
HAL Id: hal-01033188
https://hal.inria.fr/hal-01033188

Submitted on 22 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving memory efficiency for processing large-scale
models

Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi

To cite this version:
Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi. Improving memory efficiency for
processing large-scale models. BigMDE, Jul 2014, York, UK, United Kingdom. 2014. <hal-01033188>

https://hal.inria.fr/hal-01033188
https://hal.archives-ouvertes.fr


Improving Memory Efficiency for Processing Large-Scale
Models

Gwendal Daniel
AtlanMod team (Inria, Mines

Nantes, LINA)
gwendal.daniel@etu.univ-

nantes.fr

Gerson Sunyé
AtlanMod team (Inria, Mines

Nantes, LINA)
gerson.sunye@inria.fr

Amine Benelallam
AtlanMod team (Inria, Mines

Nantes, LINA)
amine.benelallam@inria.fr

Massimo Tisi
AtlanMod team (Inria, Mines

Nantes, LINA)
massimo.tisi@inria.fr

ABSTRACT
Scalability is a main obstacle for applying Model-Driven
Engineering to reverse engineering, or to any other activ-
ity manipulating large models. Existing solutions to persist
and query large models are currently inefficient and strongly
linked to memory availability. In this paper, we propose a
memory unload strategy for Neo4EMF, a persistence layer
built on top of the Eclipse Modeling Framework and based
on a Neo4j database backend. Our solution allows us to
partially unload a model during the execution of a query by
using a periodical dirty saving mechanism and transparent
reloading. Our experiments show that this approach enables
to query large models in a restricted amount of memory with
an acceptable performance.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Performance, Algorithms

Keywords
Scalability, Large models, Memory footprint

1. INTRODUCTION
The Eclipse Modeling Framework (EMF) is the de facto
standard for the Model Driven Engineering (MDE) com-
munity. This framework provides a common base for mul-
tiple purposes and associated tools: code generation [4, 12],
model transformation [9, 13], and reverse engineering [17, 6,
5].

These tools handle complex and large-scale models when
manipulating important applications, for example, during
reverse-engineering or software modernization through model
transformation. EMF was first designed to support model-
ing tools and has shown limitations in handling large models.
A more efficient persistence solution is needed to allow for
partial model loading and unloading, which are key points
when dealing with large models.

While several solutions to persist EMF models exist, most of
them do not allow partial model unloading and cannot han-
dle models that exceed the available memory. Furthermore,
these solutions do not take advantage of the graph nature
of the models: most of them rely on relational databases,
which are not fully adapted to store and query graphs.

Neo4EMF [3] is a persistence layer for EMF that relies on
a graph database and implements an unloading mechanism.
In this paper, we present a strategy to optimize the mem-
ory footprint of Neo4EMF. To evaluate this strategy, we
perform a set of queries on Neo4EMF and compare them
against two other persistence mechanisms, XMI and CDO.
We measure performances in terms of memory consumption
and execution time.

The paper is organized as follows: Section 2 presents the
background and the motivations for our unloading strategy.
Section 3 describes our strategy and its main concepts: dirty
saving, unloading, and extended on-demand loading. Sec-
tion 4 evaluates the performance of our persistence layer.
Section 5 compares our approach with existing solutions and
finally, Section 6 concludes and draws the future perspec-
tives of the tool.

2. BACKGROUND

2.1 EMF Persistence
As many other modeling tools, EMF has adopted XMI as
its default serialization format. This XML-based represen-
tation has the advantage to be human readable, but has
two drawbacks: (i) XMI sacrifices compactness for an un-
derstandable output and (ii) XMI files have to be entirely
parsed to get a readable and navigational model. The former
drawback reduces efficiency of I/O access, while the latter



increases the memory needed to load a model and limits
on-demand loading and proxy uses between files. XMI does
not provide advanced features such as model versioning or
concurrent modifications.

The CDO [8] model repository was built to solve those prob-
lems. It was designed as a framework to manage large mod-
els in a collaborative environment with a small memory foot-
print. CDO relies on a client-server architecture supporting
transactional accesses and notifications. CDO servers are
built on top of several persistence solutions, but in practice
only relational databases are used to store CDO objects.

2.2 Graph Databases
Graph databases are one of the NoSQL data models that
have emerged to overcome the limitations of relational databases
with respect to scale and distribution. NoSQL databases do
not ensure ACID properties, but in return, they are able to
handle efficiently large-scale data in a distributed environ-
ment.

Graph databases are based on nodes, edges, and proper-
ties. This particular data representation fits exactly to EMF
models, which are intrinsically graphs (each object can be
seen as a node and references as edges). Thus, graph databases
can store EMF models without a complex serialization pro-
cess.

3. NEO4EMF
Neo4EMF is a persistence layer built on top of the EMF
framework that aims at handling large-models in a scal-
able way. It provides a compatible EMF API and a graph-
database persistence backend based on Neo4j [16].
Neo4EMF is open source and distributed under the terms
of the (A)GPLv3 [1].

In previous work [3], we introduced the basic concepts of
Neo4EMF : model change tracking and on-demand loading.
Model change tracking is based on a global changelog that
stores the modifications done on a model during an execu-
tion (from creation to save). Tracking the modifications is
done using EMF notification facilities: the changelog acts
as a listener for all the objects and creates its entries from
the received notifications. Neo4EMF uses an on-demand
loading mechanism to load object fields only when they are
accessed. Technically, each Neo4EMF object is instantiated
as an empty container. When one of its fields (EReferences
and EAttributes) is accessed, the associated content is
loaded. This mechanism presents two advantages: (i) the
entire model does not have to be loaded at once and (ii)
unused elements are not loaded.

Neo4EMF does not use the EStore mechanism. Indeed,
EStore allows the EObject data storage to be changed by
providing a stateless object that translates model modifi-
cations and accesses into backend calls. Every generated
accessor and modifier delegates to the reflexive API. As
a consequence, EObjects have to fetch through the store
each time a field is requested, engendering several database
queries. On the contrary, Neo4EMF is based on regular
EObjects (with in-memory fields) which are synchronized
with a database backend.

In this paper we focus on Neo4EMF memory footprint. We
introduce a strategy to unload some parts of a processed
model and save memory during a query execution. In the
previous implementation, the on-demand loading mechanism
allows us to load only the parts of the model that are needed,
but there is no solution to remove unneeded objects from
memory, especially when they were changed but not saved
yet.

A reliable unload strategy needs to address two main issues:

• Accessibility: Contents of unloaded objects (attributes
and referenced objects) have to remain accessible through
standard EMF accessors.

• Transparency: The management of the object life
cycle has to be independent from users, but customiz-
able to fit specific needs, e. g., size of the Java virtual
machine, requirements on execution time, etc.

Our strategy faces these issues by providing a dirty-saving
mechanism, which provides temporary and transparent model
persistence. The object life cycle has also been modified to
include unloading of persisted elements.

In this next sections, we provide an overview of the changelog
used to record the modifications of the processed model.
Then, we present dirty saving, based on the basic Neo4EMF
save mechanism, and we describe the Neo4EMF object life
cycle. Finally, we describe the modifications done on the
on-demand loading feature to handle this new strategy.

3.1 Neo4EMF Changelog
Neo4EMF needs a mechanism to ensure synchronization be-
tween the in-memory model and its backend representation,
avoiding systematic unnecessary calls to the database.

Despite the existence in EMF of a modification tracking
mechanism, the ChangeRecorder class, we decided to de-
velop an alternative solution that minimizes memory con-
sumption.

Neo4EMF tracks model modifications in a changelog, a se-
quence of entries of five types:

Object creation: A new object has been created and at-
tached to a Neo4EMF resource.

Object deletion: An object has been deleted or removed
from a Neo4EMF resource.

Attribute modifications: Attribute setting and unsetting.

Reference addition: Assignment of a new single-valued
reference or addition of a new referenced object in a
multi-valued one.

Reference deletion: Unsetting a single-valued reference
or removing a referenced object in a multi-valued one.

We distinguish unidirectional and bidirectional reference mod-
ifications for performance reasons (they are not serialized the



same way during the saving process).
Figure 1 summarizes our changelog model. All changelog
entries are subclasses of Entry, which defines some shared
properties: the object concerned by the modification (for
instance the object containing a modified attribute or ref-
erence, or the new object in case of a CreateObject entry)
and a basic serialization method.

Attribute and reference modification entries (SetAttribute,
AddLink, RemoveLink and their subclasses) have three
additional fields to track fine-grained modifications: the up-
dated feature (attribute or reference identifier) which cor-
responds to the modified field of the concerned object, the
new and old values of the feature (if available).

This decomposition provides a direct access to the informa-
tion required during the serialization process, without ac-
cessing the concerned objects. The fine-grained entry man-
agement also decreases memory consumption. For instance
modifications on bidirectional references correspond to a sin-
gle changelog entry, while they needed two basic entries be-
fore. Serialization of those entries is also more efficient since
it reduces the number of database accesses.

In the previous version of Neo4EMF, we used the EMF noti-
fication framework to create changelog entries. This imple-
mentation had a major drawback: notifications were han-
dled in a dedicated thread, and we could not ensure that
all the notifications were sent to the changelog before its
serialization. This behavior could create an inconsistency
between the in-memory model and the saved one. This is
another reason we do not use the EMF ChangeRecorder
facilities, which relies on notifications.

In this new version, changelog entries are directly created
into the body of the generated methods. This solution re-
moves synchronization issues and is also more efficient, be-
cause entries are created directly, and all the information
needed to construct them is available in the method body
(current object, feature identifier, new and old values). We
also do not have to deal with the generic notification API,
which was resulting in a lot of casts and complex processing
to retrieve this information. Synchronizing the changelog
brings another important benefit: the causality between
model modifications and entries order is ensured and there
is no need to reorder the entry stack before its serialization.

Finally, we modify the changelog life cycle. In the previous
version, the changelog was a global singleton object, con-
taining the record of a full execution, mixing modifications
of multiple resources. This solution is not optimal because
saving is done per resource in EMF, and to save a single re-
source the entire modification stack needed to be processed
to retrieve the corresponding entries. We choose to create a
dedicated changelog into each Neo4EMF resource that han-
dles modifications only for the objects contained in the as-
sociated resource. This modification reduces the complexity
of the save processing: the resource changelog is simply it-
erated and its entries are then serialized into database calls.
The synchronized aspect of the changelog allows us to pro-
cess the entries in the order they are added, which was not
possible in the previous version.
Furthermore, associating a changelog with a resource en-

Figure 2: Excerpt of MoDisco Java Metamodel

Package

name : String

ClassDeclaration

name : String

owned_elements *

Comment

Content : String

comments
*

BodyDeclaration

name : String

body_declarations *

Figure 3: Sample instance of Java Metamodel

p1 : Package

name : "package1"

cl1 : ClassDeclaration

name : "class1"

owned_elements

b1 : BodyDeclaration

name : "body1"

body_declarations com1 : Comment

content : "comment1"
comments

com2 : Comment

name : "comment2"

comments

sures that, when the resource is deleted, all the related en-
tries are also deleted. In the previous version, entries could
not be deleted from the global changelog, and were kept in
memory during the execution.

3.2 Dirty Saving
Neo4EMF relies on a mapping between EMF entities and
Neo4j concepts to save its modifications. Figure 2 shows
an excerpt of the Java metamodel, used in the MoDisco [17]
project. This metamodel describes Java applications in terms
of Packages, ClassDeclarations, BodyDeclarations, and
Comments. A Package is a named container that gathers
a set of ClassDeclarations through its owned elements
composition. A ClassDeclaration is composed of a name,
a set of Comments and a set of BodyDeclarations.
Figure 3 shows a simple instance of this metamodel: aPack-
age (package1), containing oneClassDeclaration, (class1).
This ClassDeclaration contains two Comments (comment1
and comment2) and one single BodyDeclaration (body1).
Figures 2, 3, and 4 show that:

Model elements are represented as nodes. Nodes with
identifier p1, cl1, b1, and com1 are examples corre-
sponding to p1, cl1, b1, and com1 in Figure 3. The
root node represents the entry point of the model (the
resource directly or indirectly containing all the other
elements) and is not associated to a model object.

Elements attributes are represented as node properties.
Node properties are 〈name, value〉 pairs, where name
is the feature identifier and value the value of the fea-
ture. Node properties can be observed for p1, cl1, and
b1.

Metamodel elements are also represented as nodes and
are indexed to facilitate their access. Metamodel nodes
have two properties: the metaclass name and the meta-
model unique identifier. P, Cl, B and Com are ex-
amples of metamodel element nodes, they correspond
to PackageDeclaration, ClassDeclaration, Body-
Declaration, andComment, respectively in Figure 2



Figure 1: Changelog Metamodel

EObject

ChangeLog

Entry

process()

AddLink

updatedFeature : EReference
NewObject DeleteObject

SetAttribute

updatedFeature : EAttribute

RemoveLink

updatedFeature : EReference

BidirectionalAddLink UnidirectionalAddLink BidirectionalRemoveLink UnidirectionalRemoveLink

Figure 4: Sample instance database representation

ROOT
id = p1

name : 'package1'

IS_ROOT
id = cl1

name : 'class1'

PACKAGE__OWNED_ELEMENTS

id=P

name = 'Package'

 nsURI = 'http://java'

INSTANCE_OF

id=b1

name : 'body1'CLASS__DECLARATION_BODY_DECLARATIONS

id=com1

content : 'comment1'

CLASS__DECLARATION_COMMENTS

id=com2

content : 'comment2'

CLASS__DECLARATION_COMMENTS

id=Cl

name = 'ClassDeclaration'

 nsURI = 'http://java'

INSTANCE_OF

id=B

name = 'BodyDeclaration'

 nsURI = 'http://java'

INSTANCE_OF

id=P

name = 'Comment'

 nsURI = 'http://java'

INSTANCE_OF

INSTANCE_OF

InstanceOf relationships are outgoing relationships be-
tween the elements nodes and the nodes representing
metaclasses. They represent the conformance of an
object instance to its class definition

References between objects are represented as relation-
ships. To avoid naming conflicts relationships are named
using the following convention:
class name reference name.

When a save is requested, changelog entries are processed to
update the database backend. Each entry is serialized into a
database operation. The CreateObject entry corresponds
to the creation of a new node and its meta-information
(instanceof to its meta-class, isRoot if the object is di-
rectly contained in the resource). All the fields of the object
are also serialized and directly saved in the database. A Se-
tAttribute entry corresponds to an update of the related
node’s property with the corresponding name. AddLink,
RemoveLink, and their subclasses respectively record the
creation and removal of a relationship, storing the contain-
ing class and feature name.

We decide to serialize at the same time a created object
and all its references and attributes. New objects need to

be entirely persisted, and there is no reason to record their
modifications before their first serialization (the final state
of the object is the one that needs to be persisted). This full
serialization behavior has the advantage of generating only
one single entry for a new object, independently from the
number of its modified fields.

This approach works well for small models, but has issues
when a large modification set needs to be persisted: the
changelog grows indefinitely until the user decides to save
it. This is typically the case in reverse engineering, where
the extracted objects are first all created in memory and
only afterwards they are saved.

To address this problem we introduce dirty-saving, a peri-
odical save action not requested by the user. The period
is determined by the changelog size, configurable through
the Neo4EMF resource. Since these save operations are not
requested by the user they have to ensure two properties:

• Reversibility: if the modifications are canceled or if
the user does not want to save a session the database
should rollback to an acceptable version. This version
is either (i) the previous regularly saved database if an
older version exists or (ii) an empty database.



• Persistability: if a regular save is requested by the
user, the temporary objects in the database have to
be definitely persisted. They can then constitute a
new acceptable version of the database if a rollback is
needed.

We introduce a new mapping for changelog entries with the
purpose of temporary dirty saving. This mapping is based
on the same entries as the regular mapping but the associ-
ated Neo4j concepts allow the system to easily extract dirty
objects and regular ones. In addition we create two indexes:
tmp_relationships and tmp_nodes which respectively con-
tain the dirty relationships and nodes (i. e., created in a dirty
saving session). Figure 5 summarizes the mapping between
changelog entries and neo4j concepts:

• CreateObject: creation of a new node (as in the reg-
ular saving process) and addition to the tmp_nodes

index.

• SetAttribute: creation of a dedicated node contain-
ing the dirty attributes. The idea is to keep a stable
version (i. e., the previous regularly saved version) to
easily reverse it. A SetAttribute relationship is cre-
ated to link the base object and its attribute node

• AddLink: creation of a generic AddLink relation-
ship, containing the reference identifier as a property.
This special relationship format is needed to easily pro-
cess dirty relationships and retrieve their correspond-
ing image if a regular save operation is requested

• RemoveLink: creation of a generic RemoveLink re-
lationship, containing the reference identifier as a prop-
erty. AddLink and RemoveLink relationships with
the same reference identifier and target object are mu-
tually exclusive to limit the number of temporary ob-
jects into the database

• DeleteObject: creation of a special Delete relation-
ship looping on the related node. The base version of
the node is kept alive if a rollback is needed.

The objective of this mapping is to preserve all the infor-
mation contained after a regular save, to easily handle a
rollback. That is why object deletion is done using a re-
lationship: if the modifications are aborted it is simpler to
remove the relationship than creating a new instance of the
node with backup information. We do not use a property to
tag deleted objects for performance reasons (access to node
properties is slower than edge navigation).
To persist definitely dirty objects in the database into regu-
larly saved ones a serialization process is invoked. As changelog
entries, each Neo4j element contains all the information needed
to create their regular equivalents: new objects are simply
removed from the tmp_nodes index, AddLink relationships
are turned into their regular version using their properties
andRemoveLink entries correspond to the deletion of their
existing regular version.

For example if we update the model given in Figure 3 by re-
moving com1 and creating a new BodyDeclaration body2

then calling a dirty save, the database will be updated as in
Figure 6. Note that a Delete relationship has been created
because the removed Comment is not contained in the re-
source anymore. Red relationships and nodes are indexed
respectively in tmp_relationships and tmp_nodes indexes.

This example shows that our mapping is built on top of the
existing one: there is no modification done on the previ-
ous version, represented with black nodes. This simplifies
the rollback process, which consists of a deletion of all the
temporary Neo4j objects.

3.3 Object Life Cycle
We modify the Neo4EMF object life cycle to enable unload-
ing. When a dirty saving is invoked, all the modifications
contained in the changelog are committed to the database.
Because of this persistence, persisted objects can be safely
released from memory and reloaded using on-demand load-
ing, if needed.

Figure 7 shows the different life cycle states of a Neo4EMF
object. When a Neo4EMF object is created it is New: it
has not been persisted into the database and cannot be re-
leased. When a save is requested or a dirty save is invoked,
the new object is persisted into the database and it is tagged
as Clear: all the known modifications related to the object
have been saved and it is fetchable from the database with-
out information loss. In this state the object can be removed
from memory without consistency issues. When a modifica-
tion is done on the object (setting an attribute or updating
a reference) then it is tagged as Modified.

Modified objects cannot be released, because their database-
mapped nodes do not contain the modified information. When
a save is processed, the Modified objects revert to Clear
state and can be released again. Loading objects also have
a particular state that avoids garbage collection of an object
when it is loading.

Figure 7: Neo4EMF EObject life cycle

To allow garbage collection of Neo4EMF objects, we use
Java Soft and Weak references to store object’s fields. Weak
and Soft referenced objects are eligible for garbage collection
as soon as there is no strong reference chain on them. The



Figure 5: Changelog to Neo4j entity mapping

ChangeLog Entry

EObject

1..*

AddLink

RemoveLink

SetAttribute

NewObject

DeleteObject

Neo4j::RelationshipType

+ name : String = "AddLink"

 + relName : String

Neo4j::RelationshipType

+ name : String = "RemoveLink"

 + relName : String

Neo4j::RelationshipType

+ name : String = "SetAttribute"

Neo4j::Node

Neo4j::RelationshipType

+ name : String = "Delete"

Figure 6: Database state after modifications

ROOT
id = p1

name : 'package1'

IS_ROOT
id = cl1

name : 'class1'

PACKAGE__OWNED_ELEMENTS

id=b1

name : 'body1'
CLASS__DECLARATION_BODY_DECLARATIONS

id=com1

content : 'comment1'

CLASS__DECLARATION_COMMENTS

RemoveLink

rel='CLASS__DECLARATION_COMMENTS'

id=com2

content : 'comment2'

CLASS__DECLARATION_COMMENTS

id=b2

name : 'body2'

AddLink

rel='CLASS__DECLARATION_BODY_DECLARATIONS'

Delete

difference between the two kinds of references is the time
they can remain in memory. Weak references are collected
as soon as possible by the garbage collector, whereas Soft
references can be retained in memory as long as the garbage
collector does not need to free them (i.e., as long as there
is enough available memory). This particular behavior is
interesting for cache implementation and to optimize execu-
tion speed in a large available memory context. Reference
type (Weak or Soft) can be set through Neo4EMF resource
parameters.

In Section 3.1, we describe that changelog entries contain all
the information related to the serialization of the concerned
object. This information constitutes the strong reference
chain on the related object fields. When a save is done, en-
tries are processed and deleted, breaking the strong reference
chain and making objects eligible for garbage collection.

Neo4j’s objects are not impacted by this new life-cycle. The

database manages its objects life cycle through a policy de-
fined at the resource creation (memory or performance pref-
erences).

3.4 Extended On-Demand Loading
To handle the new architecture of our layer, we have to ex-
tend the on-demand loading feature to support temporary
persisted objects. On-demand loading uses two parameters:
(i) the object that handles the feature to load and (ii) the
identifier of the feature to load. This behavior implies that
a Neo4EMF object is always loaded from another Neo4EMF
object.

Figure 6 shows our Java metamodel instance state after a
dirty save. The database content is a mix between regularly
saved objects (in black) and dirty-saved ones (in red). Load-
ing referenced Comments instances from ClassDeclara-
tion cl1 is done in three steps to ensure the last dirty-saved



operations have been considered.
First, class declaration comments relationships are pro-
cessed and their end nodes are saved. Second, the AddLink
relationships containing the corresponding rel property are
processed and their end nodes are added to the previous
ones. This operation retrieves all the associated nodes for
the given feature, regular ones and dirty ones. Third, Re-
moveLink relationships are processed the same way and
their end nodes are removed from the loaded node set.

Attribute fetching behavior is a bit different: if a node repre-
senting an object has relationships to a dedicated attribute
node, then the data contained in this node is returned in-
stead of the base node property.

To improve the performances of our layer, we create a cache
that maps Neo4j identifiers to their associated object. When
on-demand loading is performed, the cache is checked first,
avoiding the cost of a database access. This cache is also
used to retrieve released objects.

4. EVALUATION
In this section, we evaluate how the memory footprint and
the access time of Neo4EMF scale in different large model
scenarios, and we compare it against CDO and XMI. These
experiments are performed over two EMF model extracted
with the MoDisco Java Discoverer [17]. Both models are ex-
tracted from Eclipse plug-ins: the first one is an internal tool
and the second one is the Eclipse JDT plugin. The result-
ing XMI files are 20MB and 420MB, containing respectively
around 80 000 and 1 700 000 elements.

4.1 Execution Environment
Experiments are executed on a computer running Windows
7 professional edition 64 bits. Interesting hardware ele-
ments are: an Intel Core I5 processor 3350P (3.5GHz), 8GB
of DDR3 SDRAM (1600MHz) and a Seagate barracuda
7200.14 hard disk (6GB/s). Experiments are executed on
Eclipse 4.3 running Java SE Runtime Environment 1.8.

To compare the three persistence solutions, we generate
three different EMF models from the MoDisco Java Meta-
model: (i) the standard EMF model, (ii) the CDO one and
(iii) the Neo4EMF one. We import both models from XMI
to CDO and Neo4EMF and we verify they contain the same
data after the import.

Neo4EMF uses an embedded Neo4j database to store its
objects. To provide a meaningful comparison in term of
memory consumption we choose to use an embedded CDO
server.

Experiment 1: Object creation. In this first exper-
iment, we execute an infinite loop of object creation and
simply count how many objects have been created before a
OutOfMemoryException is thrown. We choose a sim-
ple tree structure of three classes to instantiate from the
MoDisco Java metamodel: a parent ClassFile containing
1000 BlockComment and ImportDeclaration. The re-
sulting model is a set of independent element trees. For this
experiments we choose a 1GB Java virtual machine and an
arbitrarily fixed changelog size of 100 000 entries. Table 1
summarizes the results.

Persistence Layer XMI CDO Neo4EMF

#Created Elements 22 939 780 4 378 990 >40 000 0001

Table 1: Number of Created Elements Before
Memory Overhead

Figure 8: Memory Consumption: Model Traversal
and Save (20MB)

Note that the number given for Neo4EMF is an approxi-
mation: we stop the execution before any OutOfMemory
error. The average memory used to create elements was
around 500MB and does not seem to grow. This perfor-
mance is due to the dirty-saving mechanism: created ob-
jects generate entries in the changelog. When the changelog
is full, changes are saved temporarily in the database, freeing
the changelog for next object creations.

Experiment 2: Model traversal. In this experiment, we
load a model and execute a traversal query that starts from
the root of the model, traverses all the containment tree and
modifies the name attribute of all NamedElements. All
the modifications are saved at the end of the execution. Dur-
ing the traversal, we measure the execution time for covering
the entire model and the average memory used to perform
the query. In addition, we measure the memory needed to
save the modifications at the end of the execution. Fig-
ures 8 and 9 summarize memory results. As expected, the
Neo4EMF traversal footprint is higher than the XMI one be-
cause we include the Neo4j embedded database and runtime
in our measures. Unloading brings a real interest when com-
paring the results with CDO: when removing unused (i. e.,
unreferenced) objects we save space and process the request
in a reduced amount of memory. For this experiment we
use a 4GB Java virtual machine, with the ConcMarkSweepGC
garbage collector, recommended when using Neo4j.

Experiment 3: Time performance. This experiment is
similar to the previous one, but we focus on time perfor-
mances. We measure the time needed to perform traversal
and save. Figures 10 and 11 summarize the results. To
provide a fair comparison between full and on-demand load-
ing strategies we also include model loading time with the
traversal queries.

1The execution was stopped before any memory exception.



Figure 9: Memory Consumption: Model Traversal
and Save (420MB)

Figure 10: 20MB model traversal and save perfor-
mances

Neo4EMF save performances can be explained with dirty-
saving : during the traversal, entries are generated to track
the name modifications. These entries are then saved in the
database when the changelog is full, reducing the final save
cost. This behavior also explains a part of the traversal time
overhead, when compared to CDO: Neo4EMF traversal im-
plies database write access for dirty saving where CDO does
not, related I/O accesses considerably impact performance.

4.2 Discussion
The results of these experiments show that dirty-saving cou-
pled with on-demand loading decrease significantly the mem-
ory needed to execute a query. As expected, this memory
footprint improvement worsens the time performances of our
tool, in particular because of dirty-saving, which generates
several database calls. That is why we provide dirty sav-
ing configuration through the Neo4EMF resource. The ex-
periments also show that Neo4EMF is able to handle large
queries and modifications in a limited amount of memory,
compared to existing solutions.

Figure 11: 420MB traversal and save performances

We also run our benchmarks on different operating sys-
tems (Ubuntu 12.04 and 13.10) and we find that CDO and
Neo4EMF time performances seem to be linked to the file
partition format (especially in I/O accesses): Neo4j has bet-
ter performances on these operating system (with a factor
of 1.5) and CDO has slower times (with approximately the
same factor). More investigation is needed to optimize our
tool in different contexts.

Our experiments show that Neo4EMF is an interesting al-
ternative to CDO to handle large models in memory con-
strained environment. On-demand loading and transpar-
ent unloading offer a small memory footprint (smaller than
CDO in our experiments), but our solution does not provide
advanced features like collaborative edition and versioning
provided by CDO.

The unload strategy is transparent for the user, but may be
intrusive in some cases, for instance if the hard-drive mem-
ory space is limited or the time performances are critical.
This is why we introduce configuration for dirty saving and
changelog size through the Neo4EMF resource.

5. RELATED WORK
Models obtained by reverse engineering with EMF-based
tools such as MoDisco [17, 5, 11] can be composed of mil-
lions of elements. Existing solutions to handle this kind of
models have shown clear limitations in terms of memory
consumption and processing.

CDO is the de facto standard to handle large models using
a server and a relational database. However, some exper-
iments have shown that CDO does not scale well to very
large models [2]. Pagán et al. [14, 15] propose to use NoSQL
databases to store models, especially because those kind of
databases should fit better to the interconnected nature of
EMF models.

Mongo EMF [7] is a NoSQL approach that stores EMF mod-
els in MongoDB, a document-oriented database. However,
Mongo EMF storage is different from the standard EMF
persistence backend, and cannot be used as is to replace an
other persistence solution in an existing system. Modifica-
tions on the client software are needed to integrate it.



Morsa [14] is an other persistence solution based on Mon-
goDB database. Similarly to Neo4EMF, Morsa uses a stan-
dard EMF mechanism to ensure persistence, but it uses a
client-server architecture, like CDO. Morsa has some sim-
ilarities with Neo4EMF, notably in its on-demand loading
mechanism, but does not use a graph database.

EMF Fragments [10] is another EMF persistence layer based
on a NoSQL database. The EMF Fragments approach is dif-
ferent from other NoSQL persistence solutions: it relies on
the proxy mechanism provided by EMF. Models are auto-
matically partitioned and loading is performed by partition.
Loading on demand is only performed for cross-partition
references. Another difference with Neo4EMF is that EMF
Fragments needs to annotate the metamodels to provide the
partition set, whereas our approach does not require model
adaptation or tool modification.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a strategy to optimize the mem-
ory footprint of Neo4EMF, a persistence layer designed to
handle large models through on-demand loading and trans-
parent unloading. Our experiments show that Neo4EMF is
an interesting alternative to CDO for accessing and query-
ing large models, especially in small available memory con-
text, with a tolerable performance loss. Neo4EMF does not
have collaborative model editing or model versioning fea-
tures, which biases our results: providing those features may
imply a more important memory consumption.

In future work, we plan to improve our layer by providing
partial collection loading, allowing the loading of large col-
lections subparts from the database. In our experiments, we
detected some memory consumption overhead in this par-
ticular case: when an object contains a huge number of ref-
erenced objects (through the same reference) and they are
all loaded at once.

We then plan to study the inclusion of attribute and refer-
ence meta-information directly in the database to avoid un-
necessary object loading: some EMF mechanisms, like is-

Set may induce load on demand of the associated attribute,
just in order to make a comparison. It could be interest-
ing to provide this information from the database without a
complete and costly object loading.

Finally, we want to introduce loading strategies such as
prefetching or model partitioning (using optional metamodel
annotations or a definition of the model usage) to allow users
to customize the object life cycle.

7. REFERENCES
[1] AtlanMod. Neo4EMF, 2014. url:

http://www.neo4emf.com/.

[2] K. Barmpis and D. S. Kolovos. Comparative analysis
of data persistence technologies for large-scale models.
In Proceedings of the 2012 Extreme Modeling
Workshop, XM ’12, pages 33–38, New York, NY, USA,
2012. ACM.

[3] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and
D. Launay. Neo4emf, a scalable persistence layer for
emf models. July 2014.

[4] L. Bettini. Implementing Domain-Specific Languages
with Xtext and Xtend. 2013.

[5] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot.
Modisco: A model driven reverse engineering
framework. Information and Software Technology,
56(8):1012 – 1032, 2014.

[6] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot.
Modisco: A generic and extensible framework for
model driven reverse engineering. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’10, pages 173–174, New
York, NY, USA, 2010. ACM.

[7] Bryan Hunt. MongoEMF, 2014. url:
https://github.com/BryanHunt/mongo-emf/wiki/.

[8] Eclipse Foundation. The CDO Model Repository
(CDO), 2014. url: http://www.eclipse.org/cdo/.

[9] INRIA and LINA. ATLAS transformation language,
2014.

[10] Markus Scheidgen. EMF fragments, 2014. url: https:
//github.com/markus1978/emf-fragments/wiki/.

[11] Modeliosoft Solutions, 2014. url:
http://www.modeliosoft.com/.

[12] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun,
L. Goubet, Y. Lussaud, and F. Allilaire. Acceleo user
guide, 2006.

[13] OMG. MOF 2.0 QVT final adopted specification
(ptc/05-11-01), April 2008.

[14] J. E. Pagán, J. S. Cuadrado, and J. G. Molina. Morsa:
A scalable approach for persisting and accessing large
models. In Proceedings of the 14th International
Conference on Model Driven Engineering Languages
and Systems, MODELS’11, pages 77–92, Berlin,
Heidelberg, 2011. Springer-Verlag.

[15] J. E. Pagán and J. G. Molina. Querying large models
efficiently. Information and Software Technology, 2014.
In press, accepted manuscript. url:
http://dx.doi.org/10.1016/j.infsof.2014.01.005.

[16] J. Partner, A. Vukotic, and N. Watt. Neo4j in Action.
O’Reilly Media, 2013.

[17] The Eclipse Foundation. MoDisco Eclipse Project,
2014. url: http://www.eclipse.org/MoDisco/.

http://www.neo4emf.com/
https://github.com/BryanHunt/mongo-emf/wiki/
http://www.eclipse.org/cdo/
https://github.com/markus1978/emf-fragments/wiki/
https://github.com/markus1978/emf-fragments/wiki/
http://www.modeliosoft.com/
http://dx.doi.org/10.1016/j.infsof.2014.01.005
http://www.eclipse.org/MoDisco/

	Introduction
	Background
	EMF Persistence
	Graph Databases

	Neo4EMF
	Neo4EMF Changelog
	Dirty Saving
	Object Life Cycle
	Extended On-Demand Loading

	Evaluation
	Execution Environment
	Discussion

	Related Work
	Conclusion and Future Work
	References

