for late normalizations while preserving
accuracy. The optimizations proposed by Langhammer are available in Altera’s DSP
Builder Advanced tool [60].

6 Exotic operators

This section presents in details three examples of operators that are not present in
processors, which gives a performance advantage to FPGAs. There are many more
examples, from elementary functions to operators for cryptography.

Reconfigurable arithmetic for HPC 19

6.1 Accumulation

Summing many independent terms is a very common operation: scalar products,
matrix-vector and matrix-matrix products are defined as sums of products, as are
most digital filters. Numerical integration usually consists in adding many elemen-
tary contributions. Monte-Carlo simulations also involve sums of many independent
terms.

Depending on the fixed/floating-point arithmetic used and the operand count
there are several optimization opportunities.

When having to sum a fixed, relatively small number of terms arriving in paral-
lel, one may use adder trees. Fixed-point adder trees benefit from adder support in
the FPGA fabric (ternary adder trees can be built on Altera FPGAs). If the preci-
sion is large, adders can be pipelined [28] and tessellated [60] for reducing latency
and resources (Figure 11). Floating-point adder trees for positive data may use a
dedicated fused operator similar to the one in Figure 10 for the sum-of-squares.
Otherwise, one may rely on the techniques presented by Langhammer for datap-
ath fusion which, depending on the operator count combine clustering and delayed
normalizations [46].

r2 r1 r0

Fig. 11 Fixed-point accumulation for small operand count based on a tessellated adder tree

For an arbitrary number of summands arriving sequentially, one needs an accu-
mulator, conceptually described by Figure 12. A fixed-point accumulators may be
built out of a binary adder with a feedback loop. This allows good performances
for moderate-size formats: as a rule of thumb, a 32-bit accumulator can run at the
FPGA nominal frequency (note also that a larger hard accumulator is available is
modern DSP blocks). If the addition is too wide for the ripple-carry propagation to
take place in one clock cycle, a redundant carry-save representation can be used for
the accumulator. In FPGAs, thanks to fast carry circuitry, a high-radix carry save
(HRCS), breaking the carry propagation typically every 32 bits, has a very low area
overhead.

Building an efficient accumulator around a floating-point adder is more involved.
The problem is that FP adders have long latencies: typically l = 3 cycles in a proces-

20 Florent de Dinechin and Bogdan Pasca

accumulated value

register

input (summand)

Fig. 12 An accumulator

sor, up to tens of cycles in an FPGA. This long latency means that an accumulator
based on an FP adder will either add one number every l cycles, or compute l in-
dependent sub-sums which then have to be added together somehow. One special
case are large matrix operations [78, 10], when l parallel accumulations can be in-
terleaved. Many programs can be restructured to expose such sub-sum parallelism
[2].

In the general case, using a classical floating point adder of latency l as the adder
of Figure 12, one is left with l independent sub-sums. The log-sum technique adds
them using dlog2 le adders and intermediate registers [68, 39]. Sun and Zambreno
suggest that l can be reduced by having two parallel accumulator memories, one for
positive addends and one for negative addends: this way, the cancellation detection
and shift can be avoided in the initial floating-point accumulator. This, however,
becomes inaccurate for large accumulations whose result is small [68].

Additionally, an accumulator built around a floating-point adder is inefficient,
because the significand of the accumulator has to be shifted, sometimes twice (first
to align both operands and then to normalise the result). These shifts are in the
critical path of the loop. Luo and Martonosi suggested to perform the alignment in
two steps, the finest part outside of the loop, and only a coarse alignment inside
[50]. Bachir and David have investigated several other strategies to build a single-
cycle accumulator, with pipelined shift logic before, and pipelined normalization
logic after [7]. This approach was suggested in earlier work by Kulisch, targetting
microprocessor floating-point units. Kulisch advocated the concept of an exact ac-
cumulator as “the fifth floating-point operation”. Such an accumulator is based on
a very wide internal register, covering the full floating-point range [43, 44], and ac-
cessed using a two-step alignment. One problem with this approach is that in some
situations (long carry propagation), the accumulator requires several cycles. This
means that the incoming data must be stalled, requiring more complex control. This
is also the case in [50].

For FPGA-accelerated HPC, one critics to all previous approaches to universal
accumulators is that they are generally overkill: they don’t compute just-right for
the application. Let us now consider how to build an accumulator of floating-point
numbers which is tailored to the numerics of an application. Specifically, we want
to ensure that it never overflows and that it eventually provides a result that is as
accurate as the application requires. Moreover, it is also designed around a single-
cycle accumulator. We present this one [32] in detail as it exhibits many of the
techniques used in previously mentioned works.

Reconfigurable arithmetic for HPC 21

The accumulator holds the accumulation result in fixed-point format which al-
lows removing any any alignments from the loop’s critical path. It is depicted in
Figure 13. Single-cycle accumulation at arbitrary frequency is ensured by using an
HRCS accumulator if needed.

The bottom part of Figure 13 presents a component which converts the fixed
point accumulator back to floating-point. It makes sense to consider this as a sepa-
rate component, beause this conversion may be performed in software if the running
value of the accumulation is not needed (e.g. in numerical integration applications).
In other situations (e.g. matrix-vector product), several accumulators can be sched-
uled to share a common post-normalization unit. In this unit, the carry-propagation
box converts the result into non-redundant format in the case when HCRS is used.

A
c
c
u
m
u
l
a
t
o
r

C
o
n
v
e
r
s
i
o
n

t
o

F
P

wA

shift value

mantissa

carry in

MaxMSBX −LSBA+1

MaxMSBX

exponent

wE wF

sign

mantissa signexponent

fixed-point sum

registers

w′F

wA

w′E

Leading Zero Counter
+ Shifter

carry propagation

Input Shifter

2’s complement

XOR

Fig. 13 The proposed accumulator (top) and post-normalisation unit (bottom).

The parameters of the accumulator are explained with the help of Figure 14:

• MSBA is the position of the most-significant bit (MSB) of the accumulator. If the
maximal expected running sum is smaller than 2MSBA , no overflow ever occurs.

• LSBA is the position of the least-significant bit of the accumulator and determines
the final accumulation accuracy.

• MaxMSBX is the maximum expected position of the MSB of a summand.
MaxMSBX may be equal to MSBA, but very often one is able to tell that each

22 Florent de Dinechin and Bogdan Pasca

summand is much smaller in magnitude than the final sum. In this case, providing
MaxMSBX < MSBA will save hardware in the input shifter.

000

0 0000

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

000 0 0 0 0 00 0 0 0 0

1

1

1 1 0 00

1

1 1

1 1

1

1 1 1 1 1 1

1111

100 1 1 1 1 1 1 101010 0

0000 11111

wA = MSBA−LSBA +1

Accumulator

wF +1 LSBA =−12MaxMSBX = 8MSBA = 16

fixed point

Summands (shifted mantissas)

Fig. 14 Accumulation of floating-point numbers into a large fixed-point accumulator

This parameters must be set up in an application-dependent way by considering
the numerics of the application to be solved. In many cases, this is easy, because
gross overestimation have a moderate impact: taking a margin of three orders of
magnitude on MSBA, for instance, adds only ten bits to the accumulator size [32].

6.2 Generic polynomial approximation

Polynomial approximation is a invaluable tool for implementing fixed-point func-
tions (which are also the basis of many floating-point ones) in hardware. Given a
function f (x) and an input domain, polynomial approximation starts by finding a
polynomial P(x) which approximates f (x). There are several methods for obtaining
these polynomials including: the Taylor and Chebyshev series, or the Remez algo-
rithm, a numerical routine that under certain conditions converges to the Minimax
polynomial (the polynomial which minimizes the maximum error between f and
P).

There is a strong dependency between the size of the input interval, the polyno-
mial degree and the approximation accuracy: a higher degree polynomial increases
accuracy but also degrades implementation performance or cost. Piecewise poly-
nomial approximation splits the input range into subintervals and uses a different
polynomial pi for each subinterval. This scalable range reduction technique allows
reaching an arbitrary accuracy for fixed polynomial degree d. A uniform segmenta-
tion scheme, where all subintervals have the same size, has the advantage that inter-
val decoding the is straightforward, just using he leading bits of x. Non-uniform
range reduction schemes like the power-of-two segmentation [16] have slightly

Reconfigurable arithmetic for HPC 23

more complex decoding requirements but can enable more efficient implementation
of some functions.

Given a polynomial, there are many possible ways to evaluate it. The HOTBM
method [20] uses the developed form p(y) = a0 + a1y+ a2y2 + ...+ adyd and at-
tempts to tabulate as much of the computation as possible. This leads to a short-
latency architecture since each of the aiyi may be evaluated in parallel and added
thanks to an adder tree, but at a high hardware cost. Conversly, the Horner eval-
uation scheme minimizes the number of operations, at the expense of latency:
p(y) = a0 + y× (a1 + y× (a2 ++ y×ad)...) [26]. Between these two extremes,
intermediate schemes can be explored. For large degrees, the polynomial may be
decomposed into an odd and an even part: p(y) = pe(y2)+y× po(y2). The two sub-
polynomial may be evaluated in parallel, so this scheme has a shorter latency than
Horner, at the expense of the precomputation of x2 and a slightly degraded accuracy.
Many variations on this idea, e.g. the Estrin scheme, exist [55]. A polynomial may
also be refactored to trade multiplications for more additions [42], but this idea is
mostly incompatible with range reduction.

When implementing an approximation of f in hardware, there are several error
sources which, summed-up (εtotal) determine the final implementation accuracy. For
arithmetic efficiency, we aim at faithful rounding, which means that εtotal must be
smaller than the weight of the LSB of the result, noted u. This error is decomposed
as follows: εtotal = εapprox + εeval + εfinalround where:

• εapprox is the approximation error, the maximum absolute difference between any
of the polynomials pi and the function over its interval. The open-source Sollya
tool [17] offers the state of the art for both polynomial approximation and a safe
computation of εapprox.

• εeval is the total of all rounding and truncation errors committed during the eval-
uation. These can be made arbitrarily small by adding g guard bits to the LSB of
the datapath.

• εfinalround is the error corresponding rounding off the guard bits from the evaluated
polynomial to obtain a result in the target format. It is bounded by u/2.

Given that εfinalround has a fixed bound (u/2), the aim is to balance the approx-
imation and evaluation error such that the final error remains smaller than u. One
idea is to look for polynomials such that εapprox < u/4. Then, the remaining error
budget allocated to the evaluation error: εeval < u/2− εapprox.

FloPoCo implements this process (more details in [26]), and builds the archi-
tecture depicted in Figure 15. The datapath is optimized to compute just right at
each point, truncating all the intermediate results to the bare minimum and using
truncated multipliers [75, 8].

24 Florent de Dinechin and Bogdan Pasca

1 110 00010101 00 1.

polynomial
index

a1

P2k−1

P1

P0

y
ỹ1 ỹd

ad a0

Coefficient ROM

x

round r

Fig. 15 Function evaluation using piecewise polynomial approximation and a Horner datapath
computing just right

6.3 Putting it all together: a floating-point exponential

We conclude this section by presenting, on Figure 16 a large operator that combines
many of the techniques reviewed so far:

• a fixed-point datapath, surrounded by shifts and normalizations,
• constant multiplications by log(2) and 1/log(2),
• tabulation of pre-computed values in the eA box,
• polynomial approximation for the eZ−Z−1 box,
• truncated multipliers, and in general computing just right everywhere.

The full details can be found in [30].
Roughly speaking, this operator consumes an amount of resource comparable

to a floating-point adder and a floating-point multiplier together. It may be fully
pipelined to the nominal frequency of an FPGA, and its throughput, in terms of
exponentials computed per second, is about ten times the throughput of the best
(software) implementations in microprocessors. In comparison, the throughput of
floating points adders and multipliers is ten times less than the corresponding (hard-
ware) processor implementation. This illustrates the potential of exotic operators in
FPGAs.

7 Operator performance tuning

Designing an arithmetic operator involves many trade-offs, most often between per-
formance and resource consumption. The architectures of functionnaly identical op-
erators in microprocessors targetting different markets can can widely differ: com-
pare for instance two functionally identical, standard fused multiply-and-add (FMA)

Reconfigurable arithmetic for HPC 25

more accurately
than needed!

Never compute

polynomial

Constant
multipliers

precomputed

ROM

generic

multiplier
truncated

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ−Z−1

Y

R

1+wF +g

wF +g− k

wF +g+2− kMSB wF +g+2− k

wF +g+1− k

MSB wF +g+1−2k

1+wF +g

wE +wF +g+1

wE +1

wE +wF +g+1

wE +wF +g+1

k

Fig. 16 Architecture of a floating-point exponential operator.

operators published in the same conference, one for high-end processors [11], the
other for embedded processors [51]. However, for a given processor, the architecture
is fixed and the programmer has to live with it.

In FPGAs, we again have more freedom: A given operator can be tuned to the
performance needs of a given application. This applies to all the FPGA-specific op-
erators we surveyed, but also to classical, standard operators such as plain addition
and subtraction.

Let us review a few aspects of this variability which an FPGA operator library or
generator must address.

7.1 Algorithmic choices

The most fundamental choice is the choice of the algorithm used. For the same
function, widely different algorithms may be used. Here are but a few examples.

26 Florent de Dinechin and Bogdan Pasca

• For many algebraic or elementary functions, there is a choice between multiplier-
based approaches such as polynomial approximation [61, 20, 70, 16, 26] or
Newton-Raphson iterations [55, 73, 45], and digit-recurrence techniques, based
essentially on table look-ups and additions, such as CORDIC and its derivatives
for exponential, logarithm, and trigonometric functions [71, 4, 55, 77, 63], or the
SRT family of algorithms for division and square root [36]). Polynomials have
lower latency but consume DSP blocks, while digit-recurrence consume only
logic but have a larger latency. The best choice here depends on the format, on
the required performance (latency and frequency), on the capabilities of the tar-
get FPGA, and also on the global allocation of resources within the application
(are DSP a scarce resource or not?).

• Many algorithms replace expensive parts of the computations with tables of pre-
computed values. With their huge internal memory bandwidth, FPGAs are good
candidates for this. For instance, multiplication modulo some constant (a basic
operator for RNS arithmetic or some cryptography applications) can be com-
puted out of the formula X ×Y mod n = ((X +Y)2 − (X −Y)2)/4 mod n,
where the squares modulo n can be tabulated (this is a 1-input table, whereas tab-
ulating directly the product modulo n would require a 2-input table of quadrat-
ically larger size). Precomputed values are systematically used for elementary
functions, for instance the previous exponential, for single-precision, can be built
out of one 18-Kbits dual-port memory (holding both boxes eA and eZ−Z−1 of
Figure 16) and one 18x18 multiplier [30]. They are also the essence of the mul-
tipartite [34] and HOTBM [20] generic function approximation methods. Such
methods typically offer a trade-off between computation logic, table size, and
performance. Their implementation should expose this trade-off, because the op-
timal choice will often be application-dependent.

• In several operators, such as addition or logarithm, the normalization of the result
requires a leading-zero counter. This can be replaced with a leading-zero antic-
ipator (LZA) which runs in parallel of the significand datapath, thus reducing
latency [56].

• In floating-point addition, besides the previous LZA, several algorithmic tricks
reduce the latency at the expense of area. A dual-path adder implements a sep-
arate datapath dedicated to cancellation cases, thus reducing the critical path of
the main datapath.

• The Karatsuba technique can be used to reduce DSP consumption of large mul-
tiplications at the expense of more additions [29].

7.2 Sequential versus parallel implementation

Many arithmetic algorithms are sequential in nature: they can be implemented either
as a sequential operator requiring n cycles on hardware of size n with a throughput
of one result every n cycle , or alternatively as a pipelined operator requiring n

Reconfigurable arithmetic for HPC 27

cycles on hardware of size n× s with a throughput of one result per cycle. Classical
examples are SRT division or square root [36] and CORDIC [4].

Multiplication belongs to this class, too, but with the advent of DSP blocks the
granularity has increased. For instance, using DSP blocks with 17x17-bit multipli-
ers, a multiplication of 68x68 (where 68 = 4× 17) can be implemented as either a
sequential process consuming 4 DSP blocks with a throughput of one result every 4
cycles, or as a fully pipelined operator with a throughput of 1 result per cycle, but
consuming 16 DSP blocks.

7.3 Pipelining tuning

Finally, any combinatorial operator may be pipelined to an arbitrary depth, exposing
a trade-off between frequency, latency, and area. FPGAs offer plenty of registers for
this: there is one register bit after each LUT, and many others within DSP blocks
and embedded memories. Using these is in principle for free: going from a com-
binatorial to a deeply pipelined implementation essentially means using otherwise
unused resources. However, a deeper pipeline will need more registers for data syn-
chronization, and put more pressure on routing.

FloPoCo inputs a target frequency, and attempts to pipeline its operators for this
frequency [31]. Such frequency-directed pipelining is, in principle, compositional:
one can build a large pipeline operating at frequency f out of sub-components op-
erating themselves at frequency f .

8 Open issues and challenges

We have reviewed many opportunities of FPGA-specific arithmetic, and there are
are many more waiting to be discovered. We believe that exploiting these opportu-
nities is a key ingredient of successful HPC on FPGA. The main challenges is now
probably to put this diversity in the hands of programmers, so that they can exploit
it in a productive way, without having to become arithmetic experts themselves.
This section explores this issue, and is concluded with a review of possible FPGA
enhancements that would improve their arithmetic support.

8.1 Operator specialization and fusion in high-level synthesis flows

In the HLS context, many classical optimizations performed by usual standard com-
pilers should be systematically generalized to take into account opportunities of
operator specialization and fusion. Let us take just one example. State-of-the-art
compilers will consider replacing A+A by 2A, because this is an optimization that

28 Florent de Dinechin and Bogdan Pasca

is worth investigating in software: the compiler balances using one instruction, or
another. HLS tools are expected to inherit this optimization. Now consider replacing
A ∗A by A2: this is syntactically similar, and it also consists in replacing one oper-
ator with another. But it is interesting only on FPGAs, where squaring is cheaper.
Therefore, it is an optimization that we have to add to HLS tools.

Conversely, we didn’t dare describe doubling as a specialization of addition, or
A− A = 0 as a specialization of subtraction: it would have seemed too obvious.
However they are, and they illustrate that operator specialization should be con-
sidered one aspect of compiler optimization, and injected in classical optimization
problems such as constant propagation and removal, subexpression sharing, strength
reduction, and others.

There is one more subtlety here. In classical compilers, algebraic rewriting (for
optimization) is often prevented by the numerical discrepancies it would entail
(different rounding, or possibly different overflow behaviour, etc). For instance,
(x ∗ x)/x should not be simplified into x because it raises a NaN for x = 0. In HLS
tools for FPGAs, it will be legal to perform this simplification, at the very minor cost
of “specializing” the resulting x to raise a NaN for x = 0. This is possible also in
software, of course, but at a comparatively larger cost. Another example is overflow
behaviour for fixed-point datapath: The opportunity of enlarging the datapath locally
(by one bit or two) to absorbe possible overflows may enable more opportunities of
algebraic rewriting.

However, as often in compilation, optimizations based on operator fusion and
specialization may conflict with other optimizations, in particular operator sharing.

8.2 Towards meta-operators

We have presented two families of arithmetic cores that are too large to be provided
as libraries: multiplication by a constant in Section 4.1 (there is an infinite num-
ber of possible constants) and function evaluator in Section 6.2 (there is an even
larger number of possible functions). Such arithmetic cores can only be produced
by generators, i.e. programs that input the specification of the operator, and output
some structural description of the operator. Such generators were introduced very
early by FPGA vendors (with Xilinx LogiCore and Altera MegaWizard). The shift
from libraries to generators in turns open many opportunities in terms of flexibil-
ity, parameterization, automation, testing, etc. [31], even to operators that could be
provided as a library.

Looking forward, one challenge is now to push this transition one level up, to
programming languages and compilers. Programming languages are still, for the
most part, based on the library paradigm. We still describe how to compute, and not
what to compute. Ideally, the “how” should be compiled out of the “what”, using
operators generated on demand, and optimized to compute just right.

Reconfigurable arithmetic for HPC 29

8.3 What hardware support for HPC on FPGA?

We end this chapter with some prospective thoughts on FPGA architecture: how
could FPGAs be enhanced to better support arithmetic efficiency? This is a very
difficult question as the answer is, of course, very application-dependent.

In general, the support of fixed-point is excellent. The combination of fast carries
for addition, DSP blocks for multiplication, and LUTs or embedded memories for
tabulating precomputed values covers most of the needs. The granularity of the hard
multiplications could be smaller: we could gain arithmetic efficiency if we could
use a 18x18 DSP block as four independent 9x9 multipliers, for instance. However,
such flexibility would double the number of I/O to the DSP block, which has a cost:
arithmetic efficiency is but one aspect of the overall chip efficiency.

Floating point support is also fairly good. In general, a floating-point architecture
is built out of a fixed-point computation on the significand, surrounded by shifts and
leading zero counting for significand alignment and normalization. A straightfor-
ward idea could be to enhance the FPGA fabric with hard shifter and LZC blocks,
just like hard DSP blocks. However, such blocks are more difficult to compose into
larger units than DSP blocks. For the shifts, a better idea, investigated by Moctar et
al [53] would be to perform them in the reconfigurable routing network: it is based
on multiplexers whose control signal comes from a configuration bit. Enabling some
of these multiplexers to optionally take their control signal from another wire would
enable cheaper shifts.

It has been argued that FPGAs should be enhanced with complete hard floating-
point units. Current high-end graphical processing units (GPUs) are paved with such
units, and indeed this solution is extremely powerful for a large class of floating-
point computing tasks. However, there has also been several articles lately showing
that FPGAs can outperform these GPUs on various applications thanks to their bet-
ter flexibility. We therefore believe that floating-point in FPGAs should remain flex-
ible and arithmetic-efficient, and that any hardware enhancement should preserve
this flexibility, the real advantage of FPGA-based computing.

Acknowledgements Some of the work presented here has been supported by ENS-Lyon, INRIA,
CNRS, Universit Claude Bernard Lyon, the French Agence Nationale de la Recherche (projects
EVA-Flo and TCHATER), Altera, Adacsys and Kalray.

References

1. Aksoy, L., Costa, E., Flores, P., Monteiro, J.: Exact and approximate algorithms for the op-
timization of area and delay in multiple constant multiplications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27(6), 1013–1026 (2008)

2. Alias, C., Pasca, B., Plesco, A.: Automatic generation of FPGA-specific pipelined accelera-
tors. In: Applied Reconfigurable Computing (2010)

3. Altera: FFT/IFFT block floating point scaling. Application Note 404 (2005)

30 Florent de Dinechin and Bogdan Pasca

4. Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Field Pro-
grammable Gate Arrays, pp. 191–200. ACM (1998)

5. Andraka, R.: Hybrid floating point technique yields 1.2 gigasample per second 32 to 2048
point floating point FFT in a single FPGA. In: High Performance Embedded Computing
Workshop (2006)

6. Arnold, M., Collange, S.: A real/complex logarithmic number system ALU. IEEE Transac-
tions on Computers 60(2), 202 –213 (2011)

7. Bachir, T.O., David, J.P.: Performing floating-point accumulation on a modern FPGA in single
and double precision. In: Field-Programmable Custom Computing Machines, pp. 105–108.
IEEE (2010)

8. Banescu, S., de Dinechin, F., Pasca, B., Tudoran, R.: Multipliers for floating-point double
precision and beyond on FPGAs. ACM SIGARCH Computer Architecture News 38, 73–79
(2010)

9. Bernstein, R.: Multiplication by integer constants. Software – Practice and Experience 16(7),
641–652 (1986)

10. Bodnar, M.R., Humphrey, J.R., Curt, P.F., Durbano, J.P., Prather, D.W.: Floating-point accu-
mulation circuit for matrix applications. In: Field-Programmable Custom Computing Ma-
chines, pp. 303–304. IEEE (2006)

11. Boersma, M., Kröner, M., Layer, C., Leber, P., Müller, S.M., Schelm, K.: The POWER7 binary
floating-point unit. In: Symposium on Computer Arithmetic. IEEE (2011)

12. Boland, D., Constantinides, G.: Bounding variable values and round-off effects using Han-
delman representations. Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30(11), 1691 –1704 (2011)

13. Boullis, N., Tisserand, A.: Some optimizations of hardware multiplication by constant matri-
ces. IEEE Transactions on Computers 54(10), 1271–1282 (2005)

14. Brisebarre, N., de Dinechin, F., Muller, J.M.: Integer and floating-point constant multipliers
for FPGAs. In: Application-specific Systems, Architectures and Processors, pp. 239–244.
IEEE (2008)

15. Chapman, K.: Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner). EDN
magazine (1994)

16. Cheung, R.C.C., Lee, D.U., Luk, W., Villasenor, J.D.: Hardware generation of arbitrary ran-
dom number distributions from uniform distributions via the inversion method. IEEE Trans-
actions on Very Large Scale Integration Systems 15(8), 952–962 (2007)

17. Chevillard, S., Harrison, J., Joldes, M., Lauter, C.: Efficient and accurate computation of upper
bounds of approximation errors. Theoretical Computer Science 412(16), 1523 – 1543 (2011)

18. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Principles of Programming Lan-
guages, pp. 238–252. ACM (1977)

19. Dempster, A., Macleod, M.: Constant integer multiplication using minimum adders. Circuits,
Devices and Systems 141(5), 407–413 (1994)

20. Detrey, J., de Dinechin, F.: Table-based polynomials for fast hardware function evaluation. In:
Application-specific Systems, Architectures and Processors, pp. 328–333. IEEE (2005)

21. Detrey, J., de Dinechin, F.: Floating-point trigonometric functions for FPGAs. In: Field Pro-
grammable Logic and Applications, pp. 29–34. IEEE (2007)

22. Detrey, J., de Dinechin, F.: A tool for unbiased comparison between logarithmic and floating-
point arithmetic. Journal of VLSI Signal Processing 49(1), 161–175 (2007)

23. Dimitrov, V., Imbert, L., Zakaluzny, A.: Multiplication by a constant is sublinear. In: 18th
Symposium on Computer Arithmetic, pp. 261–268. IEEE (2007)

24. de Dinechin, F.: Multiplication by rational constants. IEEE Transactions on Circuits and Sys-
tems, II (2012). To appear

25. de Dinechin, F., Didier, L.S.: Table-based division by small integer constants. In: Applied
Reconfigurable Computing, pp. 53–63 (2012)

26. de Dinechin, F., Joldes, M., Pasca, B.: Automatic generation of polynomial-based hardware
architectures for function evaluation. In: Application-specific Systems, Architectures and Pro-
cessors. IEEE (2010)

Reconfigurable arithmetic for HPC 31

27. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implementation of an
elementary function using Gappa. IEEE Transactions on Computers 60(2), 242–253 (2011)

28. de Dinechin, F., Nguyen, H.D., Pasca, B.: Pipelined FPGA adders. In: Field Programmable
Logic and Applications. IEEE (2010)

29. de Dinechin, F., Pasca, B.: Large multipliers with fewer DSP blocks. In: Field Programmable
Logic and Applications. IEEE (2009)

30. de Dinechin, F., Pasca, B.: Floating-point exponential functions for DSP-enabled FPGAs. In:
Field-Programmable Technology. IEEE (2010)

31. de Dinechin, F., Pasca, B.: Designing custom arithmetic data paths with FloPoCo. IEEE
Design & Test of Computers 28(4), 18–27 (2011)

32. de Dinechin, F., Pasca, B., Creţ, O., Tudoran, R.: An FPGA-specific approach to floating-
point accumulation and sum-of-products. In: Field-Programmable Technology, pp. 33–40.
IEEE (2008)

33. de Dinechin, F., Takeugming, H., Tanguy, J.M.: A 128-tap complex FIR filter processing 20
giga-samples/s in a single FPGA. In: 44th Asilomar Conference on Signals, Systems & Com-
puters (2010)

34. de Dinechin, F., Tisserand, A.: Multipartite table methods. IEEE Transactions on Computers
54(3), 319–330 (2005)

35. Echeverrı́a, P., López-Vallejo, M.: Customizing floating-point units for FPGAs: Area-
performance-standard trade-offs. Microprocessors and Microsystems 35(6), 535 – 546 (2011)

36. Ercegovac, M.D., Lang, T.: Digital Arithmetic. Morgan Kaufmann Publishers (2004)
37. Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D.: Simplified design of constant

coefficient multipliers. Circuits, Systems, and Signal Processing 25(2), 225–251 (2006)
38. Gustafsson, O., Qureshi, F.: Addition aware quantization for low complexity and high preci-

sion constant multiplication. IEEE Signal Processing Letters 17(2), 173–176 (2010)
39. Huang, M., Andrews, D.: Modular design of fully pipelined accumulators. In: Field-

Programmable Technology, pp. 118–125 (2010)
40. IEEE standard for floating-point arithmetic. IEEE 754-2008, also ISO/IEC/IEEE 60559:2011

(2008)
41. Kalliojarvi, K., Astola, J.: Roundoff errors in block-floating-point systems. IEEE Transactions

on Signal Processing 44(4), 783–790 (1996)
42. Knuth, D.: The Art of Computer Programming: Seminumerical Algorithms, vol. 2, 3rd edn.

Addison Wesley (1997)
43. Kulisch, U.: Circuitry for generating scalar products and sums of floating point numbers with

maximum accuracy. United States Patent 4622650 (1986)
44. Kulisch, U.W.: Advanced Arithmetic for the Digital Computer: Design of Arithmetic Units.

Springer-Verlag (2002)
45. Langhammer, M.: Foundation of FPGA acceleration. In: Fourth Annual Reconfigurable Sys-

tems Summer Institut (2008)
46. Langhammer, M., VanCourt, T.: FPGA floating point datapath compiler. Field-Programmable

Custom Computing Machines 17, 259–262 (2009)
47. Lee, D., Gaffar, A., Cheung, R., Mencer, O., Luk, W., Constantinides, G.: Accuracy-

guaranteed bit-width optimization. Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25(10), 1990–2000 (2006)

48. Lefèvre, V.: Multiplication by an integer constant. Tech. Rep. RR1999-06, Laboratoire de
l’Informatique du Parallélisme, Lyon, France (1999)

49. Liang, J., Tessier, R., Mencer, O.: Floating point unit generation and evaluation for FPGAs.
In: Field-Programmable Custom Computing Machines. IEEE (2003)

50. Luo, Z., Martonosi, M.: Accelerating pipelined integer and floating-point accumulations in
configurable hardware with delayed addition techniques. IEEE Transactions on Computers
49, 208–218 (2000)

51. Lutz, D.R.: Fused multiply-add microarchitecture comprising separate early-normalizing mul-
tiply and add pipelines. In: Symposium on Computer Arithmetic, pp. 123–128. IEEE (2011)

52. Mehendale, M., D.Sherlekar, S., Venkatesh, G.: Synthesis of multiplier-less FIR filters with
minimum number of additions. In: Computer-Aided Design, pp. 668–671 (1995)

32 Florent de Dinechin and Bogdan Pasca

53. Moctar, Y.O.M., George, N., Parandeh-Afshar, H., Ienne, P., Lemieux, G.G., Brisk, P.: Re-
ducing the cost of floating-point mantissa alignment and normalization in FPGAs. In: Field
Programmable Gate Arrays, pp. 255–264. ACM (2012)

54. Moore, R.E.: Interval analysis. Prentice Hall (1966)
55. Muller, J.M.: Elementary Functions, Algorithms and Implementation, 2nd edn. Birkhäuser

(2006)
56. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G.,

Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston
(2010)

57. Nayak, A., Haldar, M., Choudhary, A., Banerjee, P.: Precision and error analysis of MATLAB
applications during automated hardware synthesis for FPGAs. In: Design, Automation and
Test in Europe, pp. 722–728. IEEE (2001)

58. Nguyen, H.D., Pasca, B., Preußer, T.B.: FPGA-specific arithmetic optimizations of short-
latency adders. In: Field Programmable Logic and Applications. IEEE (2010)

59. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs, 2nd edn. Oxford Uni-
versity Press (2010)

60. Perry, S.: Model based design needs high level synthesis: a collection of high level synthesis
techniques to improve productivity and quality of results for model based electronic design.
In: Conference on Design, Automation and Test in Europe, pp. 1202–1207 (2009)

61. Piñeiro, J.A., Bruguera, J.D.: High-speed double-precision computation of reciprocal, divi-
sion, square root, and inverse square root. IEEE Transactions on Computers 51(12), 1377–
1388 (2002)

62. Potkonjak, M., Srivastava, M., Chandrakasan, A.: Efficient substitution of multiple constant
multiplications by shifts and additions using iterative pairwise matching. In: Design Automa-
tion Conference, pp. 189–194 (1994)

63. Pottathuparambil, R., Sass, R.: A parallel/vectorized double-precision exponential core to ac-
celerate computational science applications. In: Field programmable gate arrays, pp. 285–285.
ACM (2009)

64. Preußer, T.B., Spallek, R.G.: Mapping basic prefix computations to fast carry-chain structures.
In: Field Programmable Logic and Applications, pp. 604–608. IEEE (2009)

65. Rocher, R., Menard, D., Herve, N., Sentieys, O.: Fixed-point configurable hardware compo-
nents. EURASIP Journal of Embedded Systems (2006)

66. Sarbishei, O., Radecka, K., Zilic, Z.: Analytical optimization of bit-widths in fixed-point LTI
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
31(3), 343–355 (2012)

67. Schulte, M.J., Wires, K.E., Stine, J.E.: Variable-correction truncated floating point multipliers.
In: Asilomar Conference on Signals, Circuits and Systems, pp. 1344–1348 (2000)

68. Sun, S., Zambreno, J.: A floating-point accumulator for FPGA-based high performance com-
puting applications. In: Field-Programmable Technology, pp. 493–499 (2009)

69. Thong, J., Nicolici, N.: An optimal and practical approach to single constant multiplication.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 30(9),
1373–1386 (2011)

70. Tisserand, A.: High-performance hardware operators for polynomial evaluation. International
Journal of High Performance Syststem Architectures 1, 14–23 (2007)

71. Volder, J.: The CORDIC computing technique. IRE Transactions on Electronic Computers
EC-8(3), 330–334 (1959)

72. Voronenko, Y., Püschel, M.: Multiplierless multiple constant multiplication. ACM Transac-
tions on Algorithms 3(2) (2007)

73. Wang, X., Braganza, S., Leeser, M.: Advanced components in the variable precision floating-
point library. In: Field-Programmable Custom Computing Machines, pp. 249–258. IEEE
Computer Society (2006)

74. White, S.: Applications of distributed arithmetic to digital signal processing: A tutorial review.
IEEE ASSP Magazine pp. 4–19 (1989)

Reconfigurable arithmetic for HPC 33

75. Wires, K.E., Schulte, M.J., McCarley, D.: FPGA resource reduction through truncated mul-
tiplication. In: Field Programmable Logic and Applications, pp. 574–583. Springer-Verlag
(2001)

76. Wirthlin, M.: Constant coefficient multiplication using look-up tables. Journal of VLSI Signal
Processing 36(1), 7–15 (2004)

77. Xilinx: LogiCORE IP CORDIC v4.0 (2011)
78. Zhuo, L., Prasanna, V.K.: High performance linear algebra operations on reconfigurable sys-

tems. In: Supercomputing. ACM/IEEE (2005)

