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Projet Parsifal

Rapport de recherche n° 6013 — October 2006 — 74 pages

Abstract: These are the notes for a 5-lecture-course given at ESSLLI 2006 in Malaga, Spain. The URL
of the school is http://esslli2006.lcc.uma.es/. This version slightly differs from the one which has been
distributed at the school because typos have been removed and comments and suggestions by students have
been worked in.

The course is intended to be introductory. That means no prior knowledge of proof nets is required. However,
the student should be familiar with the basics of propositional logic, and should have seen formal proofs in some
formal deductive system (e.g., sequent calculus, natural deduction, resolution, tableaux, calculus of structures,
Frege-Hilbert-systems, etc.). It is probably helpful if the student knows already what cut elimination is, but
this is not strictly necessary.

In these notes, I will introduce the concept of “proof nets” from the viewpoint of the problem of the identity
of proofs. I will proceed in a rather informal way. The focus will be more on presenting ideas than on presenting
technical details. The goal of the course is to give the student an overview of the theory of proof nets and make
the vast amount of literature on the topic easier accessible to the beginner.

For introducing the basic concepts of the theory, I will in the first part of the course stick to the unit-free
multiplicative fragment of linear logic because of its rather simple notion of proof nets. In the second part of
the course we will see proof nets for more sophisticated logics.

This is a basic introduction into proof nets from the perspective of the identity of proofs. We discuss how
deductive proofs can be translated into proof nets and what a correctness criterion is.

Key-words: Proof nets, cut elimination, identity of proofs, correctness criterion, multiplicative linear logic,
pomset logic, classical logic
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1 Introduction

1.1 The problem of the identity of proofs

Whenever we study mathematical objects within a certain mathematical theory, we normally know when two of
these objects are considered to be the same, i.e., are indistinguishable within the theory. For example in group
theory two groups are indistinguishable if they are isomorphic, in topology two spaces are considered the same
if they are homeomorphic, and in graph theory we have the notion of graph isomorphism. However, in proof
theory the situation is different. Although we are able to manipulate and transform proofs in various ways,
we have no satisfactory notion telling us when two proofs are the same, in the sense that they use the same
argument. The main reason is the lack of understanding of the essence of a proof, which in turn is caused by the
bureaucracy involved in the syntactic presentation of proofs. It is therefore essential to find new presentations
of proofs that are “syntax-free”, in the sense that they avoid “unnecessary bureaucracy”.

Finding such presentations is, of course, of utter importance for logic and proof theory in its own sake. We
can only speak of a real theory of proofs, if we are able to identify its objects. Apart from that, the problem
is of relevance not only for philosophy and mathematics, but also for computer science, because many logical
systems permit a close correspondence between proofs and programs. In the view of this so-called Curry-Howard
correspondence, the question of the identity of proofs becomes the question of the identity of programs, i.e.,
when are two programs just different presentations of the same algorithm. In other words, the fundamental
proof theoretical question on the nature of proofs is closely related to the fundamental question on the nature
of algorithms. In both cases the problem is finding the right presentation that is able to avoid unnecessary
syntactic bureaucracy.
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4 Lutz Straßburger

1.2 Historical overview

Interestingly, the problem of the identity of proofs can be considered older than proof theory itself. Already in
1900, when Hilbert was preparing his celebrated lecture, he considered to add a 24th problem, asking to develop
a theory of proofs that allows to compare proofs and provide criteria for judging which is the simplest proof of
a theorem.1 But only in the early 1920s, when Hilbert launched his famous program to give a formalization of
mathematics in an axiomatic form, together with a proof that this axiomatization is consistent, formal proof
theory as we know it today came into existence.

It was Gödel [Göd31], who first considered formal proofs as first-class citizens of the logical world, by
assigning a unique number to each of them. Even though this work destroyed Hilbert’s program, the idea of
treating proofs as mathematical objects—in the very same way as it is done with formulas—led eventually to our
modern understanding of formal proofs. Only a few years later, Gentzen [Gen34] provided the first structural
analysis of formal proofs and introduced methods of transforming them. His concept of cut elimination is still
the most central target of investigation in structural proof theory. But even after Gentzen’s work, the natural
question of asking for a notion of identity between proofs seemed silly because there are only two trivial answers:
two proofs are the same if they prove the same formula, or, two proofs are the same if they are syntactically
equal.

In [Pra71], Prawitz proposed the notion of normalization in natural deduction for determining the identity of
proofs: two proofs are the same (in the sense that they stand for the same argument) if and only if they have the
same normal form. The normalization process in natural deduction corresponds to Gentzen’s cut elimination in
the sequent calculus: All auxiliary lemmas are removed from the proof, which then uses only material that does
already appear in the formula to be proved. However, normalization does not respect any complexity issues
because it is hyper-exponential. This means in particular that all so-called speed-up theorems are ignored. In
fact, it can happen that a proof with cuts that fits a page is identified with a cut-free proof that exhausts the
size of the universe [Boo84]. Furthermore, it is probably quite difficult to convince a working mathematician of
the idea that a cunningly short proof using three clever lemmas should be the same as an extraordinarily long
proof that does not use these lemmas, even if it can be obtained from the first one via cut elimination. After
all, the main part of the mathematician’s work consists of finding the right auxiliary lemmas in the first place.

From the viewpoint of computer science the situation looks similar. Through the Curry-Howard correspon-
dence, formulas become types and proofs become programs. The normalization of the proof corresponds to the
computation of the program. Translating Prawitz’ idea into this setting means that two programs are the same
if and only if they have the same input-output-behavior, which completely disregards any reasonable complexity
property.

Independently, Lambek [Lam68, Lam69] proposed an idea for identifying proofs that is based on commuting
diagrams in categories seen as deductive systems: two proofs are the same, if they constitute the same morphism
in the category. For propositional intuitionistic logic on the one side, and Cartesian closed categories on the
other side, the two notions coincide. Similarly, by using *-autonomous categories, one can make the two notions
coincide for linear logic (see Section 2.8). But for classical logic, the logic of our every day reasoning, neither
notion has a commonly agreed definition (see Section 5).2

Unfortunately, the problem of identifying proofs has not received much attention since the work by Prawitz
and Lambek. Probably one of the reasons is that the fundamental problem of the bureaucracy involved in
deductive systems (in which formal proofs are carried out) seemed to be an insurmountable obstacle. In fact,
the problem seems so difficult, that it is widely considered to be “only philosophical”. However, behind the un-
deniable philosophical aspects, the problem clearly is a mathematical one and deserves a rigorous mathematical
treatment. The developments in logic, proof theory, and related fields within the last two decades suggest that
it is worthwhile to give it a new attack. In these notes we will see some ideas in that direction.

1.3 Proof nets

The term “proof net” has been coined by Girard [Gir87] for his “bureaucracy-free” presentation of proofs in
linear logic. He used the term “bureaucracy” for the phenomenon of “trivial rule permutations” in the sequent
calculus that do not change the essence of a proof.

In these notes, we will use the term “proof net” is a broader sense: A proof net is a graph theoretical or
geometric presentation that captures the essence of a proof and is free of any syntactic bureaucracy. Of course,

1This has been discovered by the historian Rüdiger Thiele while studying the original notebooks of Hilbert [Thi03]. The history
of proof theory might have taken a different development if Hilbert had included his 24th problem into the lecture.

2See also [Doš03] for a comparison of the two notions.
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Proof Nets and the Identity of Proofs 5

for making this precise, it is necessary to say what is meant by “the essence of a proof” and by “syntactic
bureaucracy”. This is far from clear and is the target of most of today’s research efforts on the problem of the
identity of proofs.

Although we use Girard’s terminology, some of the ideas and technical breakthroughs that we are going
to present are much older. The proof nets for unit-free multiplicative logic (that we use as playground for
introducing the theory) are essentially the coherence graphs of Eilenberg, Kelly, and Mac Lane [EK66, KM71].
For the case of classical logic, the same idea has been rediscovered under the name of logical flow-graph by Buss
[Bus91]. A very simplified version of proof nets for classical logic is based on Andrews’ matings [And76] and
Bibel’s connections [Bib81]. If the proof presentations by Andrews and Bibel (which are identical) are restricted
to “a linear version” we can (by using the right notion of correctness) get back Girard’s proof nets. But these
linear proof nets have a much better proof theoretical behavior than the nonlinear (i.e., classical) version. This
is the reason why we start our survey with proof nets for linear logic.

2 Unit-free multiplicative linear logic

Unit-free multiplicative linear logic (MLL−) is a very simple logic, that has nonetheless a well-developed theory
of proof nets.3 For this reason I will use MLL− to introduce the concept of proof nets.

2.1 Sequent calculus for MLL
−

When we define a logic in terms of a deductive system, we have to do two things. First, we have to define the
set of well-formed formulas, and second, we have to define the subset of derivable (or provable) formulas, which
is done via a set of inference rules4. Here is the necessary data for MLL−: The set of formulas is defined via

F ::= A | A ⊥ | F OF | F � F

where A = {a, b, c, . . .} is a countable set of propositional variables, and A ⊥ = {a⊥, b⊥, c⊥, . . .} are their duals.
In the following, we will call the elements of the set A ∪A ⊥ atoms.

The (linear) negation of a formula is defined inductively via

a⊥⊥ = a (A� B)⊥ = B⊥
OA⊥ (AO B)⊥ = B⊥

� A⊥

Note that we invert the order of the arguments when we take the negation of a binary connective. This is not
strictly necessary (since for the time being we stay in the commutative world) but will simplify our life when it
comes to drawing pictures of proof nets in later sections.

Here is a set of inference rules for MLL− given in the formalism of the sequent calculus:

id
⊢ A⊥, A

⊢ Γ, A, B, ∆
exch

⊢ Γ, B, A, ∆

⊢ Γ, A, B, ∆
O
⊢ Γ, AOB, ∆

⊢ Γ, A ⊢ B, ∆
�
⊢ Γ, A�B, ∆

⊢ Γ, A ⊢ A⊥, ∆
cut

⊢ Γ, ∆

(1)

Note that the sequent calculus needs (apart from the concept of formula) another kind of syntactic entity, called
sequent. Very often these are just sets or multisets of formulas. But depending on the logic in question, sequents
can be more sophisticated structures like lists or partial orders (or whatever) of formulas. For us, throughout
these lecture notes, sequents will be finite lists of formulas, separated by a comma, and written with a ⊢ at
the beginning. Usually they are denoted by Γ or ∆.

2.1.1 Example If A and B are two different formulas, then

⊢ A, B ⊢ A, B, A ⊢ A, A, B

are three different sequents.

We say a sequent ⊢ Γ is derivable (or provable) if there is a derivation (or proof tree) with ⊢ Γ as conclusion.
Defining this formally precise tends to be messy. Since the basic concept should be familiar for the reader, we
content ourselves here by giving some examples.

3One could even say the best developed theory of proof nets among all logics that are out there...
4To be precise, one should say axioms and inference rules. But we consider here axioms as special kinds of inference rules,

namely, those without premises.
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6 Lutz Straßburger

2.1.2 Example The two sequents ⊢ a⊥, a � b⊥, b � c⊥, c and ⊢ ((a O a⊥) � b) O b⊥ are provable:

id
⊢ a⊥, a

id
⊢ b⊥, b

id
⊢ c⊥, c

�
⊢ b⊥, b � c⊥, c

�
⊢ a⊥, a � b⊥, b � c⊥, c

id
⊢ a⊥, a

O
⊢ a O a⊥

id
⊢ b⊥, b

�
⊢ (a O a⊥) � b, b⊥

O
⊢ ((a O a⊥) � b) O b⊥

(2)

Of course it can happen that a sequent or a formula has more than one proof. This is where things get inter-
esting. At least for these course notes. Here are four different proofs of the sequent ⊢ a⊥

O(a � a), a O(a⊥
� a⊥) ,

three of them do not contain the cut-rule:

id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

O
⊢ a⊥

O(a � a), a⊥
id
⊢ a⊥, a

�
⊢ a⊥

O(a � a), a⊥
� a⊥, a

exch
⊢ a⊥

O(a � a), a, a⊥
� a⊥

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

(3)

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥

� a⊥, a
exch

⊢ a, a, a⊥
� a⊥

O
⊢ a, a O(a⊥

� a⊥)
�

⊢ a⊥, a � a, a O(a⊥
� a⊥)

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

(4)

id
⊢ a, a⊥

id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

exch
⊢ a⊥, a⊥, a � a

O
⊢ a⊥, a⊥

O(a � a)
�

⊢ a, a⊥
� a⊥, a⊥

O(a � a)
O
⊢ a O(a⊥

� a⊥), a⊥
O(a � a)

exch
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

(5)

and one does contain the cut-rule:

id
⊢ a⊥

O(a � a), (a⊥
O a⊥) � a

id
⊢ a⊥, a

�
⊢ a⊥

O(a � a), ((a⊥
O a⊥) � a) � a⊥, a

exch
⊢ a⊥

O(a � a), a, ((a⊥
O a⊥) � a) � a⊥

id
⊢ a⊥, a

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥

� a⊥, a
exch

⊢ a, a, a⊥
� a⊥

�
⊢ a⊥, a� a, a, a⊥

� a⊥

cut
⊢ a⊥, a� a, a, a⊥

� a⊥

O
⊢ a⊥

O(a � a), a, a⊥
� a⊥

exch
⊢ a, a⊥ O(a � a), a⊥

� a⊥
O
⊢ aO(a⊥

O(a � a)), a⊥ � a⊥
cut

⊢ a⊥ O(a � a), a, a⊥
� a⊥

O
⊢ a⊥ O(a � a), a O(a⊥

� a⊥)

(6)

INRIA



Proof Nets and the Identity of Proofs 7

Are these proofs really different? Or are they just different ways of writing down the same proof, i.e., they only
seem different because of the syntactic bureaucracy that the sequent calculus forces upon us? In the following,
we will try to give a sensible answer to this question, and proof nets are a way to do so.

2.1.3 Exercise Give at least two more sequent calculus proofs for the sequent

⊢ a⊥
O(a � a), a O(a⊥

� a⊥) .

2.2 From sequent calculus to proof nets, 1st way (sequent calculus rule based)

Although, morally, the concept of proof net should stand independently from any deductive formalism, the
proof nets introduced by Girard very much depend on the sequent calculus. The ideology is the following:

2.2.1 Ideology A proof net is a graph in which every vertex represents an inference rule application in the
corresponding sequent calculus proof, and every edge of the graph stands for a formula appearing in the proof.
A sequent calculus proof with conclusion ⊢ A1, A2, . . . , An , written as

��
��

��
��

��
�???????????

Π

⊢ A1, A2, . . . , An

is translated into a proof net with conclusions A1, A2, . . . , An, written as

π

A1 A3 . . . An

This is done inductively, rule instance by rule instance, as shown in Figure 1. Note that the exch-rule does
not exactly follow the ideology.

Let us see, what happens if we apply this translation to our four different proofs (3)–(6): The first two, i.e.,
(3) and (4), both yield the same proof net, namely

id id id

� �

O O

a⊥

a � a

a⊥ O(a � a)

a a

a⊥ a⊥

a

a⊥ � a⊥

a O(a⊥ � a⊥)

(7)
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8 Lutz Straßburger

id
⊢ A⊥, A

;

id

A⊥ A

��
��

��
??????

Π

⊢ Γ, A, B, ∆
exch

⊢ Γ, B, A, ∆

;

π

Γ ∆AB

��
��

��
??????

Π

⊢ Γ, A, B, ∆
O
⊢ Γ, AOB, ∆

;

π

O

Γ ∆

A B

A O B

��
��

��
??????

Π1

⊢ Γ, A
��

��
��

??????
Π2

⊢ B, ∆
�

⊢ Γ, A�B, ∆

;

π1 π2

�

Γ ∆

A B

A � B

��
��

��
??????

Π1

⊢ Γ, A
��

��
��

??????
Π2

⊢ A⊥, ∆
cut

⊢ Γ, ∆

;

π1 π2

cut
Γ ∆

A A⊥

Figure 1: From sequent calculus to proof nets (sequent calculus rule driven)

The proof in (5) yields a different proof net:

id

id id

� �

O O

a⊥

a � a

a⊥ O(a � a)

a

a

a⊥

a⊥

a

a⊥ � a⊥

a O(a⊥ � a⊥)

(8)
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Proof Nets and the Identity of Proofs 9

And for the proof in (6), we get id

id id id id id

cut � �

� O

O

cut O

a⊥ O(a � a)

(a⊥ O a⊥) � a a⊥

a⊥

((a⊥ O a⊥) � a) � a⊥ a O(a⊥ O(a � a))

a

a⊥

a⊥

a a⊥ a a a⊥

a � a

a⊥ O(a � a)

a⊥
� a⊥

a O(a⊥ � a⊥)

(9)

The proof nets for (3) and (4) are the same, and the ones for (5) and (6) are different. The big question is
now:

2.2.2 Big Question: Is it reasonable to conclude that the two proofs in (3) and (4) are the same, while the
one in (5) is different, and the one in (6) is even more different?

For finding an answer, consider the following two (partial) sequent calculus proofs.

��
��

��
??????

Π1

⊢ Γ, A
��

��
��

??????
Π2

⊢ B, ∆, C, D, Σ
�

⊢ Γ, A�B, ∆, C, D, Σ
O
⊢ Γ, A�B, ∆, C O D, Σ

vs.
��

��
��

??????
Π1

⊢ Γ, A

��
��

��
??????

Π2

⊢ B, ∆, C, D, Σ
O
⊢ B, ∆, C OD, Σ

�
⊢ Γ, A� B, ∆, C OD, Σ

(10)

It is certainly reasonable to say that the two proofs in (10) are essentially the same—whether we apply first the
�-rule or first the O-rule does not matter in this situation.

The phenomenon shown in (10) is called a trivial rule permutation. There are clearly more of them, and we
will not give a complete list here. The point to note here is that these trivial rule permutation are a type of
bureaucracy, which is typical for the sequent calculus, and which was one of Girard’s original motivations for
the introduction of proof nets. In fact, there is the following theorem:

2.2.3 Theorem Two sequent calculus proofs using the rules in (1) translate into the same proof net if and
only if they can be transformed into each other via trivial rule permutations.

We will not give a proof here because it won’t give any new insights. But to illustrate the main point,
consider the following three derivations

��
��

��
??????

⊢ B, C, B
O
⊢ B O C, B

exch
⊢ B, B OC

��
��

��
??????

⊢ B, C, B
exch

⊢ B, B, C
O
⊢ B, B O C

��
��

��
??????

⊢ B, C, B
exch

⊢ B, B, C
exch

⊢ B, B, C
O
⊢ B, B O C
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where B and C are arbitrary formulae, and the second instance of exch in the rightmost derivation exchanges
the two occurrences of B. Note that the leftmost and the middle derivation both consist of one instance of the
O-rule and one instance of exch, but are not a trivial rule permutation. When we “trivialy” permute the O-rule
and the exch-rule in the leftmost example, then we obtain the rightmost derivation, which contains one O-rule
and two exchanges.

Now the reader is invited to do the following exercise:

2.2.4 Exercise Find a sequence of trivial rule permutations that transforms the proof in (3) into the one
in (4). Convince yourselves that it is impossible to find a series of rule permutations that converts the proof in
(4) into the one in (5).

2.2.5 Exercise Give the proof nets for the two sequent proofs in (2).

2.2.6 Exercise Give the proof nets for the sequent proofs that you found in Exercise 2.1.3, and compare
them with (7), (8), and (9).

2.3 From sequent calculus to proof nets, 2nd way (coherence graph based)

Let us now discuss a second method for obtaining a proof net from a sequent calculus proof. Here the ideology
is:

2.3.1 Ideology A proof net consists of the formula tree/sequent forest of the conclusion of the proof, together
with some additional graph structure capturing the “essence” of the proof.

It turns out that for MLL− the “essence” of a proof is captured by the axiom links. More precisely, the proof
net is obtained by drawing the “flow-graph” (or “coherence-graph”) through the sequent calculus proof. This
means that we trace all atom occurrences through the proof. The idea is quite simple, but again, the formal
definitions tend to be messy. For these lecture notes, I decided not to give the detailed definitions but to show
the idea via examples. Figure 2 shows how it is done for the examples (3),(4), and (5).

2.3.2 Trivial Observation The flow-graphs drawn inside the proofs have crossings exactly at those places
where the exchange rule is applied.

Note that if the id-rule is applied only to atoms, and there is no cut-rule present, then we get (up to some
trivial change of notation) exactly the same proof nets as with the first method. The reason is that in MLL−

there is a one-to-one correspondence between the binary connectives O and � appearing in the sequent and
the instances of the inference rules for O and � appearing in the proof. Further, every atom occurrence in the
sequent is killed by an instance of the id-rule.

2.3.3 Exercise Convince yourselves that indeed the two methods always yield the same result for cut-free
proofs with only atomic instances of identity. Draw the flow graphs for the examples in (2) and the sequent
calculus proofs that you found in Exercise 2.1.3.

In Figure 3 we convert the example in (6) into a proof net via the flow-graph method. Note that this time
the result is different from the proof net in (9). There are two reasons. First, the non-atomic instance of the
id-rule, and second, the presence of the cut-rule.

The non-atomic identity rule is not a problem because an important fact about the sequent calculus system
in (1) is that the id-rule can be replaced by its atomic version without changing derivability:

id
⊢ A⊥, A

; atomic id
⊢ a⊥, a

This is done inductively by systematically replacing

id
⊢ A⊥

OB⊥, B �A
by

id
⊢ B⊥, B

id
⊢ A, A⊥

�
⊢ B⊥, B � A, A⊥

exch
⊢ B⊥, A⊥, B �A

exch
⊢ A⊥, B⊥, B �A

O
⊢ A⊥

OB⊥, B � A

(11)
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id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

O
⊢ a⊥ O(a � a), a⊥

id
⊢ a⊥, a

�
⊢ a⊥ O(a � a), a⊥ � a⊥, a

exch
⊢ a⊥ O(a � a), a, a⊥ � a⊥

O
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥ � a⊥, a

exch
⊢ a, a, a⊥ � a⊥

O
⊢ a, a O(a⊥ � a⊥)

�
⊢ a⊥, a � a, a O(a⊥ � a⊥)

O
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

id
⊢ a, a⊥

id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

exch
⊢ a⊥, a⊥, a � a

O
⊢ a⊥, a⊥ O(a � a)

�
⊢ a, a⊥ � a⊥, a⊥ O(a � a)

O
⊢ a O(a⊥ � a⊥), a⊥ O(a � a)

exch
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

↓ ↓ ↓

id
⊢ ⊥,

id
⊢ , ⊥

�
⊢ ⊥, � , ⊥

O
⊢ ⊥

O( � ), ⊥
id

⊢ ⊥,
�

⊢ ⊥ O( � ), ⊥ � ⊥,
exch

⊢ ⊥ O( � ), , ⊥ � ⊥

O
⊢ ⊥ O( � ), O( ⊥ � ⊥)

id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

O
⊢ a⊥

O(a � a), a⊥
id

⊢ a⊥, a
�

⊢ a⊥ O(a � a), a⊥ � a⊥, a
exch

⊢ a⊥ O(a � a), a, a⊥ � a⊥

O
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

id
⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥

�
⊥,

exch
⊢ , , ⊥

�
⊥

O
⊢ , O( ⊥ � ⊥)

�
⊢ ⊥, � , O( ⊥ � ⊥)

O
⊢ ⊥ O( � ), O( ⊥ � ⊥)

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥

� a⊥, a
exch

⊢ a, a, a⊥
� a⊥

O
⊢ a, a O(a⊥ � a⊥)

�
⊢ a⊥, a � a, a O(a⊥ � a⊥)

O
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

id
⊢ , ⊥

id
⊢ ⊥,

id
⊢ , ⊥

�
⊢ ⊥, � , ⊥

exch
⊢ ⊥, ⊥, �

O
⊢ ⊥, ⊥

O( � )
�

⊢ , ⊥ � ⊥, ⊥ O( � )
O

⊢ O( ⊥ � ⊥), ⊥ O( � )
exch

⊢ ⊥ O( � ), O( ⊥ � ⊥)

id
⊢ a, a⊥

id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

exch
⊢ a⊥, a⊥, a � a

O
⊢ a⊥, a⊥

O(a � a)
�

⊢ a, a⊥ � a⊥, a⊥ O(a � a)
O

⊢ a O(a⊥ � a⊥), a⊥ O(a � a)
exch

⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

↓ ↓ ↓

id
⊢ ⊥,

id
⊢ , ⊥

�
⊢ ⊥, � , ⊥

O
⊢ ⊥

O( � ), ⊥
id

⊢ ⊥,
�

⊢ ⊥
O( � ), ⊥

�
⊥,

exch
⊢ ⊥

O( � ), , ⊥
�

⊥

O
⊢ ⊥

O( � ), O( ⊥
�

⊥)

id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

O
⊢ a⊥

O(a � a), a⊥
id

⊢ a⊥, a
�

⊢ a⊥
O(a � a), a⊥

� a⊥, a
exch

⊢ a⊥
O(a � a), a, a⊥

� a⊥

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

id
⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥ � ⊥,

exch
⊢ , , ⊥

�
⊥

O
⊢ , O( ⊥

�
⊥)

�
⊢ ⊥, � , O( ⊥

�
⊥)

O
⊢ ⊥

O( � ), O( ⊥
�

⊥)

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥ � a⊥, a

exch
⊢ a, a, a⊥

� a⊥

O
⊢ a, a O(a⊥

� a⊥)
�

⊢ a⊥, a � a, a O(a⊥
� a⊥)

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

id
⊢ , ⊥

id
⊢ ⊥,

id
⊢ , ⊥

�
⊢ ⊥, � , ⊥

exch
⊢ ⊥, ⊥, �

O
⊢ ⊥, ⊥

O( � )
�

⊢ , ⊥
�

⊥, ⊥
O( � )

O
⊢ O( ⊥

�
⊥), ⊥

O( � )
exch

⊢ ⊥
O( � ), O( ⊥

�
⊥)

id
⊢ a, a⊥

id
⊢ a⊥, a

id
⊢ a, a⊥

�
⊢ a⊥, a � a, a⊥

exch
⊢ a⊥, a⊥, a � a

O
⊢ a⊥, a⊥

O(a � a)
�

⊢ a, a⊥
� a⊥, a⊥

O(a � a)
O

⊢ a O(a⊥
� a⊥), a⊥

O(a � a)
exch

⊢ a⊥
O(a � a), a O(a⊥

� a⊥)

↓ ↓ ↓

a⊥ a a a a⊥ a⊥

� �

O O

a⊥ a a a a⊥ a⊥

� �

O O

a⊥ a a a a⊥ a⊥

� �

O O

Figure 2: From sequent calculus to proof nets via coherence graphs

2.3.4 Exercise Reduce in (6) the leftmost instance of id to atomic version. And draw the proof net according
to the method in Figure 1. What does change compared to the net in (9)?

For dealing with cuts (without forgetting them!), we can prevent the flow-graph from flowing through the
cut, i.e., by keeping the information that there is a cut. What is meant by this is shown in Figure 4.

2.3.5 Exercise Compare the net obtained in Figure 4 with your result of Exercise 2.3.4.

Now, we indeed get the same result with both methods, and it might seem foolish to emphasize the different
nature of the two methods if they yield the same notion of proof net. The point to make here is that this is
the case only for MLL−, which is a very fortunate coincidence. For any other logic, which is more sophisticated,
like classical logic or larger fragments of linear logic, the two methods yield different notions of proof nets. We
will come back to this in later sections when we discuss these logics.

2.4 From deep inference to proof nets

The flow graph method has the advantage of being independent from the formalism that is used for describing
the deductive system for the logic. We will now repeat exactly the same exercise we did for the sequent calculus
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id
⊢ a⊥

O(a � a), (a⊥
O a⊥) � a

id
⊢ a⊥, a

�
⊢ a⊥

O(a � a), ((a⊥
O a⊥) � a) � a⊥, a

exch
⊢ a⊥

O(a � a), a, ((a⊥
O a⊥) � a) � a⊥

id
⊢ a⊥, a

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥ � a⊥, a

exch
⊢ a, a, a⊥ � a⊥

�
⊢ a⊥, a � a, a, a⊥ � a⊥

cut
⊢ a⊥ , a � a, a, a⊥

� a⊥

O
⊢ a⊥

O(a � a), a, a⊥
� a⊥

exch
⊢ a, a⊥

O(a � a), a⊥
� a⊥

O
⊢ a O(a⊥

O(a � a)), a⊥
� a⊥

cut
⊢ a⊥

O(a � a), a , a⊥
� a⊥

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

↓

id
⊢ ⊥

O( � ), ( ⊥
O

⊥) �
id

⊢ ⊥,
�

⊢ ⊥ O( � ), (( ⊥ O ⊥) � ) � ⊥,
exch

⊢ ⊥ O( � ), , (( ⊥ O ⊥) � ) � ⊥

id
⊢ ⊥,

id
⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥

�
⊥,

exch
⊢ , , ⊥

�
⊥

�
⊢ ⊥, � , , ⊥

�
⊥

cut
⊢ ⊥ , � , , ⊥

�
⊥

O
⊢ ⊥

O( � ), , ⊥
�

⊥

exch
⊢ , ⊥ O( � ), ⊥ � ⊥

O
⊢ O( ⊥ O( � )), ⊥ � ⊥

cut
⊢ ⊥ O( � ), , ⊥ � ⊥

O
⊢ ⊥ O( � ), O( ⊥ � ⊥)

id
⊢ a⊥

O(a � a), (a⊥
O a⊥) � a

id
⊢ a⊥, a

�
⊢ a⊥ O(a � a), ((a⊥ O a⊥) � a) � a⊥, a

exch
⊢ a⊥ O(a � a), a, ((a⊥ O a⊥) � a) � a⊥

id
⊢ a⊥, a

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥

� a⊥, a
exch

⊢ a, a, a⊥
� a⊥

�
⊢ a⊥, a � a, a, a⊥

� a⊥

cut
⊢ a⊥ , a � a, a, a⊥

� a⊥

O
⊢ a⊥

O(a � a), a, a⊥
� a⊥

exch
⊢ a, a⊥ O(a � a), a⊥ � a⊥

O
⊢ a O(a⊥ O(a � a)), a⊥ � a⊥

cut
⊢ a⊥ O(a � a), a , a⊥ � a⊥

O
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

↓

id
⊢ ⊥ O( � ), ( ⊥ O ⊥) �

id
⊢ ⊥,

�
⊢ ⊥ O( � ), (( ⊥ O ⊥) � ) � ⊥,

exch
⊢ ⊥ O( � ), , (( ⊥ O ⊥) � ) � ⊥

id
⊢ ⊥,

id
⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥

�
⊥,

exch
⊢ , , ⊥ � ⊥

�
⊢ ⊥, � , , ⊥ � ⊥

cut
⊢ ⊥ , � , , ⊥ � ⊥

O
⊢ ⊥ O( � ), , ⊥ � ⊥

exch
⊢ , ⊥ O( � ), ⊥ � ⊥

O
⊢ O( ⊥ O( � )), ⊥ � ⊥

cut
⊢ ⊥ O( � ), , ⊥ � ⊥

O
⊢ ⊥

O( � ), O( ⊥
�

⊥)

id
⊢ a⊥ O(a � a), (a⊥ O a⊥) � a

id
⊢ a⊥, a

�
⊢ a⊥ O(a � a), ((a⊥ O a⊥) � a) � a⊥, a

exch
⊢ a⊥ O(a � a), a, ((a⊥ O a⊥) � a) � a⊥

id
⊢ a⊥, a

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥

� a⊥, a
exch

⊢ a, a, a⊥ � a⊥

�
⊢ a⊥, a � a, a, a⊥ � a⊥

cut
⊢ a⊥ , a � a, a, a⊥ � a⊥

O
⊢ a⊥ O(a � a), a, a⊥ � a⊥

exch
⊢ a, a⊥ O(a � a), a⊥ � a⊥

O
⊢ a O(a⊥ O(a � a)), a⊥ � a⊥

cut
⊢ a⊥ O(a � a), a , a⊥ � a⊥

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

↓

a⊥ a a a a⊥ a⊥

� �

O O

Figure 3: From sequent calculus to proof nets via coherence graphs

system for MLL− in the previous section. But this time we start from a different deductive system for MLL−,
which is given in the formalism of calculus of structures. It is shown in Figure 5, where S{ } stands for an
arbitrary (positive) formula context. Because of the possibility of applying inference rules deep inside any
context, the name “deep inference” is used.

Because of this possibility and because we do not have units in the system, we need two variants of the
i↓-rule (doing the same job as the id-rule in the sequent calculus). Similarly, the cut, i.e., the rule i↑ comes
in two versions. This also means, that in principle a derivation could have nothing as conclusion. Then we
do not have a proof, but a refutation. This leads to an important property of the system in Figure 5, namely
its up-down symmetry. For every rule there is a dual co-rule, which is obtained by negating and exchanging
premise and conclusion. This flipping around can then be done also for whole derivations. A derivation from A
to B becomes a derivation from B⊥ to A⊥, and a proof of a formula A becomes a refutation of A⊥.
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id
⊢ ⊥ O( � ), ( ⊥ O ⊥) �

id
⊢ ⊥,

�
⊢ ⊥ O( � ), (( ⊥ O ⊥) � ) � ⊥,

exch
⊢ ⊥

O( � ), , (( ⊥
O

⊥) � ) �
⊥

id
⊢ ⊥,

id
⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥ � ⊥,

exch
⊢ , , ⊥ � ⊥

�
⊢ ⊥, � , , ⊥ � ⊥

cut
⊢ ⊥ , � , , ⊥ � ⊥

O
⊢ ⊥ O( � ), , ⊥ � ⊥

exch
⊢ , ⊥ O( � ), ⊥ � ⊥

O
⊢ O( ⊥

O( � )), ⊥
�

⊥

cut
⊢ ⊥

O( � ), , ⊥
�

⊥

O
⊢ ⊥

O( � ), O( ⊥
�

⊥)

id
⊢ a⊥ O(a � a), (a⊥ O a⊥) � a

id
⊢ a⊥, a

�
⊢ a⊥ O(a � a), ((a⊥ O a⊥) � a) � a⊥, a

exch
⊢ a⊥

O(a � a), a, ((a⊥
O a⊥) � a) � a⊥

id
⊢ a⊥, a

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥ � a⊥, a

exch
⊢ a, a, a⊥ � a⊥

�
⊢ a⊥, a � a, a, a⊥ � a⊥

cut
⊢ a⊥ , a � a, a, a⊥ � a⊥

O
⊢ a⊥ O(a � a), a, a⊥ � a⊥

exch
⊢ a, a⊥ O(a � a), a⊥ � a⊥

O
⊢ a O(a⊥

O(a � a)), a⊥
� a⊥

cut
⊢ a⊥

O(a � a), a , a⊥
� a⊥

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

↓

id
⊢ ⊥ O( � ), ( ⊥ O ⊥) �

id
⊢ ⊥,

�
⊢ ⊥ O( � ), (( ⊥ O ⊥) � ) � ⊥,

exch
⊢ ⊥

O( � ), , (( ⊥
O

⊥) � ) �
⊥

id
⊢ ⊥,

id
⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥ � ⊥,

exch
⊢ , , ⊥ � ⊥

�
⊢ ⊥, � , , ⊥ � ⊥

cut
⊢ ⊥ , � , , ⊥ � ⊥

O
⊢ ⊥ O( � ), , ⊥ � ⊥

exch
⊢ , ⊥ O( � ), ⊥ � ⊥

O
⊢ O( ⊥

O( � )), ⊥
�

⊥

cut
⊢ ⊥

O( � ), , ⊥
�

⊥

O
⊢ ⊥

O( � ), O( ⊥
�

⊥)

id
⊢ a⊥ O(a � a), (a⊥ O a⊥) � a

id
⊢ a⊥, a

�
⊢ a⊥ O(a � a), ((a⊥ O a⊥) � a) � a⊥, a

exch
⊢ a⊥

O(a � a), a, ((a⊥
O a⊥) � a) � a⊥

id
⊢ a⊥, a

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥ � a⊥, a

exch
⊢ a, a, a⊥ � a⊥

�
⊢ a⊥, a � a, a, a⊥ � a⊥

cut
⊢ a⊥ , a � a, a, a⊥ � a⊥

O
⊢ a⊥ O(a � a), a, a⊥ � a⊥

exch
⊢ a, a⊥ O(a � a), a⊥ � a⊥

O
⊢ a O(a⊥

O(a � a)), a⊥
� a⊥

cut
⊢ a⊥

O(a � a), a , a⊥
� a⊥

O
⊢ a⊥

O(a � a), a O(a⊥
� a⊥)

↓

a⊥ a a a a⊥ a⊥ a a⊥ a a⊥ a a⊥ a a a⊥ a⊥

� O � �

O � O

� O

O

Figure 4: From sequent calculus to proof nets with cuts via coherence graphs

The s-rule (called switch) is dual to itself. With the help of commutativity and associativity, i.e., the rule
σ↓, σ↑, α↓, and α↑ we can obtain the following variants that we also call switch:

S{(AOB) � C}
s

S{AO(B � C)}

S{B �(AOC)}
s

S{AO(B �C)}

S{(AOC) �B}
s

S{(A�B) OC}
(12)

Similarly, with the help of σ↓ and σ↑, we can get two other versions if i↓ and i↑:

S{B}
i↓

S{B �(A⊥
OA)}

and
S{(A�A⊥) OB}

i↑
S{B}

(13)

Here are three examples of derivations in the calculus of structures:

i↓
b O b⊥

i↓
((a O a⊥) � b) O b⊥

(b⊥ O c⊥) � c
s

b⊥ O(c⊥ � c)
i↑

b⊥
i↓

b⊥ �(a O a⊥)
s

aO(b⊥ � a⊥)

(a O b) � a⊥

s
(a � a⊥) O b

i↑
b

i↓
(c⊥ O c) � b

s
c⊥ O(c � b)

(14)
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14 Lutz Straßburger

i↓
A⊥

O A

A�A⊥

i↑

S{B}
i↓

S{(A⊥
OA) � B}

S{B O(A� A⊥)}
i↑

S{B}

S{AOB}
σ↓

S{B OA}

S{A�B}
σ↑

S{B � A}

S{AO(B O C)}
α↓

S{(AOB) O C}

S{A�(B �C)}
α↑

S{(A�B) �C}

S{A�(B OC)}
s

S{(A�B) O C}

Figure 5: A system for MLL− in the calculus of structures

The last two are dual to each other.
In order to go on, we have to make sure that the deductive system shown in Figure 5 speaks about the same

logic, as the one shown in (1). This does the following theorem:

2.4.1 Theorem Let A be an MLL− formula. There is a sequent calculus proof of A, denoted by

��
��

��
��

��
�???????????

Π

⊢ A

in the system shown in (1), if and only if there is a proof of A in the calculus of structures denoted by

−
‖
‖ Π̃

A

in the system shown in Figure 5.

Proof: For going from sequent calculus to calculus of structures, we show that every rule in (1) can be simulated
by the rules in Figure 5. The only interesting cases are � and cut, which are simulated as follows:

(Γ O A) �(B O ∆)
s

Γ O(A�(B O ∆))
s

Γ O(A�B) O ∆

and

(Γ OA) �(A⊥
O ∆)

s
Γ O(A�(A⊥

O ∆))
s

Γ O(A� A⊥) O ∆
i↑

Γ O ∆

For the rules O and exch it is trivial. Now we can mimic the sequent calculus proof such that different branches
in the proof tree, say

⊢ Γ1 ⊢ Γ2 . . . ⊢ Γn

are kept together in a single formula
Γ1 � Γ2 � · · ·� Γn

In the end, we have for every instance of id in the sequent proof tree and instance of i↓ in the calculus of
structures proof.

INRIA



Proof Nets and the Identity of Proofs 15

For the other direction, we first have to show for every rule

S{A}
r
S{B}

in Figure 5, the sequent ⊢ A⊥, B is provable with the rules in (1). Here we do it only for the switch rule:

id
⊢ C, C⊥

id
⊢ A⊥, A

id
⊢ B, B⊥

�
⊢ A⊥, A� B, B⊥

exch
⊢ A⊥, B⊥, A�B

exch
⊢ B⊥, A⊥, A�B

�
⊢ C, C⊥

� B⊥, A⊥, A�B
O
⊢ C, (C⊥

�B⊥) O A⊥, A�B
exch

⊢ (C⊥
�B⊥) OA⊥, C, A� B

exch
⊢ (C⊥

�B⊥) O A⊥, A�B, C
O
⊢ (C⊥

�B⊥) O A⊥, (A� B) OC

for the other rules it is similar. Now we show that in fact the sequent ⊢ S{A}⊥, S{B} (for every positive
context S{ }) can be proved with the rules in (1). This is done by structural induction on S{ }. If S{ } = { },
we are done. If S{ } = C �S′{ } for some formula C and some (smaller) context S′{ }, then we have

id
⊢ C⊥, C

��
��

��
??????

Π′

⊢ S′{B}, S′{A}⊥
�

⊢ C⊥, C � S′{B}, S′{A}⊥
exch

⊢ C⊥, S′{A}⊥, C �S′{B}
exch

⊢ S′{A}⊥, C⊥, C �S′{B}
O
⊢ S′{A}⊥ OC⊥, C � S′{B}

where Π′ exists by induction hypothesis. The other cases, i.e., S{ } = C O S′{ }, S{ } = S′{ }�C, and
S{ } = S′{ }OC, are similar. Now we are ready to simulate the whole derivation. We proceed by induction
om the length of Π̃ (i.e., the number of rule instances). If the length is 1, then it must be an instance of i↓, and
we get a sequent calculus proof with id. Now assume the length of Π̃ is > 1, i.e., Π̃ is of shape

−
‖
‖ Π̃′

S{A}
r
S{B}

Then we can build

��
��

��
??????

Π′

⊢ S{A}
��

��
��

??????
Π′′

⊢ S{A}⊥, S{B}
cut

⊢ S{B}

where Π′ exists by induction hypothesis and Π′′ by what has been said above. ⊓⊔

2.4.2 Corollary Let A1, A2, . . . , An be a list of MLL− formulas. There is a sequent calculus derivation

��
��

��
��

��
�???????????

Π

⊢ A1, A2, . . . , An

RR n° 6013



16 Lutz Straßburger

id
a O a⊥

id
a O(a⊥ �(a O a⊥))

s
a O a O(a⊥ � a⊥)

id
((a⊥ O a) � a) O a O(a⊥ � a⊥)

s
a⊥ O(a � a) O a O(a⊥ � a⊥)

id
a⊥ O a

id
a⊥ O(a �(a O a⊥))

s
a⊥ O(a � a) O a⊥

id
a⊥ O(a � a) O(a⊥ �(a O a⊥))

s
a⊥ O(a � a) O a O(a⊥ � a⊥)

id
a⊥ O a

id
a⊥ O((a O a⊥) � a)

s
a⊥ O(a � a) O a⊥

id
a⊥ O(a � a) O((a O a⊥) � a⊥)

s
a⊥ O(a � a) O a O(a⊥ � a⊥)

↓ ↓ ↓

id
O ⊥

id
O( ⊥

�( O
⊥))

s
O O( ⊥

�
⊥)

id
(( ⊥

O ) � ) O O( ⊥
�

⊥)
s

⊥
O( � ) O O( ⊥

�
⊥)

id
a O a⊥

id
a O(a⊥

�(a O a⊥))
s

a O a O(a⊥
� a⊥)

id
((a⊥

O a) � a) O a O(a⊥
� a⊥)

s
a⊥

O(a � a) O a O(a⊥
� a⊥)

id
⊥ O

id
⊥

O( �( O
⊥))

s
⊥

O( � ) O
⊥

id
⊥

O( � ) O( ⊥
�( O

⊥))
s

⊥
O( � ) O O( ⊥

�
⊥)

id
a⊥ O a

id
a⊥

O(a �(a O a⊥))
s

a⊥
O(a � a) O a⊥

id
a⊥

O(a � a) O(a⊥
�(a O a⊥))

s
a⊥

O(a � a) O a O(a⊥
� a⊥)

id
⊥ O

id
⊥

O(( O
⊥) � )

s
⊥

O( � ) O
⊥

id
⊥

O( � ) O(( O
⊥) �

⊥)
s

⊥
O( � ) O O( ⊥

�
⊥)

id
a⊥ O a

id
a⊥

O((a O a⊥) � a)
s

a⊥
O(a � a) O a⊥

id
a⊥

O(a � a) O((a O a⊥) � a⊥)
s

a⊥
O(a � a) O a O(a⊥

� a⊥)

↓ ↓ ↓

id
O ⊥

id
O( ⊥ �( O ⊥))

s
O O( ⊥ � ⊥)

id
(( ⊥ O ) � ) O O( ⊥ � ⊥)

s
⊥ O( � ) O O( ⊥ � ⊥)

id
a O a⊥

id
a O(a⊥ �(a O a⊥))

s
a O a O(a⊥ � a⊥)

id
((a⊥ O a) � a) O a O(a⊥ � a⊥)

s
a⊥ O(a � a) O a O(a⊥ � a⊥)

id
⊥ O

id
⊥ O( �( O ⊥))

s
⊥ O( � ) O ⊥

id
⊥ O( � ) O( ⊥ �( O ⊥))

s
⊥ O( � ) O O( ⊥ � ⊥)

id
a⊥ O a

id
a⊥ O(a �(a O a⊥))

s
a⊥ O(a � a) O a⊥

id
a⊥ O(a � a) O(a⊥ �(a O a⊥))

s
a⊥ O(a � a) O a O(a⊥ � a⊥)

id
⊥ O

id
⊥ O(( O ⊥) � )

s
⊥ O( � ) O ⊥

id
⊥ O( � ) O(( O ⊥) � ⊥)

s
⊥ O( � ) O O( ⊥ � ⊥)

id
a⊥ O a

id
a⊥ O((a O a⊥) � a)

s
a⊥ O(a � a) O a⊥

id
a⊥ O(a � a) O((a O a⊥) � a⊥)

s
a⊥ O(a � a) O a O(a⊥ � a⊥)

↓ ↓ ↓

a⊥ a a a a⊥ a⊥

� �

O O

a⊥ a a a a⊥ a⊥

� �

O O

a⊥ a a a a⊥ a⊥

� �

O O

Figure 6: From calculus of structures to proof nets

if and only if there is a derivation
−
‖
‖ Π̃

A1 OA2 O · · ·O An

in the calculus of structures.

Let us now see how derivations in the calculus of structures are translated into proof nets. The method is
exactly the same as in the previous section: We simply trace the atoms through the derivation. Figures 6–8
show the calculus of structures version of Figures 2–4.

2.4.3 Trivial Observation We get the same proof nets as before.

2.4.4 Subtle Observation In Figures 6 and 8 the flow-graphs drawn inside the proofs have the same
crossings as the resulting proof nets, while in Figures 2 and 4, the flow-graphs drawn inside the proofs have
more (seemingly unnecessary) crossings.
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i↓
a⊥

O(a � a) O((a⊥
O a⊥) � a)

i↓
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a O(a⊥

� a⊥)))
s

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a)) O(a⊥
� a⊥)

i↓
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O((a⊥

O a) � a))) O(a⊥
� a⊥)

s
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a⊥

O(a � a))) O(a⊥
� a⊥)

i↓
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O((a⊥ O a) � a⊥) O(a � a))) O(a⊥ � a⊥)

s
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a⊥ O(a � a⊥) O(a � a))) O(a⊥ � a⊥)

i↑
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a⊥ O (a � a))) O(a⊥ � a⊥)

i↓
a⊥ O(a � a) O((((a⊥ O a⊥) � a) �(a O a⊥)) �(a O a⊥ O(a � a))) O(a⊥ � a⊥)

s
a⊥ O(a � a) O a O((((a⊥ O a⊥) � a) � a⊥) � (a O(a⊥ O(a � a)))) O(a⊥ � a⊥)

i↑
a⊥ O(a � a) O a O (a⊥ � a⊥)

↓

i↓
⊥ O( � ) O(( ⊥ O ⊥) � )

i↓
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O O( ⊥ � ⊥)))

s
⊥

O( � ) O((( ⊥
O

⊥) � ) �( O )) O( ⊥
�

⊥)
i↓

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O(( ⊥

O ) � ))) O( ⊥
�

⊥)
s

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O( � ))) O( ⊥

�
⊥)

i↓
⊥

O( � ) O((( ⊥
O

⊥) � ) �( O(( ⊥
O ) �

⊥) O( � ))) O( ⊥
�

⊥)
s

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O( �

⊥) O( � ))) O( ⊥
�

⊥)
i↑

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O ( � ))) O( ⊥

�
⊥)

i↓
⊥ O( � ) O(((( ⊥ O ⊥) � ) �( O ⊥)) �( O ⊥ O( � ))) O( ⊥ � ⊥)

s
⊥ O( � ) O O(((( ⊥ O ⊥) � ) � ⊥) � ( O( ⊥ O( � )))) O( ⊥ � ⊥)

i↑
⊥ O( � ) O O ( ⊥ � ⊥)

i↓
a⊥ O(a � a) O((a⊥ O a⊥) � a)

i↓
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a O(a⊥ � a⊥)))

s
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a)) O(a⊥

� a⊥)
i↓

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O((a⊥
O a) � a))) O(a⊥

� a⊥)
s

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a⊥
O(a � a))) O(a⊥

� a⊥)
i↓

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O((a⊥
O a) � a⊥) O(a � a))) O(a⊥

� a⊥)
s

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a⊥
O(a � a⊥) O(a � a))) O(a⊥

� a⊥)
i↑

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a⊥
O (a � a))) O(a⊥

� a⊥)
i↓

a⊥ O(a � a) O((((a⊥ O a⊥) � a) �(a O a⊥)) �(a O a⊥ O(a � a))) O(a⊥ � a⊥)
s

a⊥ O(a � a) O a O((((a⊥ O a⊥) � a) � a⊥) � (a O(a⊥ O(a � a)))) O(a⊥ � a⊥)
i↑

a⊥ O(a � a) O a O (a⊥ � a⊥)

↓

i↓
⊥ O( � ) O(( ⊥ O ⊥) � )

i↓
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O O( ⊥ � ⊥)))

s
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O )) O( ⊥ � ⊥)

i↓
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O(( ⊥ O ) � ))) O( ⊥ � ⊥)

s
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O ⊥ O( � ))) O( ⊥ � ⊥)

i↓
⊥

O( � ) O((( ⊥
O

⊥) � ) �( O(( ⊥
O ) �

⊥) O( � ))) O( ⊥
�

⊥)
s

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O( �

⊥) O( � ))) O( ⊥
�

⊥)
i↑

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O ( � ))) O( ⊥

�
⊥)

i↓
⊥

O( � ) O(((( ⊥
O

⊥) � ) �( O
⊥)) �( O

⊥
O( � ))) O( ⊥

�
⊥)

s
⊥

O( � ) O O(((( ⊥
O

⊥) � ) �
⊥) � ( O( ⊥

O( � )))) O( ⊥
�

⊥)
i↑

⊥ O( � ) O O ( ⊥ � ⊥)

i↓
a⊥ O(a � a) O((a⊥ O a⊥) � a)

i↓
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a O(a⊥ � a⊥)))

s
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a)) O(a⊥ � a⊥)

i↓
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O((a⊥ O a) � a))) O(a⊥ � a⊥)

s
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a⊥ O(a � a))) O(a⊥ � a⊥)

i↓
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O((a⊥

O a) � a⊥) O(a � a))) O(a⊥
� a⊥)

s
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a⊥

O(a � a⊥) O(a � a))) O(a⊥
� a⊥)

i↑
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a⊥

O (a � a))) O(a⊥
� a⊥)

i↓
a⊥

O(a � a) O((((a⊥
O a⊥) � a) �(a O a⊥)) �(a O a⊥

O(a � a))) O(a⊥
� a⊥)

s
a⊥

O(a � a) O a O((((a⊥
O a⊥) � a) � a⊥) � (a O(a⊥

O(a � a)))) O(a⊥
� a⊥)

i↑
a⊥ O(a � a) O a O (a⊥ � a⊥)

↓

a⊥ a a a a⊥ a⊥

� �

O O

Figure 7: From calculus of structures to proof nets
2.5 Correctness criteria

We have seen how we can obtain a proof net out of a formal proof in some deductive system. But what about
the other way around? Suppose we have such a graph that looks like a proof net. Can we decide whether it
really comes from a proof, and if so, can we recover this proof? Of course the answer is trivially yes because the
graph is finite and we just need to check all proofs of that size. The interesting question is therefore, whether
we can do it efficiently.
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i↓
⊥

O( � ) O(( ⊥
O

⊥) � )
i↓

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O O( ⊥

�
⊥)))

s
⊥

O( � ) O((( ⊥
O

⊥) � ) �( O )) O( ⊥
�

⊥)
i↓

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O(( ⊥

O ) � ))) O( ⊥
�

⊥)
s

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O( � ))) O( ⊥

�
⊥)

i↓
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O(( ⊥ O ) � ⊥) O( � ))) O( ⊥ � ⊥)

s
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O ⊥ O( � ⊥) O( � ))) O( ⊥ � ⊥)

i↑
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O ⊥ O ( � ))) O( ⊥ � ⊥)

i↓
⊥ O( � ) O(((( ⊥ O ⊥) � ) �( O ⊥)) �( O ⊥ O( � ))) O( ⊥ � ⊥)

s
⊥ O( � ) O O(((( ⊥ O ⊥) � ) � ⊥) � ( O( ⊥ O( � )))) O( ⊥ � ⊥)

i↑
⊥ O( � ) O O ( ⊥ � ⊥)

i↓
a⊥

O(a � a) O((a⊥
O a⊥) � a)

i↓
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a O(a⊥

� a⊥)))
s

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a)) O(a⊥
� a⊥)

i↓
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O((a⊥

O a) � a))) O(a⊥
� a⊥)

s
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a⊥

O(a � a))) O(a⊥
� a⊥)

i↓
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O((a⊥ O a) � a⊥) O(a � a))) O(a⊥ � a⊥)

s
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a⊥ O(a � a⊥) O(a � a))) O(a⊥ � a⊥)

i↑
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a⊥ O (a � a))) O(a⊥ � a⊥)

i↓
a⊥ O(a � a) O((((a⊥ O a⊥) � a) �(a O a⊥)) �(a O a⊥ O(a � a))) O(a⊥ � a⊥)

s
a⊥ O(a � a) O a O((((a⊥ O a⊥) � a) � a⊥) � (a O(a⊥ O(a � a)))) O(a⊥ � a⊥)

i↑
a⊥ O(a � a) O a O (a⊥ � a⊥)

↓

i↓
⊥ O( � ) O(( ⊥ O ⊥) � )

i↓
⊥ O( � ) O((( ⊥ O ⊥) � ) �( O O( ⊥ � ⊥)))

s
⊥

O( � ) O((( ⊥
O

⊥) � ) �( O )) O( ⊥
�

⊥)
i↓

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O(( ⊥

O ) � ))) O( ⊥
�

⊥)
s

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O( � ))) O( ⊥

�
⊥)

i↓
⊥

O( � ) O((( ⊥
O

⊥) � ) �( O(( ⊥
O ) �

⊥) O( � ))) O( ⊥
�

⊥)
s

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O( �

⊥) O( � ))) O( ⊥
�

⊥)
i↑

⊥
O( � ) O((( ⊥

O
⊥) � ) �( O

⊥
O ( � ))) O( ⊥

�
⊥)

i↓
⊥ O( � ) O(((( ⊥ O ⊥) � ) �( O ⊥)) �( O ⊥ O( � ))) O( ⊥ � ⊥)

s
⊥ O( � ) O O(((( ⊥ O ⊥) � ) � ⊥) � ( O( ⊥ O( � )))) O( ⊥ � ⊥)

i↑
⊥ O( � ) O O ( ⊥ � ⊥)

i↓
a⊥ O(a � a) O((a⊥ O a⊥) � a)

i↓
a⊥ O(a � a) O(((a⊥ O a⊥) � a) �(a O a O(a⊥ � a⊥)))

s
a⊥

O(a � a) O(((a⊥
O a⊥) � a) �(a O a)) O(a⊥

� a⊥)
i↓

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O((a⊥
O a) � a))) O(a⊥

� a⊥)
s

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a⊥
O(a � a))) O(a⊥

� a⊥)
i↓

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O((a⊥
O a) � a⊥) O(a � a))) O(a⊥

� a⊥)
s

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a⊥
O(a � a⊥) O(a � a))) O(a⊥

� a⊥)
i↑

a⊥
O(a � a) O(((a⊥

O a⊥) � a) �(a O a⊥
O (a � a))) O(a⊥

� a⊥)
i↓

a⊥ O(a � a) O((((a⊥ O a⊥) � a) �(a O a⊥)) �(a O a⊥ O(a � a))) O(a⊥ � a⊥)
s

a⊥ O(a � a) O a O((((a⊥ O a⊥) � a) � a⊥) � (a O(a⊥ O(a � a)))) O(a⊥ � a⊥)
i↑

a⊥ O(a � a) O a O (a⊥ � a⊥)

↓

a⊥ a a a a⊥ a⊥ a a⊥ a a⊥ a a⊥ a a a⊥ a⊥

� O � �

O � O

� O

O

Figure 8: From calculus of structures to proof nets

The answer is still yes, and it is done via so-called correctness criteria. For introducing the idea, we take
the following graphs as running examples

a a⊥ a a⊥ c c⊥

O O

�

(15)

a b⊥ b b⊥ b a⊥

O O

a b⊥ b a⊥

� �

(16)
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Proof Nets and the Identity of Proofs 19

By playing around, you will notice that it is quite easy to find a proof (in sequent calculus or calculus of
structures) that translates into the net in (15), but it seems impossible to find such proofs for the two examples
in (16). We are now going to show that this is indeed impossible. For doing so, we need some formal definitions.

2.5.1 Definition A pre-proof net is a sequent forest Γ, possibly with cuts, together with a perfect matching
of the set of leaves (i.e., the set of occurrences of propositional variables and their duals), such that only dual
pairs are matched.

In this context, a cut must be seen as a special kind of formula A� A⊥, where � is a special connective
which may occur only at the root of a formula tree in which the two direct subformulas are dual to each other.
For example, (15) should be read as

a a⊥ a a⊥ c c⊥

� O O

�

(15’)

Clearly, the examples in (15) and (16) are all pre-proof nets. In the following, we will think of an inner node
(i.e., a non-leaf node) of the sequent forest labeled not only by the connective but by the whole subformula
rooted by that connective. Our favorite example (15) should then be read as

a a⊥ a a⊥ c c⊥

a � a⊥ a O a⊥ c O c⊥

(a O a⊥) �(c O c⊥)

(15”)

Although sometimes we think of pre-proof nets to be written as in (15”), we will keep writing them as in (15)
for better readability.

2.5.2 Definition A pre-proof net π is called sequentializable iff there is a proof in the sequent calculus or
in the calculus of structures that translates into π.

Originally, the term “sequentializable” was motivated by the name “sequent calculus”. But we use it here
also if the “sequentialization” is done in the calculus of structures.

2.5.3 Definition Let π be a pre-proof net. A switching for π is a graph obtained from π by removing for
every O-node one of the two edges connecting it to its children.

Clearly, if a pre-proof net contains n O-nodes, then there are 2n switchings. Here are all 4 switchings for
the example in (15):

a a⊥ a a⊥ c c⊥

O O

�

a a⊥ a a⊥ c c⊥

O O

�

a a⊥ a a⊥ c c⊥

O O

�

a a⊥ a a⊥ c c⊥

O O

�

(17)
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20 Lutz Straßburger

2.5.4 Definition A pre-proof net obeys the switching criterion (or, shortly, is correct) iff all its switchings
are connected and acyclic.

As (17) shows, the pre-proof net in (15) is correct. The two pre-proof nets in (16) are not, as the following
switchings show:

a b⊥ b b⊥ b a⊥

O O

a b⊥ b a⊥

� �

(18)

The first is not connected, and the second is cyclic.
In the following, we use the term proof net for those pre-proof nets which are correct, i.e., obey the switching

criterion. The following theorem says that the proof nets are exactly those pre-proof nets that represent an
actual proof.

2.5.5 Theorem A pre-proof net is correct if and only if it is sequentializable.

We will give two proofs of this theorem. The first uses the sequent calculus, and the second the calculus of
structures. For the first proof, we need the following lemma:

2.5.6 Lemma Let π be a proof net with conclusions A1, . . . , An. If all Ai have a � or a cut as root, then
one of them is splitting, i.e., by removing that � (or �), the net becomes disconnected.

For proving this lemma, we need some more concepts.

2.5.7 Definition Let σ and π be pre-proof nets. We say σ is a subprenet of π, written as σ ⊆ π if all
formulas/cuts appearing in σ are subformulas of the formulas/cuts appearing in π, and the linking of σ is the
restriction of the linking of π to the formulas/cuts in σ. We say σ is a subnet of π if σ ⊆ π, and σ and π are
both correct. A door of σ is any formula that appears as conclusion of σ.

2.5.8 Example Consider the following three graphs:

a a⊥ a a⊥

O

a a⊥ a a⊥

O

a a⊥ a a⊥

O

The first two are subprenets of (15), the third one is not (because a link is missing). The second one is in fact
a subnet of (15), but the first one is not (because it is not correct). The doors of the first example are a, a⊥,
and a O a⊥. The doors of the second example are a � a⊥ and a O a⊥.

2.5.9 Lemma Let σ and ρ be subnets of some proof net π.

(i) The subprenet σ ∪ ρ is a subnet of π if and only if σ ∩ ρ 6= ∅.

(ii) If σ ∩ ρ 6= ∅ then σ ∩ ρ is a subnet of π.

Proof: Intersection and union in the statement of that lemma have to be understood in the canonical sense:
An edge/node/link appears in in σ ∩ ρ (resp. σ ∪ ρ) if it appears in both, σ and ρ (resp. in at least one of σ or
ρ). For giving the proof, let us first note that because in π every switching is acyclic, also in every subprenet
of π every switching is acyclic, in particular also in σ ∪ ρ and σ ∩ ρ. Therefore, we need only to consider the
connectedness condition.

(i) If σ ∩ ρ = ∅ then every switching of σ ∪ ρ must be disconnected. Conversely, if σ ∩ ρ 6= ∅, then every
switching of σ ∪ ρ must be connected (in every switching of σ ∪ ρ every node in σ ∩ ρ must be connected
to every node in σ and to every node in ρ, because σ and ρ are both correct).

(ii) Let σ ∩ ρ 6= ∅ and let s be a switching for σ ∪ ρ. Then s is connected and acyclic by (i). Let sσ, sρ, and
sσ∩ρ, be the restrictions of s to σ, ρ, and σ ∩ ρ, respectively. Now let A and B be two vertices in σ ∩ ρ.
Then A and B are connected by a path in sσ because σ is correct, and by a path in sρ because ρ is correct.
Since s is acyclic, the two paths must be the same and therefore be contained in sσ∩ρ. ⊓⊔
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2.5.10 Lemma Let π be a proof net, and let A be a subformula of some formula/cut appearing in π. Then
there is a subnet σ of π, that has A as a door.

Proof: For proving this lemma, we need the following notation. Let π be a proof net, let A be some formula
occurrence in π, and let s be a switching for π. Then we write s(π, A) for the graph obtained as follows:� If A is an immediate subformula of a formula occurrence B in π, and there is an edge from B to A in s,

then remove that edge and let s(π, A) be the connected component of (the remainder of) s that contains
A.� Otherwise let s(π, A) be just s.

Now let
σ =

⋂

s

s(π, A)

where s ranges over all possible switchings of π. (Note that it could happen that formally σ is not a subprenet
because some edges in the formula trees might be missing. We graciously add these missing edges to σ such
that it becomes a subprenet.) Clearly, A is in σ. We are now going to show that A is a door of σ. By way
of contradiction, assume it is not. This means there is ancestor B of A that is in

⋂
s s(π, A). Now choose a

switching ŝ such that whenever there is a O node between A and B, i.e.,

A

C1 C2

C1 OC2

B

or

A

C2 C1

C2 OC1

B

then ŝ chooses C1 (i.e., removes the edge between C2 and its parent). Then there must be a � between A and
B:

A

D1 D2

D1 � D2

B

or

A

D2 D1

D2 �D1

B

Otherwise B would not be in σ. Now suppose we have chosen the uppermost such �. Then the path connecting
A and D1 in ŝ(π, A) cannot pass through D2 (by the definition of ŝ(π, A)). But this means that in ŝ there are
two distinct paths connecting A and D1, which contradicts the acyclicity of ŝ.

Now we have to show that σ is a subnet. Let s be a switching for σ. Since σ is a subprenet of π, we have
that s is acyclic. Now let s̃ be an extension of s to π. Then s is the restriction of s̃(π, A) to σ, and hence
connected. ⊓⊔

2.5.11 Definition Let π be a proof net, and let A be a subformula of some formula/cut appearing in π.
The kingdom of A in π, denoted by kA, is the smallest subnet of π, that has A as a door. Similarly, the empire
of A in π, denoted by eA, is the largest subnet of π, that has A as a door. We define A≪ B iff A ∈ kB, where
A and B can be any (sub)formula/cut occurrences in π.

An immediate consequence of Lemmas 2.5.9 and 2.5.10 is that kingdom and empire always exist.

2.5.12 Exercise Why?

2.5.13 Remark The subnet σ constructed in the proof of Lemma 2.5.10 is in fact the empire of A. But we
will not need this fact later and will not prove it here.
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2.5.14 Lemma Let π be a proof net, and let A, A′, B, and B′ be subformula occurrences appearing in π,
such that A and B are distinct, A′ is immediate subformula of A, and B′ is immediate subformula of B. Now
suppose that B′ ∈ eA′. Then we have that B /∈ eA′ if and only if A ∈ kB.

Proof: We have B′ ∈ eA′ ∩ kB. Hence, σ = eA′ ∩ kB and ρ = eA′ ∪ kB are subnets of π. By way of
contradiction, let B /∈ eA′ and A /∈ kB. Then ρ has A′ as door and is larger than eA′ because it contains B.
This contradicts the definition of eA′. On the other hand, if B ∈ eA′ and A ∈ kB then σ has B as door and is
smaller than kB because it does not contain A. This contradicts the definition of kB. ⊓⊔

2.5.15 Lemma Let π be a proof net, and let A and B be subformulas appearing in π. If A≪ B and B ≪ A,
then either A and B are the same occurrence or they are dual atoms connected via an identity link.

Proof: If a and a⊥ are two dual atom occurrences connected by a link, then clearly ka = ka⊥. Now let A and
B be two distinct non-atomic formula occurrences in π with A ∈ kB and B ∈ kA. Then kA ∩ kB is a subnet
and hence kA = kA ∩ kB = kB. We have two cases:� If A = A′

O A′′ then the result of removing A from kB is still a subnet, contradicting the minimality of
kB.� If A = A′

�A′′ then kA = kA′ ∪ kA′′ ∪ {A′
�A′′}. Hence B ∈ kA′ or B ∈ kA′′. This contradicts

Lemma 2.5.14, which says that B /∈ eA′ and B /∈ eA′′. ⊓⊔

From Lemma 2.5.15 it immediately follows that ≪ is a partial order on the non-atomic subformula occur-
rences in π. We make crucial use of this fact in the following:

Proof of Lemma 2.5.6: Choose among the conclusions A1, . . . , An (including the cuts) of π one which is
maximal w.r.t. ≪. Without loss of generality, assume it is Ai = A′

i �A′′

i . We will now show that it is splitting,
i.e., π = {A′

i � A′′

i } ∪ eA′

i ∪ eA′′

i . By way of contradiction, assume A′

i � A′′

i is not splitting. This means we have
somewhere in π a formula occurrence B with immediate subformula B′ such that (without loss of generality)
B′ ∈ eA′

i and B /∈ eA′
i. We also know that B must occur at or above some other conclusion, say Aj = A′

j �A′′
j .

Hence B ∈ kAj and therefore kB ⊆ kAj . But by Lemma 2.5.14 we have Ai ∈ kB and therefore Ai ∈ kAj ,
which contradicts the maximality of Ai w.r.t. ≪. ⊓⊔

Finally, we can prove Theorem 2.5.5.

First Proof of Theorem 2.5.5: Let us first show that the (in the sequent calculus) sequentializable pre-proof
nets are indeed correct. This is done by verifying that the id-rule yields correct nets (which is obvious) and that
all other inference rules preserve correctness. For the exch-rule this is obvious. Let us now consider the �-rule.
By way of contradiction, assume that

π1

Γ A
and

π2

∆B

are correct, but

π1 π2

�

Γ ∆

A B

A � B

is not correct. This means there is a switching that is either disconnected or contains a cycle. Since a �-node
does not affect switchings, we conclude that the property of being disconnected or cyclic must hold for the same
switching in one of π1 or π2. But this is a contradiction to the correctness of π1 and π2. For the the O-rule and
the cut-rule we proceed similarly.
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Conversely, let π be a correct pre-proof net. We proceed by induction on the size of π, i.e., the number n
of O-, �-, and cut-nodes in π, to construct a sequent calculus proof Π, that translates into π. If n is 0, then π
must be of the shape

id

A⊥ A

and we can apply the id-rule. Now let n > 0. If one of the conclusion formulas of π has a O-root, we can
apply the O-rule and proceed by induction hypothesis. Now suppose all roots are � or cuts. Then we apply
Lemma 2.5.6, which tells us, that there is one of them which splits the net. Assume, without loss of generality,
that it is a �-root, say Ai = A′

i �A′′

i . This means, the net is of the shape

π1 π2

�

Γ ∆

A′

i A′′

i

A′

i � A′′

i

and we can apply the �-rule and proceed by induction hypothesis for π1 and π2. If the splitting root is a cut,
we apply the cut-rule instead. ⊓⊔

Let us now see the second proof. For this, we need the following lemma:

2.5.16 Lemma Let π be a proof net with conclusion

S{(A�B{a}) O(C{a⊥}�D)} ,

such that the a and the a⊥ are paired up in the linking. Let π′ and π′′ be pre-proof nets with conclusions

S{A�(B{a}O(C{a⊥}�D))} and S{((A�B{a}) OC{a⊥}) � D}

respectively, such that the linkings of π′ and π′′ (i.e., the pairing of dual atoms) are the same as the linking of
π. Then at least one of π′ and π′′ is also correct.

Proof: Let us visualize the information we have about π, π′, and π′′ as follows:

π′ : π : π′′ :

⊥

a⊥

a C D

B �

A O

�

←

a a⊥

A B C D

� �

O

→

a

A B a⊥

� C

O D

�

We proceed by way of contradiction, and assume that π is correct and that π′ and π′′ are both incorrect. If
there is a switching s for π′ (or π′′) that is disconnected, then the same switching is also disconnected in π.
Hence, we need to consider only the acyclicity condition. Suppose that there is a switching s′ for π′ that is
cyclic. Then, in s′ the O below B must be switched to the right, and the cycle must pass through A, the root
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� and the O as follows:
⊥a⊥

a C D

B �

A O

�

Otherwise we could construct a switching with the same cycle in π. If our cycle continues through D, i.e.,

⊥a⊥

a C D

B �

A O

�

(19)

then we can use the path from A to D (that does not go through B or C, see Exercise 2.5.17) to construct a
cyclic switching s in π as follows:

⊥a a⊥

A B C D

� �

O

Hence, the cycle in s′ goes through C, giving us a path from A to C, not passing through B (see Exercise 2.5.17):

⊥a⊥

a C D

B �

A O

�

(20)
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By the same argumentation we get a switching s′′ in π′′ with a path from B to D, not going through C. From
s′ and s′′, we can now construct a switching s for π with a cycle as follows:

⊥a a⊥

A B C D

� �

O

which contradicts the correctness of π. ⊓⊔

2.5.17 Exercise Explain why we can in (19) assume that the cycle does not go through B or C, and in (20)
not through B.

In our second proof of Theorem 2.5.5 we will also need the following concept:

2.5.18 Definition Let A be a formula. The relation web of A is the complete graph, whose vertices are
the atom occurrences in A. An edge between two atom occurrences a and b is colored red, if the first common
ancestor of them in the formula tree is a �, and green if it is a O.

2.5.19 Example Consider the formula (a⊥
O(a � a)) O(a O(a⊥

� a⊥)). Its formula tree is the following:

a⊥ a a a a⊥ a⊥

� �

O O

O

The relation web is therefore
a⊥ a

a⊥ a

a⊥ a

where we use regular edges for red and dotted edges for green.

2.5.20 Definition The degree of freedom of a formula A, is the number of green edges in its relation web.

Second Proof of Theorem 2.5.5: Again, we start by showing that all rules preserve correctness. Here,
the only interesting case is the switch rule (all others being trivial), which does the following transformation
somewhere inside the net:

O → �

� O

(21)

By way of contradiction, assume the net on the left is correct, and the one on the right is not. First, suppose
there is a switching for the second net that is cyclic. If that cycle does not contain the �-node shown on the
right in (21), then this cycle is also present in the net on the left in (21). If our cycle contains the �-node, then
we can make the same cycle be present in the net on the left by switching the O-node to the left (i.e., removing
the edge to the right). Now assume we have a disconnected switching for the net on the right. Then the same
switching also disconnects the net on the left. Contradiction.

Conversely, assume we have a correct net π with conclusion F . For the time being, assume that π is cut-free.
We proceed by induction on the degree of freedom of F . Pick inside F any pair of atoms that are linked together,
say a and a⊥. Then F = S{S1{a}OS2{a⊥}}. Without loss of generality, we can assume that S1{ } and S2{ }
are not O-contexts. We have the following cases:
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26 Lutz Straßburger� If S1{ } = S2{ } = { }, we can apply the rule i↓, and proceed by induction hypothesis.� If S1{ } 6= { } and S2{ } = { }, then F = S{(A�B{a}) O a⊥} for some A and B{ }. We can apply
the switch rule to get S{A�(B{a}O a⊥)}, which is still correct (with the same linking as for F ), but has
smaller degree of freedom than F . The case where S1{ } = { } and S2{ } 6= { } is similar.� If S1{ } 6= { } and S2{ } 6= { }, then, without loss of generality, F = S{(A�B{a}) O(C{a⊥}�D)}, for
some A, B{ }, C{ }, D. By Lemma 2.5.16, we can apply the switch rule, since one of

S{A�(B{a}O(C{a⊥}�D))} and S{((A�B{a}) OC{a⊥}) �D}

is still correct. Since both of them have smaller degree of freedom than F , we can proceed by induction
hypothesis.

If π contains cuts, we can replace inside π all cuts with �, to get a formula F ′ such that there is a derivation

F ′

i↑ ‖‖
F

Then π becomes a cut-free net with conclusion F ′, and we can proceed as above. ⊓⊔

Note that the two different proofs of Theorem 2.5.5 yield a stronger version of Theorem 2.4.1.

2.5.21 Theorem For every sequent calculus proof

��
��

��
??????

⊢ A1, A2, . . . , An

there is a proof in the calculus of structures

−
‖
‖

A1 OA2 O . . .O An

yielding the same proof net, and vice versa.

A geometric or graph-theoretic criterion like the one in Definition 2.5.4 and Theorem 2.5.5 is called a
correctness criterion. The desired properties are soundness and completeness, as stated in Theorem 2.5.5. For
MLL−, the literature contains quite a lot of such criteria, and it would go far beyond the scope of this lecture
notes to attempt to give a complete survey. But nonetheless, we will show here two other correctness criteria.
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For the next one, we write the pre-proof nets in a different way:

id

a⊥ a
;

O

A B

A O B

;

�

A B

A � B

;

cut

A A⊥ ;

(22)

We call the resulting graphs RB-graphs. The R and B stand for Regular/Red and Bold/Blue. The main
property of these graphs is that the blue/bold edges (in the following called B-edges) provide a bipartition of
the set of vertices, i.e., every vertex in the RB-graph is connected to exactly one other vertex via a B-edge. The
red/regular edges are in the following called R-edges.

Here are the examples from (15) and (16) written as RB-graphs:

(23)

(24)

2.5.22 Definition Let G be an RB-graph. An Æ-path in G is a path whose edges are alternating R- and
B-edges, and that does not touch any vertex more than once. An Æ-cycle in G is a Æ-path from a vertex to
itself, starting with a B-edge and ending with an R-edge.

The A and E stand for “alternating” and “elementary”. The meaning of “alternating” should be clear, and
the meaning of “elementary” is that the path or cycle must not cross itself.
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2.5.23 Definition A pre-proof net π obeys the RB-criterion (or shortly, is RB-correct) iff its RB-graph Gπ

contains no Æ-cycle and every pair of vertices in Gπ is connected via an Æ-path.

2.5.24 Theorem A pre-proof net is RB-correct if and only if it is a proof net.

Proof: We show that a pre-proof net is RB-correct iff it obeys the switching criterion, which is easy: If there
are two vertices in the RB-graph not connected by an Æ-path, then there is a switching yielding a disconnected
graph, and vice versa. Similarly, the RB-graph contains an Æ-cycle if and only if we can provide a switching
with a cycle. ⊓⊔

2.5.25 Exercise Work out the details of the previous proof.

For the third correctness criterion, we write our nets in yet another way:

id

a⊥ a
; • •

O

A B

A O B

;
a•

�

A B

A � B

; •

cut

A A⊥ ; • •

(25)

Now consider the following two rewriting rules on these graphs:

•

a•

→

•

•

and

•

•

→ • (26)

It is important to note that in the first rule the two edges are between the same pair of vertices and are connected
by an arc at exactly one of the two vertices. The second rule only applies if the two vertices on the lefthand
side are distinct, and the edge is not connected to another edge by an arc.

2.5.26 Theorem The reduction relation induced by the rules in (26) is terminating and confluent.

Proof: Termination is obvious because at each step the size of the graph is reduced. Hence, it suffices to show
local confluence to get confluence. But this is easy since there are no (proper) critical pairs. ⊓⊔

This means that for each pre-proof net we get a uniquely defined reduced graph, and the question is now
how this graph looks like.

2.5.27 Exercise Apply the reduction relation defined in (26) to the nets in (15) and (16).
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2.5.28 Definition A pre-proof net obeys the contraction criterion if its normal form according to the re-
duction relation defined in (26) is

•

i.e., a single vertex without edges.

At this point rather unsurprisingly, we get:

2.5.29 Theorem A pre-proof net obeys the contraction criterion if and only if it is a proof net.

Proof: As before, we show this by showing the equivalence of the switching criterion and the contraction
criterion. This is easy to see since both reductions in (26) preserve and reflect correctness according to the
switching criterion. ⊓⊔

Before we leave the topic of correctness criteria, let us make some important observations on their complexity.
The naive implementation of checking the switching criterion needs exponential time: if there are n par-links
in the net, then there are 2n switchings to check. However, checking the RB-criterion needs only quadratic
runtime. To verify this is an easy graph-theoretic exercise. It is also easy to see that checking the contraction
criterion can be done in quadratic time. But it is rather surprising that it can be done in linear time in the size
of the net.5 This means that (in the case of MLL−) when we go from a formal proof in a deductive system like
the sequent calculus or the calculus of structures (whose correctness can trivially be checked in linear lime in
the size of the proof) to the proof net, we do not lose any information. The proof net contains the essence of
the proof, including the “deductive information”. Unfortunately, MLL− is (so far) the only logic (except some
variants of it), for which this ideal of proof nets is reached. We come back to this in Sections 3 and 5.

2.6 Two-sided proof nets

The proof nets we have seen are also called one-sided proof nets. This implies that there is another kind: the
so called two-sided proof nets. Their existence is justified by the fact, that systems in the sequent calculus can
also come in a two-sided version. Here is a two-sided sequent calculus system for MLL−:

id
A ⊢ A

Γ ⊢ ∆, A A, Γ′ ⊢ ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

Γ, B, A, Γ′ ⊢ ∆
exchL

Γ, A, B, Γ′ ⊢ ∆

Γ ⊢ ∆, B, A, ∆′

exchR
Γ ⊢ ∆, A, B, ∆′

Γ, A ⊢ ∆ Γ′, B ⊢ ∆′

OL
Γ, Γ′, AO B ⊢ ∆, ∆′

Γ ⊢ A, B, ∆
OR

Γ ⊢ AO B, ∆

Γ, A, B ⊢ ∆
�L

Γ, A�B ⊢ ∆

Γ ⊢ A, ∆ Γ′ ⊢ B, ∆′

�R
Γ, Γ′ ⊢ A� B, ∆, ∆′

Γ ⊢ A, ∆ Γ′, B ⊢ ∆′

⊸L
Γ, Γ′, A ⊸ B ⊢ ∆, ∆′

Γ, A ⊢ B, ∆
⊸R

Γ ⊢ A ⊸ B, ∆

Γ ⊢ A, ∆
·⊥L

Γ, A⊥ ⊢ ∆

Γ, A ⊢ ∆
·⊥R

Γ ⊢ A⊥, ∆

(27)

Now sequents are not just lists of formulas, but pairs of lists of formulas, and these pairs of lists are separated by
a ⊢ . One reason for using two-sided sequent systems is that one can treat negation as a proper connective (i.e.,
it is not pushed down to the atoms as in the one-sided version) and that one can have implication as primitive
(i.e., there are rules for implication, instead of just defining A ⊸ B = A⊥

O B). Of course, the disadvantage
is that we heavily increase the number of rules. Here is an example of a two-sided derivation using the rules

5For references, see Section 2.9.
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in (27):

id
a ⊢ a

id
a ⊢ a

·⊥L
a⊥, a ⊢

⊸L
a, a ⊸ a⊥, a ⊢

id
a ⊢ a

OL
a, a ⊸ a⊥, a O a ⊢ a

·⊥R
a, a ⊸ a⊥ ⊢ a, (a O a)⊥

�L
a �(a ⊸ a⊥) ⊢ a, (a O a)⊥

OR
a �(a ⊸ a⊥) ⊢ a O(a O a)⊥

(28)

We omitted the instances of the exchange rule in this example.
We can follow ideology 2.2.1 to translate two-sided sequent proofs into proof nets. But we have to assign to

each rule and each formula appearing in the net a label which indicated whether the rule/formula comes from
the left-hand side or the right-hand side of the sequent. We use here the letters L and R. Figure 9 shows how
the sequent rules in (27) are translated into proof nets. We omitted the rules for exch (compare with Figure 1)
and ·⊥. Here is the result of translating (28):

id id id

·⊥L OL

⊸L ·⊥R

�L OR

a:L

a ⊸ a⊥:L

a �(a ⊸ a⊥):L

a:R

a⊥:L

a:R

a:L a:L

a:R

(a O a)⊥:R

a O a:L

a O(a O a)⊥:R

(29)

Note that the nets in (7) and (29) are almost identical from the graph-theoretical viewpoint. The only differences
are that the labels are different and that there are additional ·⊥L and ·⊥R nodes in (29).

Of course, we can also use the flow-graph method to obtain a proof net from (28):

id
⊢

id
⊢

·⊥L
⊥, ⊢

⊸L
, ⊸ ⊥, ⊢

id
⊢

OL
, ⊸ ⊥, O ⊢

·⊥R
, ⊸ ⊥ ⊢ , ( O )⊥

�L
�( ⊸ ⊥) ⊢ , ( O )⊥

OR
�( ⊸ ⊥) ⊢ O( O )⊥

id
a ⊢ a

id
a ⊢ a

·⊥L
a⊥, a ⊢

⊸L
a, a ⊸ a⊥, a ⊢

id
a ⊢ a

OL
a, a ⊸ a⊥, a O a ⊢ a

·⊥R
a, a ⊸ a⊥ ⊢ a, (a O a)⊥

�L
a�(a ⊸ a⊥) ⊢ a, (aO a)⊥

OR
a �(a ⊸ a⊥) ⊢ a O(a O a)⊥

→

id
⊢

id
⊢

·⊥L
⊥, ⊢

⊸L
, ⊸ ⊥, ⊢

id
⊢

OL
, ⊸ ⊥, O ⊢

·⊥R
, ⊸ ⊥ ⊢ , ( O )⊥

�L
�( ⊸ ⊥) ⊢ , ( O )⊥

OR
�( ⊸ ⊥) ⊢ O( O )⊥

id
a ⊢ a

id
a ⊢ a

·⊥L
a⊥, a ⊢

⊸L
a, a ⊸ a⊥, a ⊢

id
a ⊢ a

OL
a, a ⊸ a⊥, aO a ⊢ a

·⊥R
a, a ⊸ a⊥ ⊢ a, (a O a)⊥

�L
a �(a ⊸ a⊥) ⊢ a, (a O a)⊥

OR
a�(a ⊸ a⊥) ⊢ aO(a O a)⊥

(30)

However, observe that from the flow-graph we do not get a priori the information what is left and what is right.
This means, for a proper definition of pre-proof net, we need to find another way to determine when we may allow
an identity link between a pair of atoms. To do so, we use polarities : we assign to each subformula appearing
in the sequent a unique polarity, that is, an element of the set {•, ◦}, where • can be read as left/negative/up
and ◦ as right/positive/down. Let Γ ⊢ ∆ be given. Then

(i) all formulas in Γ get polarity •, and all formulas in ∆ get polarity ◦;
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id

A:L A:R

π1 π2

cutΓ:L,∆:R Γ′:L,∆′:R

A:R A:L

π1 π2

OL

Γ:L, ∆:R Γ′:L, ∆′:R

A:L B:L

A O B:L

π

OR

Γ:L ∆:R

A:R B:R

A O B:R

π

�L

Γ:L ∆:R

A:L B:L

A � B:L

π1 π2

�R

Γ:L,∆:R Γ′:L,∆′:R

A:R B:R

A � B:R

π1 π2

⊸L

Γ:L, ∆:R Γ′:L, ∆′:R

A:R B:L

A ⊸ B:L

π

⊸R

Γ:L ∆:R

A:L B:R

A ⊸ B:R

Figure 9: From two-sided sequent calculus to proof nets (sequent calculus rule driven)

(ii) whenever A�B has polarity • (resp. ◦), then A and B also get polarity • (resp. ◦);

(iii) whenever AOB has polarity • (resp. ◦), then A and B also get polarity • (resp. ◦);

(iv) whenever A ⊸ B has polarity • (resp. ◦), then A gets polarity ◦ (resp. •) and B gets polarity • (resp. ◦);

(v) whenever A⊥ has polarity • (resp. ◦), then A gets polarity ◦ (resp. •).

Note that only for negation and implication there is a change of polarity. We can now give the following
definition:

2.6.1 Definition A two-sided pre-proof net consists of a list of formula trees, which is correctly polarized
according to (ii)-(v) above, together with a perfect matching of the set of leaves, such that two leaves are
matched only if they are labeled by the same atom and have different polarity. If there are cuts in the net, then
the two cut formulas have to be identical and must have different polarity.
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As an example we give here the net corresponding to (30):

a• a◦ a◦ a◦ a• a•

·⊥
•

O
•

⊸• ·⊥
◦

�
•

O
◦

(31)

where we put the polarity as superscript to nodes in the trees. It should not come at a surprise that we get
(again, up to some trivial change in the notation) the same proof nets as with the first method.

The correctness criteria are exactly the same as we discussed them for one-sided proof nets in Section 2.5.
The only thing to note is that the �

•, O
◦, and ⊸◦ behave as the O in Section 2.5, i.e., remove one edge to a

child to get a switching, and the �
◦, O

•, and ⊸
• behave as the � in Section 2.5. Clearly, the example in (31)

is correct.

Let us now for the time being forget the ⊸ and ·⊥ nodes that flip the polarity. Then we can draw the
two-sided proof net in a two-sided way. Things with polarity • are drawn on the top and things with polarity
◦ are drawn at the bottom. In between we put the identity links. Since we now have again negated atoms, we
have to change the condition on the identity links: Two atoms occurrences may be linked, if they are the same
and have different polarity, or if they are dual to each other and have the same polarity. Here are two examples:

�
•

O
•

b⊥• c⊥• c•

a◦ b⊥◦ a⊥◦

�
◦

O
◦

�
•

O
•

a• b• a⊥•

c⊥◦ c◦ b◦

�
◦

O
◦

(32)

Note that these are exactly the nets that are obtained via the flow-graph method from the calculus of structures
derivations in (14):

( ⊥
O

⊥) �
s

⊥
O( ⊥

� )
i↑

⊥

i↓
⊥

�( O
⊥)

s
O( ⊥

�
⊥)

(b⊥ O c⊥) � c
s

b⊥ O(c⊥ � c)
i↑

b⊥
i↓

b⊥ �(a O a⊥)
s

a O(b⊥ � a⊥)

( O ) �
⊥

s
( �

⊥) O
i↑

i↓
( ⊥

O ) �
s

⊥
O( � )

(a O b) � a⊥
s

(a � a⊥) O b
i↑

b
i↓

(c⊥ O c) � b
s

c⊥ O(c � b)

(33)

This is the second justification for the existence of two-sided proof nets. They are directly obtained via flow-
graphs from derivations in the calculus of structures. As before, the correctness criterion does not change.

Note that from the graph-theoretical point of view, there is now not much difference between �
◦ and O

•,
between �

• and O
◦, between a◦ and a⊥•, and between a• and a⊥◦ (at least for MLL−). For this reason, the
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nets in (32) could also be written as

O

�

b c c⊥

a b⊥ a⊥

�

O

O

�

a⊥ b⊥ a

c⊥ c b

�

O

(34)

Now they are in fact the same net just turned upside down. This is no surprise since the two derivations in (33)
are dual to each other.

Let us emphasize that it does not matter in which way the graph is drawn on the paper. The net on the
left in (32,34) could also be drawn as

c• c⊥• b⊥• a◦ b⊥◦ a⊥◦

O
•

�
◦

�
•

O
◦

or

c⊥ c b a b⊥ a⊥

� �

O O

(35)

In the case of MLL− it makes no difference whether one prefers to put a proof net in a “one-sided” (35) or “two-
sided” (32,34) way on the paper, and whether one prefers to use the labels {•, ◦} for left/right (or up/down) as
in (32) or to live without them as in (34).

This rather trivial observation can be nailed down in the following theorem which strengthens Theorems
2.4.1 and 2.5.21.

2.6.2 Theorem Let n, m ≤ 1 and A1, . . . , An, B1, . . . , Bm be any MLL− formulas. Then the following are
equivalent:

(i) There is a sequent calculus proof

��
��

��
??????

⊢ A⊥
1 , . . . , A⊥

n , B1, . . . , Bm (36)

(ii) There is a calculus of structures proof

−
‖
‖

A⊥
1 O · · ·OA⊥

n O B1 O . . . OBm (37)

(iii) There is a (two-sided) sequent calculus proof

��
��

��
??????

A1, . . . , An ⊢ B1, . . . , Bm (38)

(iv) There is a calculus of structures proof
A1 � · · ·�An

‖
‖

B1 O . . . OBm (39)
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Furthermore all of (36)–(39) can be constructed such that they all yield the same proof net.

This section can be summarized a follows: Two-sided proof nets are a special kind of one-sided proof nets,
and one-sided proof nets are a special kind of two-sided proof nets. Whether one prefers the one-sided or the
two-sided version is a matter of personal taste and also a matter of economics in notation.

This observation is not restricted to the special case of MLL−. Every theory of two-sided proof nets can
trivially transformed into a theory of one-sided proof nets, and vice versa. By using polarities as described
above, the one-sided version can usually be presented in a more compact way than the two-sided version. For
this reason, we will in the following stay in the one-sided world.

2.7 Cut elimination

Let us now briefly discuss an issue that usually excites proof theorists: In a well-designed deduction system,
every formula/sequent that is derivable, can also be derived without using the cut-rule. Proving this fact is
usually a highly nontrivial task and involves (depending on the logic in question) very sophisticated proof theory.

But here we do not have time and space to go into the details of cut elimination and its important conse-
quences. We discuss here only a very simple logic, namely MLL−, for which cut elimination is easy. For the
sequent calculus it is stated as follows:

2.7.1 Theorem For every proof

��
��

��
??????

Π

⊢ Γ

using the rules in (1) there is a proof

��
��

��
??????

Π′

⊢ Γ

of the same conclusion, that does not use the cut-rule.

Proof (Sketch): We do only sketch the direct proof within the sequent calculus, because, even in the simple
case of MLL−, carrying out all the details is quite tiresome and boring. But the basic idea is simple: The cut
rule is permuted up in the proof until it disappears. Most cases are trivial rule permutations similar to the one
in (10). But there are two so called key cases which are not trivial. Here is the first one:

��
��

��
??????

Π1

⊢ Γ, A, B, ∆
O
⊢ Γ, AOB, ∆

��
��

��
??????

Π2

⊢ Γ′, B⊥

��
��

��
??????

Π3

⊢ A⊥, ∆′

�
⊢ Γ′, B⊥

�A⊥, ∆′

cut
⊢ Γ, ∆, Γ′, ∆′

;

��
��

��
??????

Π1

⊢ Γ, A, B, ∆
��

��
��

??????
Π2

⊢ Γ′, B⊥

cut
⊢ Γ, A, ∆, Γ′

��
��

��
??????

Π3

⊢ A⊥, ∆′

cut
⊢ Γ, ∆, Γ′, ∆′

where some instances of the exch-rule have been omitted. The second key case lets the cut disappear when it
meets an identity rule at the top of the proof:

id
⊢ A⊥, A

��
��

��
??????

Π1

⊢ A⊥, Γ
cut

⊢ A⊥, Γ ;

��
��

��
??????

Π1

⊢ A⊥, Γ

The difficult part of a cut elimination proof is usually to show termination of this “permuting the cut up”
business, which is done by coming up with a clever induction measure. We leave that to the reader. ⊓⊔

2.7.2 Exercise Complete the proof of Theorem 2.7.1. The following things still have to be done:

1. Find a correct way of dealing with the exch-rule. (Hint: Design a “super-cut-rule”, that has exchange
built in.)

2. Show the termination of the process of permuting up the cut, i.e., find the right induction measure.

3. Show that after the termination, the resulting proof is indeed cut-free.
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If you have seen a cut elimination argument before, then this exercise should not be too hard for you. If you
have never before seen some cut elimination, you will learn a lot about it by doing this exercise. In any case,
this (rather painful) exercise will help you to admire the beauty of proof nets.

Let us now turn to cut elimination in the calculus of structures, where it means that not only the cut (i.e.,
the rule i↑), but the whole up-fragment (i.e., all rules with the ↑ in the name) are not needed for provability.

2.7.3 Theorem If there is a proof
−

{i↓, i↑, σ↓, σ↑, α↓, α↑, s} ‖‖ Π

A

using all rules in Figure 5, then there is a proof
−

{i↓, σ↓, α↓, s} ‖‖ Π

A

that has the same conclusion A and that does not use any up-rule.

Proof (Sketch): The easy trick of permuting the cut up does not work in the presence of deep inference. For
this reason completely different techniques have to be used to eliminate the up-fragment. But as in the sequent
calculus, carrying out all the details is technical and boring. For this reason we will give here only a sketch.
The first observation to make is that every up-rule

S{B⊥}
r↑

S{A⊥}

can be replaced by a derivation using only i↓, i↑, s, r↓:

S{B⊥}
i↓

S{(A⊥
OA) � B⊥}

r↓
S{(A⊥

O B) �B⊥}
s

S{A⊥
O(B �B⊥)}

i↑
S{A⊥}

(40)

This means that only the rule i↑ needs to be eliminated. The second observation is, that this rule can be reduced
to its atomic version:

A�A⊥

i↑ ;

a � a⊥

ai↑

S{B O(A� A⊥)}
i↑

S{B}
;

S{B O(a � a⊥)}
ai↑

S{B}

This6 is done by systematically replacing

S{B O((AO C) �(C⊥
� A⊥))}

i↑
S{B}

by

S{B O((AO C) �(C⊥
� A⊥))}

α↑
S{B O(((AO C) � C⊥) � A⊥)}

s
S{B O((AO(C � C⊥)) � A⊥)}

i↑
S{B O(A� A⊥)}

i↑
S{B}

(41)

Now the rules to eliminate are ai↑, α↑, and σ↑ (see Exercise 2.7.4).7 For this, we use Guglielmi’s powerful
splitting lemma, which says that whenever there is a proof

−
{i↓, σ↓, α↓, s} ‖‖ Π

S{C O(A�B)}
(42)

6By duality, we can do the same trick to the rule i↓. Compare with what we did in (11) to the id-rule in the sequent calculus.
7It might seem silly to first explain that only the rule i↑ needs to be eliminated, and then say that also the other up-rules need

to be taken care of. The reason is that with the trick in (40) all up-rules can be removed, but by reducing the rule i↑ to it atomic
version, only some of them are reintroduced. This is crucial for more sophisticated logics than MLL−.
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then there are formulas KA and KB, such that for every formula C, we have derivations

KA OKB

{i↓, σ↓, α↓, s} ‖‖ Π1

S{C}

,

−
{i↓, σ↓, α↓, s} ‖‖ Π2

KA OA
,

−
{i↓, σ↓, α↓, s} ‖‖ Π3

KB OB
(43)

Additionally, we get a derivation
KA OKB OX

{i↓, σ↓, α↓, s} ‖‖ Π̃1

S{C OX}

(44)

for every formula X . The crucial point of this lemma is that it speaks only about the down-fragment. Further-
more we need a variant of the splitting lemma, which says that whenever we have

−
{i↓, σ↓, α↓, s} ‖‖ Π

C O a
, then we also have

a⊥

{i↓, σ↓, α↓, s} ‖‖ Π′

C

.

Now we can remove the rule ai↑ starting with the topmost instance as follows. What we have is

−
{i↓, σ↓, α↓, s} ‖‖ Π

S{B O(a � a⊥)}
ai↑

S{B}

Via the splitting lemma, we can get

Ka OKa⊥

{i↓, σ↓, α↓, s} ‖‖ Π1

S{B}

,

−
{i↓, σ↓, α↓, s} ‖‖ Π2

Ka O a
,

−
{i↓, σ↓, α↓, s} ‖‖ Π3

Ka⊥ O a⊥

Now we can get from Π2 and Π3 the following:

a⊥

{i↓, σ↓, α↓, s} ‖‖ Π′
2

Ka

and

a

{i↓, σ↓, α↓, s} ‖‖ Π′
3

Ka⊥

now we can build:

ai↓
a⊥

O a

{i↓, σ↓, α↓, s} ‖‖ Π′
2 O Π′

3

Ka OKa⊥

{i↓, σ↓, α↓, s} ‖‖ Π1

S{B}

which gives us a proof for S{B} that does not use any up-rules. ⊓⊔

2.7.4 Exercise Explain, why not only the rules ai↑ and α↑, but also the rule σ↑ needs to be eliminated
after doing (41).

2.7.5 Exercise Complete the proof of Theorem 2.7.3. Things that remain to be done:

1. Show how the rules α↑ and σ↑ can be eliminated in a similar way as ai↑. Hint: Use Π̃1 instead of Π1. For
σ↑ plug in B �A for X . For α↑, you need to apply splitting twice.

2. Prove the splitting lemma. This is the really hard part. Hint: First show the lemma for S{ } = { }
(shallow splitting). To do so, proceed by induction on the length of Π and the size of C O(A� B). Then
show the lemma for arbitrary context S{ }. For this, proceed by induction on S{ }.
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3. Show that the rule
A� A⊥

i↑

is not needed for provability, i.e., it is impossible to prove “nothing”. Hint: You need a variant of splitting,
saying, if there is a proof

−
{i↓, σ↓, α↓, s} ‖‖ Π

A�B

then there are proofs
−

{i↓, σ↓, α↓, s} ‖‖ Π2

A
and

−
{i↓, σ↓, α↓, s} ‖‖ Π3

B

i.e., S{ }, C, KA, and KB are all “empty”.

Proving cut elimination via splitting in the calculus of structures is in the unit-free case a little more messy
than in the case with units because many cases need to be considered separately that could be treated together
in the presence of units.

Let us now see how proof nets deal with the problem of cut elimination. Of course, the main point to make
here is that cut elimination will become considerably simpler:

Consider the following reduction rules on pre-proof nets with cuts:

id

cut

A
A⊥ A ; A (45)

and

O �

cut

A O B B⊥ � A⊥

A B B⊥ A⊥

; cut

cut

B B⊥

A A⊥ (46)

2.7.6 Theorem The cut reduction relation defined by (45) and (46) terminates and is confluent.

Proof: Showing termination is trivial because in every reduction step the size of the net decreases. For showing
confluence, note that the only possibility for making a critical pair is when two cuts want to reduce with the
same identity link. Then the situation must be of the shape:

id id id

cut cut

A
A⊥ A A⊥ A

A⊥

But no matter in which order and with which identity we reduce the cuts, the final result will always be

id

A⊥ A

Hence we also have confluence. ⊓⊔
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However, it could happen, that we end up in a situation like

id

cut

A⊥A

where we cannot reduce any further. That something like this cannot happen if we start out with a correct net
is ensured by the following theorem, which says that the cut reduction preserves correctness.

2.7.7 Theorem Let π and π′ be pre-proof nets such that π reduces to π′ via the reductions (45) and (46).
If π is correct, then so is π′.

Proof: For proving this, let us use the RB-correctness criterion. Written in terms of RB-graphs, the two
reduction rules look as follows:

; (47)

and

; (48)

That the first rule preserves RB-correctness is obvious because it just shortens an existing path. For the second
rule, we proceed by way of contradiction. First, assume that the graph on the right contains an Æ-cycle, while
the one on the left does not. There are three possibilities:

1. The Æ-cycle does not contain one of the new B-R-B-paths. Then the same cycle is also present on the
left. Contradiction.

2. The Æ-cycle contains exactly one of the new B-R-B-paths. Then, as before, the same cycle is also present
on the left. Contradiction.

3. The Æ-cycle contains both of the new B-R-B-paths. Then we can construct an Æ-cycle on the left that
comes in at the upper left corner, goes down through the �-link, and goes out at the lower left corner.
Again, we get a contradiction.

That Æ-path connectedness is preserved is shown in a similar way. ⊓⊔

2.7.8 Exercise Complete the proof of Theorem 2.7.7, i.e., show that if we apply (48) to an RB-correct net,
then in the result every pair of vertices is connected by an Æ-path. Hint 1: Note that the two rightmost vertices
in (48) must be connected by an Æ-path that does not touch the new B-R-B-paths (why?). Hint 2: You will
need the fact that the first net is also Æ-cycle free.

The important point of Theorem 2.7.7 is that it allows us to give short proofs of Theorems 2.7.1 and 2.7.3:
Let Π be a proof with cuts in MLL− given in the sequent calculus or the calculus of structures. We can translate
Π into a proof net π, as described in Sections 2.2–2.4 and remove the cuts from the proof net as described above.
This gives us a proof net π′, which we can translate back to the sequent calculus or the calculus of structures.
This works because removing the cuts from the proof net preserves the property of being correct (i.e., being a
proof net), and translating back does not introduce any new cuts.

This raises an important question: Suppose we start out with a proof Π with cuts in MLL− (given in sequent
calculus or the calculus of structures). Now we could first remove the cuts as sketched out in the proofs of
Theorems 2.7.1 and 2.7.3, and then translate the resulting cut-free proof Π′ into a proof net π′

1. Alternatively,
we could first translate Π into a proof net π, and then remove the cuts from π, to obtain the cut-free proof net
π′

2. Do we get the same result? Is π′
1 = π′

2?
The answer is of course yes. To see this, note that the cut reduction steps in the sequent calculus either

preserve the proof net (if the cut is just permuted up via a trivial rule permutation) or do exactly the same as
the cut reduction steps for proof nets.

The same is true for the calculus of structures. The proof of the splitting lemma is designed such that it
preserves the net. To make this formally precise would go beyond the scope of these lecture notes, but by
comparing Figures 7 and 8 the reader should get an idea.
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We can summarize this by the following commuting diagram:

proof with cuts
(in SC or CoS)

proof net with cuts

cut-free proof
(in SC or CoS)

cut-free proof net

cut elimination
(in SC or CoS)

cut elimination
(in proof nets)

(49)

Our basic introduction into the theory of proof nets for MLL− is now finished. However, a very important
and fundamental question has not yet been mentioned:

2.7.9 Big Question Let π and π′ be two proof nets such that π′ is obtained from π by applying some cut
reduction steps. Do π and π′ represent the same proof?

By comparing (7) and (9), one might be tempted to say no. But by looking at Figures 3 and 7, one is
tempted to say yes. Furthermore, from the viewpoint of proof nets it makes no difference, whether we eliminate
the cut from

��
��

��
??????

Π1

⊢ A⊥, B
��

��
��

??????
Π2

⊢ B⊥, C
cut

⊢ A⊥, C

in the sequent calculus or whether we perform the the composition

A

Π1
‖
‖
B

Π2
‖
‖
C

→

A

‖
‖
C

in the calculus of structures (no matter whether we use one-sided or two-sided proof nets, cf. Section 2.6).
In the following section we are going to give another justification for the “yes”, which is independent from

proof nets, sequent calculus, calculus of structures, or any other way of presenting proofs.

2.8 *-Autonomous categories (without units)

In this section we will introduce the concept of *-autonomous categories. We do not presuppose any knowledge
of category theory. We introduce what we need on the way along. It is not much anyway. The basic idea is to
give an abstract algebraic theory of proofs, which is based on the following postulates about proofs:

(i) for every proof f of conclusion B from hypothesis A (denoted by f : A→ B) and every proof g of conclusion
C from hypothesis B (denoted by g : B → C) there is a uniquely defined composite proof g◦f of conclusion
C from hypothesis A (denoted by g ◦ f : A→ C),

(ii) this composition of proofs is associative,

(iii) for each formula A there is an identity proof 1A : A→ A such that for f : A→ B we have f◦1A = f = 1B◦f ,
i.e, it behaves as identity w.r.t. composition.

These axioms say no more and no less than that the proofs are the arrows in a category whose objects are the
formulas. Let us now add more axioms that are specific to logic and do not hold in general in categories:

(iv) Whenever we have a formula A and formula B, then A�B is another formula. For two proofs f : A→ C
and g : B → D we have a uniquely defined proof f � g : A�B → C �D, such that for all h : C → E and
k : D → F , we have

(h � k) ◦ (f � g) = (h ◦ f) �(h ◦ g) : A�B → E � F . (50)
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Using category theoretical language, Axiom (iv) just says that � is a bifunctor. What does this mean? Consider
the following two derivations (using the notation from the calculus of structures):

A� B

f �B ‖‖
C �B

C � g ‖‖
C �D

and

A� B

A� g ‖‖
A� D

f �D ‖‖
C �D

(51)

In the left one we use first f to go from A to C, and do nothing to B,8 and then use g to go from B to D
(and do nothing to C). In the right derivation, we first use g to go from B to D, and then f to go from A to
C. Equation (50) says that the two derivations with premise A�B and conclusion C �D in (51) represent the
same proof, denoted by f � g. Mathematicians came up with a very clever way of writing an equation between
objects as in (51), namely, via commuting diagrams. Instead of writing the two derivations in (51) and saying
they are equal, we write:

The diagram

A� B

f � B

��

A�D//
A � g

C �B
C � g

// C � D
��

f � D commutes .

From the proof theoretical viewpoint, this equation is indeed wanted. The difference between the two derivations
in (51) is an artefact of syntactic bureaucracy. The kind of bureaucracy in exhibited in (51) is called bureaucracy
of type A. This implies that there must also be a bureaucracy of type B. Consider the following two derivations:

A�(B OC)

f �(B OC) ‖‖
A′

�(B O C)
s

(A′
�B) O C

and

A�(B OC)
s

(A� B) O C

(f �B) O C ‖‖
(A′

� B) OC

(52)

In the left one we first use the proof f , taking us from A to A′ (and doing nothing to B and C), and then we
apply the switch rule. In the derivation on the right we first apply the switch rule, and then do f . Clearly the
two are essentially the same and should be identified eventually. Let us write this as commuting diagram:

A�(B OC)

f �(B O C)

��

(A�B) O C//
sA,B,C

A′
�(B O C)

sA′,B,C

// (A′
�B) O C

��

(f � B) O C (53)

Using category theoretical language, equation (53) says precisely that the morphism sA,B,C : A�(B O C) →
(A� B) O C is natural in A. Of course, in the end, we should have that switch is natural in all three arguments.

Before we can continue with our list of axioms, we need another category theoretical concept. Suppose we
have two formulas A and B and proofs f : A → B and g : B → A. If we have for some reason that f ◦ g = 1B

and g ◦f = 1A, then we say that A and B are isomorphic. In this case f and g are isomorphisms. The following
axiom shows two examples:

(v) For all formulas A, B, and C, we postulate the existence of proofs

αA,B,C : A�(B � C)→ (A�B) � C

σA,B : A� B → B � A
(54)

8More precisely, it is the identity 1B taking us from B to B.
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which are isomorphisms, and which are natural in all arguments,9 and which obey the following equations:

A�(B �(C � D))
A � αB,C,D

// A�((B � C) �D)

αA,B � C,D

��

(A�B) �(C �D)
��

αA,B,C � D

(A�(B � C)) � D

αA,B,C � D
vvnnnnnnnnnnn

((A� B) � C) �D
((

αA � B,C,D

PPPPPPPPPPP

(55)

A�(B �C)

αA,B,C

��

A�(C �B)//
A � σB,C

(A� B) �C

σA � B,C

��

(A�C) � B
��

αA,C,B

C �(A�B)
αC,A,B

// (C �A) � B
��

σA,C � B

(56)

A�B
σA,B

// B �A

σB,A
zztttttttt

A� B
$$1A � B

JJJJJJJJ
(57)

What we have defined so far, could be called a symmetric monoidal category without unit. This terminology
is not standard, because the notion has not much been used in mathematics. What is standard is the notion
of monoidal category and symmetric monoidal category (the first one being without the σ), which additionally
have a distinguished unit object 1 and natural isomorphisms λA : 1�A → A and ̺A : A� 1 → A obeying the
equations A�(1�B)

αA,1,B
// (A� 1) �B

̺A � B
xxqqqqqqqqq

A� B
&&A � λB

MMMMMMMMM
and

1�A
σ1,A

// A�1

̺A
||zz

zz
zz

zz

A
""λA

DDDDDDDD
(58)

An important property of monoidal categories is MacLane’s coherence theorem. Stated in terms of proofs,
it says the following:

2.8.1 Theorem Let n ≥ 1 and A1, . . . , An be formulas. Now let B and C be formulas built from A1, . . . , An

by using � such that every Ai appears exactly once in B and C. If Axioms (i)–(v) hold, then all proofs from
B to C formed with the available data are equal. This proof always exists, is an isomorphism, and is natural in
all n arguments.

We will not give a proof here.

For being able to really speak about logic and proofs, we need negation, which is introduced by the following
axioms:

9At this point you should start to see why it makes sense to use the category theoretical language. Without it, we would have,
for example, to postulate for all formulas A, B, and C another proof α−1

A,B,C
such that the two derivations

A �(B � C)

αA,B,C
‖
‖

(A � B) � C

α−1

A,B,C
‖
‖

A �(B � C)

and

(A � B) � C

α−1

A,B,C
‖
‖

A �(B � C)

αA,B,C
‖
‖

(A � B) � C

are both doing nothing (i.e., are equal to the identity proof). Furthermore, we would need a lot of equations in the form of (52),
in order to express the naturality.
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(vi) For every formula A there is another formula A⊥, and for every proof f : A → B, there is another proof
f⊥ : B⊥ → A⊥ such that 1⊥A = 1A⊥ : A⊥ → A⊥ and such that (g ◦ f)⊥ = f⊥ ◦ g⊥ : C⊥ → A⊥ for every
f : A→ B and g : B → C.

(vii) For every formula A and proof f : A → B we have that A⊥⊥ = A and f⊥⊥ = f . (More precisely, the
mapping A⊥⊥ → A is the identity on A).

Spoken in category theoretical terms, Axiom (vi) says that (−)⊥ is a contravariant endofunctor. With this,
we can define the O via AO B = (A⊥

�B⊥)⊥. Axiom (vii) says that if we flip around a derivation twice, we
get back where we started from.10 It also allows us to conclude that the O that we just defined has the same
properties as postulated for the � in (iv) and (v), i.e., it is a bifunctor and carries a monoidal structure (without
unit).

2.8.2 Exercise Formulate the statements of Axioms (iv) and (v) for the O defined via AO B = (A⊥
� B⊥)⊥,

and show that they follow from (i)–(vii).

Before stating our final postulates about proofs, let us introduce the following notation. For two formulas
A and B, we write Hom(A, B) for the set of proofs from A to B, and we write h1(B) for the set of proofs of B
that have no premise.11

(viii) For all formulas A, B, and C, there is a bijection

ϕ : Hom(A� B, C)→ Hom(A, B⊥
O C) (59)

which is natural in all three arguments.

(ix) For all formulas A and B, we have a bijection

ϕ : h1(A⊥
OB)→ Hom(A, B) (60)

which is natural in both arguments and respects the monoidal structure.

In the case with units, Axiom (viii) would complete the definition of a *-autonomous category. It essentially
says that we are allowed to do currying and uncurrying. To see this, note that linear logic knows the connective
⊸, standing for linear implication, defined via A ⊸ B = A⊥

OB.12 Equation (59) now says that we can jump
freely back and forth between proofs A�B → C and A→ B ⊸ C.13

Since we do not have units, we also need (ix), which says that the proofs of A ⊸ B are the same as the
proofs A→ B. To be precise, we need to give additional equation saying that h1 is a functor, i.e., every proof
f : A → B is mapped to a function h1(f) : h1(A) → h1(B) such that composition and identity are preserved.
Furthermore, the h1 needs to go well along with the monoidal structure, to say what that means exactly would
take us too far astray. But to give you an idea of the problem, let us figure out how we could construct a proof
B → (AO A⊥) �B, corresponding to the rule i↓ in Figure 5, by using the axioms (i)–(ix). If we had a unit 1
together with the equations (58), then it would be easy: we could start out with λA : 1�A→ A, apply (59) to
get

λ̂A = ϕ(λA) : 1→ AOA⊥

By (iv), we can form a proof λ̂A � 1B : 1�B → (AO A⊥) � B. We can precompose this with λ−1
B : B → 1�B,

to get
(λ̂A � 1B) ◦ λ−1

B : B → (AO A⊥) � B

Constructing this map without using the unit requires heavy category theoretical machinery that we are not
going to show here. See Section 2.9 for references.

10What we impose here is also called strictness, and does usually not hold. For example, the double dual of a vector space is
usually not the space itself. Even in the finite dimensional case we only have a natural isomorphism between A and A⊥⊥.

11The reason for this notation is the following: Hom(A, B) is in fact the value of the functor Hom(−,−) in two arguments. The
functor Hom(A,−) in one argument is also written as hA. If there is a proper unit 1 then the proofs of A are the elements of the
set Hom(1, A), i.e., h1 is a functor mapping every formula to its set of proofs. In h1, the unit is virtual.

12As in classical logic, “A implies B” is the same as “not A or B”.
13If you have never seen currying, think of a function f in two arguments, denoted by f : A×B → C. This is essentially the same

as a function f ′ : A → B → C, taking and argument from the set A and returning a function B → C which asks for an element of
B to finally return the result in C.
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2.8.3 Exercise We mentioned switch in (52) and (53) but we did not postulate it in (i)–(ix). In this exercise
you are asked to construct sA,B,C : A�(B O C) → (AO B) � C, corresponding to the switch rule in Figure 5,
by using (i)–(viii). Hint: Start with the identity B �C → B �C and apply (59). You will also need the
associativity of O that you have constructed in Exercise 2.8.2.

The wonderful point of Axioms (i)–(ix) is that they precisely describe the mathematical structure spanned
by cut-free proof nets for MLL−. This means two things:

First, the proof nets for MLL− that we discussed in the previous sections form a category: The objects are
the formulas and the maps A→ B are the cut-free proof nets with conclusion ⊢ A⊥, B ,14 and the composition
g ◦ f of two maps f : A→ B and g : B → C is defined by eliminating the cut from

��
��

��
??????

f

⊢ A⊥, B
��

��
��

??????
g

⊢ B⊥, C
cut

⊢ A⊥, C

In the calculus of structures, this corresponds to performing the composition

A

‖
‖
B

‖
‖
C

→

A

‖
‖
C

It is easy to verify that this category, denoted by PN, obeys (i)–(ix) (where h1(A) is just the set of cut-free
proof nets with conclusion A).

Second, the the category PN is the free category with this property. This means that whenever there is a
category C , obeying (i)–(ix), then there is a uniquely defined functor (i.e., map that preserves all the structure
defined in (i)–(ix)) from PN to C .

2.8.4 Theorem The category of cut-free proof nets for MLL−, with arrow composition defined by cut elimi-
nation, forms the free *-autonomous category without units (generated from the set A of propositional variables).

Another way of seeing this is that we can trivially translate proofs in the sequent calculus or the calculus of
structures into the free *-autonomous category (without units), by simply following the syntax. Theorem 2.8.4
says, that if we do this to two proofs Π1 and Π2, we get the same map in the category, if and only if Π1 and Π2

yield the same proof net after cut elimination.
In other words, if you have no objections against any of the Axioms (i)–(ix), you must answer the Big

Question 2.7.9 with yes.
But there is also a but: Let us emphasize that this yes is valid only for MLL−. What we have said in this

section does not allow us to draw any conclusions about any other logic.

2.9 Notes

As already mentioned in the introduction, the terminology of “proof nets” and “bureaucracy” is due to Girard.
He introduced proof nets along with sequent calculus presentation for linear logic in [Gir87]. He essentially
followed Ideology 2.2.1 for obtaining his proof nets. The terminology “coherence” is due to MacLane. In [Mac63]
he proves the “coherence theorem” for symmetric monoidal categories. See also [Mac71]. The concept of
coherence graph is based in the work of Eilenberg, Kelly, and MacLane [EK66, KM71], who also provided the
acyclicity condition and observed that it is preserved by composition, i.e., cut elimination. The observation that
cut elimination is composition in a category is due to Lambek [Lam68, Lam69]. The terminology “flow-graph”
is due to Buss [Bus91].15

The calculus of structures has been discovered by Guglielmi [Gug02], who initiated the systematic proof
theoretic investigation of the concept of deep inference. For more details on this see [GS01, BT01, Str03a, Brü03].

14Or, equivalently, the two-sided proof nets where A has polarity • and B has polarity ◦.
15Strictly speaking, coherence graphs and flow graphs are not the same thing. But in the simple case of MLL−, the two notions

coincide.

RR n° 6013



44 Lutz Straßburger

The notion of “correctness criterion” is also due to Girard. In [Gir87] he gave the “long-trip-criterion” that
we did not present here. The splitting tensor theorem (our Lemma 2.5.6) also first appeared in [Gir87]. The
proof given in Section 2.5 follows the presentation of Bellin and van de Wiele in [BvdW95], who also give a
proof of Theorem 2.2.3 and discuss in more detail the relation between proof nets and trivial rule permutations.
Another well-written short discussion on this issue can be found in [Laf95]. Our second proof of Theorem 2.5.5
(i.e., the one using the calculus of structures) follows the presentation in [Str03a]. However, the result is already
implicit present in the work of [DHPP99] and [Ret97]. A different way of proving Theorem 2.5.5 via the calculus
of structures is presented in [Joi06].

The switching criterion (Definition 2.5.4 and Theorem 2.5.5) is due to Danos and Regnier [DR89]. For this
reason the switching criterion is in the literature also called Danos-Regnier-criterion or DR-criterion. However,
the contraction criterion is also due to Danos and Regnier16 and should therefore also be called DR-criterion. See
[Moo02, Pui01] for a more recent investigation of the contraction criterion. That (a version of) the contraction
criterion can be checked in linear time in the size of the net has been discovered by Guerrini [Gue99]. The
RB-correctness criterion has been found by Retoré [Ret93, Ret99a, Ret03], who provided a detailed analysis of
proof nets using RB-graphs in various forms.

The concept of two-sided proof nets must be considered as folklore. In several early papers on proof nets
the possibility of a two-sided version is mentioned, but the details are never carried out because the one-sided
version is more economic. In the literature, two-sided proof nets are used when for some reason the authors
want to avoid the use of negation (e.g., [BCST96, FP04]). The concept of polarities has to be attributed to
Lamarche (e.g., [Lam95]). In [Lam01] he develops the algebraic theory of polarities and structural contexts in
full detail.

The notion of cut elimination has been developed by Gentzen [Gen34, Gen35]. For a variant of linear logic
it has first been proved by Lambek [Lam58]. For full linear logic (sequent calculus and proof nets) it has been
proved by Girard [Gir87]. For linear logic presented in the calculus of structures, the first direct proof of cut
elimination was also based on rule permutation (similar to the sequent calculus) [Str03a, Str03b]. The idea of
using splitting as sketched in the proof of Theorem 2.7.3 is due to Guglielmi [Gug02].

*-Autonomous categories have been discovered by Barr [Bar79]. That there is a relation to linear logic was
discovered immediately after the introduction of linear logic (see, e.g., [Laf88, See89]). Blute [Blu93] was the
first to note that the category of proof nets is actually the free *-autonomous category without units. However,
no complete proof was given; there was no proper definition of a *-autonomous category without units. That
there is in fact a non-trivial mathematical problem to give such a definition was observed only 12 years later,
but then by three research groups independently at the same time [LS05a, DP05, HHS05] (see also Sections 3.5
and 5.1). The most in-depth treatment is [HHS05]. We used here the notation of [LS05a].

The terminology of “Formalism A” and “Formalism B” is due to Guglielmi [Gug04a, Gug04b]. See also
[Hug04, McK05, Str05a, Str05b] for the relation between deep inference and category theory.

3 Other fragments of linear logic

In this section we will very briefly inspect how proof nets for larger fragments of linear logic look like. We will
first look at the so-called exponentials (which are modalities) and the additives (which are a second pair of
conjunction/disjunction). Then we will go back to the purely multiplicative fragment and play with variations
of it.

3.1 Multiplicative exponential linear logic (without units)

The formulas of unit-free multiplicative exponential linear logic (MELL−) are generated by the syntax

F ::= A | A ⊥ | F OF | F � F | !F | ?F

where everything is as in Section 2.1. The modalities are dual to each other:

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

The inference rules in the sequent calculus are the same as in (1) plus the ones for the new modalities:

⊢ Γ
?w
⊢ ?A, Γ

⊢ ?A, ?A, Γ
?c

⊢ ?A, Γ

⊢ A, Γ
?d
⊢ ?A, Γ

⊢ A, ?B1, . . . , ?Bn
!
⊢ !A, ?B1, . . . , ?Bn

(61)

16It first appears in Danos’ thesis [Dan90], but he insists that it is joint work with Regnier.
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��
��

��
??????

Π

⊢ Γ
?w
⊢ ?A, Γ

;

?w π

Γ?A

��
��

��
??????

Π

⊢ ?A, ?A, Γ
?c

⊢ ?A, Γ

;

π

?c

?A ?A

Γ?A

��
��

��
??????

Π

⊢ A, Γ
?d
⊢ ?A, Γ

;

π

?d

A

Γ?A

��
��

��
??????

Π

⊢ A, ?B1, . . . , ?Bn
!
⊢ !A, ?B1, . . . , ?Bn

;

π

. . .

. . .

A ?B1 ?Bn

!A ?B1 ?Bn

Figure 10: From sequent calculus to proof nets: exponentials

where in the !-rule n ≥ 0. In Figure 10 we show how these rules are translated into proof nets according to
Ideology 2.2.1. This is exactly the way how Girard introduced them in [Gir87]. Note that for dealing with the
!-modality, we do not exactly follow Ideology 2.2.1. Instead, the concept of box around a proof net is introduced.
Such a box always has a main door, the formula !A, and auxiliary doors, which are all occupied by ?-formulas.

The correctness of such a proof net with boxes is defined as in Section 2.5 (?c behaves as O) with the
difference, that each box has to be treated separately. However, the correctness criteria do only work if no
instance of ?w is present.17

Cut elimination is not as simple as for MLL−. There are now not only more reduction rules, we also have
the problem that showing termination is no longer trivial because the size of the net can increase during the
reduction process. This is due to the presence of contraction. In the sequent calculus, the problematic case

17There is a general problem with multiplicative proof nets when some form of weakening is around. We come back to this in
Sections 3.5 and 5.1.
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appears when

��
��

��
??????

Π1

⊢ Γ, ?A, ?A
?c

⊢ Γ, ?A

��
��

��
??????

Π2

⊢ A, ?B1, . . . , ?Bn
!
⊢ !A, ?B1, . . . , ?Bn

cut
⊢ Γ, ?B1, . . . , ?Bn

is reduced to

��
��

��
??????

Π1

⊢ Γ, ?A, ?A

��
��

��
??????

Π2

⊢ A, ?B1, . . . , ?Bn
!
⊢ !A, ?B1, . . . , ?Bn

cut
⊢ Γ, ?A, ?B1, . . . , ?Bn

��
��

��
??????

Π2

⊢ A, ?B1, . . . , ?Bn
!
⊢ !A, ?B1, . . . , ?Bn

cut
⊢ Γ, ?B1, . . . , ?Bn, ?B1, . . . , ?Bn

?c
...

?c
⊢ Γ, ?B1, . . . , ?Bn

where the proof Π2 has been duplicated. In terms of proof nets, this means that the whole box with π2 inside
is duplicated.

3.1.1 Exercise Visualize this reduction in terms of proof nets by using the translation of Figure 10.

In spite of this nasty behavior, we have the following theorem, which we are not going to prove her. The
interested reader is referred to [Gir87, Dan90, Joi92].

3.1.2 Theorem Cut elimination for MELL− proof nets is terminating, confluent, and preserves correctness.

So far, there are no proof nets for MELL− that follow Ideology 2.3.1. One of the reasons might be that the
sequent calculus rules in (61) do not allow to properly trace the modalities in the derivation. However, in the
calculus of structures, this becomes very natural (see [Str03a, Str03b, GS02]).

3.1.3 Open Research Problem Find for MELL− a notion of proof nets without boxes, that is based on
Ideology 2.3.1.

3.2 Multiplicative additive linear logic (without units)

Let us now turn to unit-free multiplicative additive linear logic (MALL−). The formulas of MALL− are generated
by the syntax

F ::= A | A ⊥ | F OF | F �F | F � F | F N F

where again everything is as in Section 2.1. The two new connectives are dual to each other:

(AN B)⊥ = B⊥
�A⊥ (A� B)⊥ = B⊥

NA⊥

The inference rules in the sequent calculus are the same as in (1) plus the ones for the new connectives:

⊢ A, Γ ⊢ B, Γ
N

⊢ ANB, Γ

⊢ A, Γ
�1
⊢ A�B, Γ

⊢ B, Γ
�2
⊢ A� B, Γ

(62)

In his first proposal for proof nets for MALL−, Girard [Gir87] used boxes (as for the exponentials). The problem
with this approach is that it distinguishes between the two proofs

��
��

��
??????

Π1

⊢ A, C, Γ
��

��
��

??????
Π2

⊢ A, D, Γ
N

⊢ A, C N D, Γ

��
��

��
??????

Π3

⊢ B, C, Γ
��

��
��

??????
Π4

⊢ B, D, Γ
N

⊢ B, C ND, Γ
N

⊢ AN B, C ND, Γ

(63)
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and

��
��

��
??????

Π1

⊢ A, C, Γ
��

��
��

??????
Π3

⊢ B, C, Γ
N

⊢ ANB, C, Γ

��
��

��
??????

Π2

⊢ A, D, Γ
��

��
��

??????
Π4

⊢ B, D, Γ
N

⊢ ANB, D, Γ
N

⊢ ANB, C ND, Γ

(64)

In his second proposal [Gir96], Girard proposed the notion of monomial proof nets (still following Ideol-
ogy 2.2.1), where he introduces the notion of slice and attaches a monomial (boolean) weight to the identity
links.

Here we will sketch a very recent proposal by Hughes and van Glabbeek [HvG03], which follows Ideology 2.3.1.
Remember that in Section 2.3, we observed that the additional graph structure that captures the essence of the
proof for MLL− consist of a linking, which is just a pairing of dual atom occurrences.

The discovery of Hughes and van Glabbeek was that for MALL−, this additional graph structure is a set of
linkings, where a linking is again, simply a pairing of dual atom occurrences. But this time, a single linking
need not to be exhaustive (i.e., it does not necessarily pair up everyone).

We can extract the proof net from the sequent calculus proof in the same way as in Section 2.3. But when
we encounter a N-rule, we have to separate the two linkings of the two branches, and we have to keep track of
which pairing belongs to which linking. Figure 11 shows an example (taken from [HvG03]) where we do this by
choosing different line style/colors.

In [HvG03], Hughes and van Glabbeek provide a correctness criterion and a cut elimination that preserves
the correctness. Part of the correctness criterion is that each linking itself has to be multiplicatively correct (in
the sense of Section 2.5). Unfortunately, we do here not have time and space to go into the details. However,
from the viewpoint of the identity of proofs, there is an important observation to make about these proof nets:
The following two sequent proofs are mapped to the same proof net for all possible Π1, Π2, and Π3:

��
��

��
??????

Π1

⊢ Γ, A, C
��

��
��

??????
Π3

⊢ D, ∆
�

⊢ Γ, A, C � D, ∆

��
��

��
??????

Π2

⊢ Γ, B, C
��

��
��

??????
Π3

⊢ D, ∆
�

⊢ Γ, B, C � D, ∆
N

⊢ Γ, AN B, C �D, ∆

(65)

��
��

��
??????

Π1

⊢ Γ, A, C
��

��
��

??????
Π2

⊢ Γ, B, C
N

⊢ Γ, AN B, C
��

��
��

??????
Π3

⊢ D, ∆
�

⊢ Γ, ANB, C � D, ∆

(66)

In other words, the proof nets identify the two sequent proofs (65) and (66). Is this wanted from the proof
theoretical perspective? At the current state of the art there is no definite answer.

An important point against the identification is that in (65) the subproof Π3 appears twice, while in (66) it
appears only once, which means that with the identification of (65) and (66) it becomes difficult to speak about
the size of proofs.

An important point in favor of the identification comes from algebra, where adding the connectives N and
� means adding cartesian products and coproducts to the axioms of *-autonomous categories. If we want that
N behaves as cartesian product in our category of proofs, we have to identify (65) and (66).

Maybe in the end both worlds have their right to exist. In any case, the observation above leads to the
following:

3.2.1 Open Research Problem Find for MALL− a notion of proof nets that does not identify (65) and (66).
A good starting point could be to consider flow-graphs in the calculus of structures for MALL (see [Str02, Str03a]).
Of course, the problem is to find the right correctness criterion and the right notion of cut elimination.
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id
⊢ a, a⊥

id
⊢ a, a⊥

�
⊢ a � a , a⊥ , a⊥

id
⊢ a, a⊥

�1
⊢ a, a⊥

� b
id
⊢ a, a⊥

�
⊢ a � a , a⊥ , a⊥ � b

N
⊢ a � a , a⊥ , a⊥

N(a⊥
� b)

O
⊢ (a � a) O a⊥, a⊥

N(a⊥
� b)

↓

id
⊢ , ⊥

id
⊢ , ⊥

�
⊢ � , ⊥ , ⊥

id
⊢ , ⊥

�1
⊢ , ⊥

�
id
⊢ , ⊥

�
⊢ � , ⊥ , ⊥

�
N

⊢ � , ⊥ , ⊥
N( ⊥

� )
O
⊢ ( � ) O

⊥, ⊥
N( ⊥

� )

id
⊢ a, a⊥

id
⊢ a, a⊥

�
⊢ a � a , a⊥ , a⊥

id
⊢ a, a⊥

�1
⊢ a, a⊥

� b
id
⊢ a, a⊥

�
⊢ a � a , a⊥ , a⊥

� b
N

⊢ a � a , a⊥ , a⊥
N(a⊥

� b)
O
⊢ (a � a) O a⊥, a⊥

N(a⊥
� b)

↓

id
⊢ , ⊥

id
⊢ , ⊥

�
⊢ � , ⊥ , ⊥

id
⊢ , ⊥

�1
⊢ , ⊥

�
id
⊢ , ⊥

�
⊢ � , ⊥ , ⊥

�
N

⊢ � , ⊥ , ⊥
N( ⊥

� )
O
⊢ ( � ) O

⊥, ⊥
N( ⊥

� )

id
⊢ a, a⊥

id
⊢ a, a⊥

�
⊢ a � a , a⊥ , a⊥

id
⊢ a, a⊥

�1
⊢ a, a⊥ � b

id
⊢ a, a⊥

�
⊢ a � a , a⊥ , a⊥

� b
N

⊢ a � a , a⊥ , a⊥
N(a⊥

� b)
O
⊢ (a � a) O a⊥, a⊥

N(a⊥
� b)

↓

a a a⊥ a⊥ a⊥ b

� �

O N

Figure 11: From sequent calculus to MALL proof nets via coherence graphs

3.3 Intuitionistic multiplicative linear logic (without unit)

Formulas of intuitionistic multiplicative linear logic18 without unit (IMLL−) are generated by the syntax:

F ::= A | F ⊸ F | F �F (67)

18This is the logic that Kelly and MacLane studied in their seminal paper [KM71]. Of course, they did not use that name. But
they did have the correctness criterion of proof nets, called coherence graphs. They only had the acyclicity condition and not the
connectedness condition because the unit was present. They proved their results via cut elimination (they used that terminology).
They even envisaged the notion of polarity.
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Note that there is no O and no ·⊥. The sequent calculus for IMLL− is usually given in two-sided form:

id
A ⊢ A

Γ ⊢ A A, Γ′ ⊢ C
cut

Γ, Γ′ ⊢ C

Γ, B, A, Γ′ ⊢ C
exchL

Γ, A, B, Γ′ ⊢ C

Γ, A, B ⊢ C
�L

Γ, A� B ⊢ C

Γ ⊢ A Γ′ ⊢ B
�R

Γ, Γ′ ⊢ A� B

Γ ⊢ A Γ′, B ⊢ C
⊸L

Γ, Γ′, A ⊸ B ⊢ C

Γ, A ⊢ B
⊸R

Γ ⊢ A ⊸ B

(68)

Note that the right-hand side of each sequent contains at most one formula. Apart from that, the rules are
exactly the same as in (27). We can therefore simply take our notion of two-sided proof nets from Section 2.6.
The correctness criterion remains unchanged. This can be used to prove that IMLL− is a conservative extension
of MLL−, i.e., an IMLL− formula is provable in IMLL− if and only if it is provable in MLL−.19

We can use polarities to provide a one-sided version of proof nets for IMLL−. For this we define the set of
negative and positive formulas as follows:

F • ::= A ⊥ | F •
OF • | F •

�F ◦ | F ◦
�F •

F ◦ ::= A | F ◦
�F ◦ | F ◦

OF • | F •
OF ◦

(69)

We can now define a proof net for IMLL− to be a proof net for MLL− in which at most one of the conclusions
is in F ◦ and all other conclusions are in F •. See [LR96] or [Lam01] for further details.

3.4 Cyclic linear logic (without units)

In Section 2.1 we defined sequents to be lists of formulas, but we also had the exchange rule which made the
order of the formulas irrelevant for provability, and indeed, the two connectives O and � were commutative.
In this section we discuss what happens if we drop the exchange rule. As expected, the two connectives O and
� will lose their property of being commutative, and we enter the realm of non-commutative logics. But not
everything works as one might expect...

Recall that in Observation 2.3.2 we noted that in the proof nets we always get a crossing of edges when we
apply the exchange rule. Let us hence change the correctness criterion. We keep everything as in Section 2.5, but
we add as condition that there must be no crossing of edges in the proof net (in graph theoretical terminology:
the graph has to be planar). Hence, our running examples from Sections 2.2–2.4 are not correct in the sense of
this new criterion. And indeed, we used the exchange rule in all sequent proofs.

Luckily, there is another proof net for our favorite sequent in which there are no crossings:

a⊥ a a a a⊥ a⊥

� �

O O

(70)

It clearly obeys the correctness criterion.

3.4.1 Exercise Give a sequent calculus proof in the system in (1) that translates into the net (70). Then
try to find such a proof that does not use the exchange rule.

Here we are in for a surprise. It is very easy to find a sequent calculus proof for (70), but it is impossible to
find one that does not use the exch-rule. What went wrong?

19This is not true for full intuitionistic linear logic with respect to linear logic. Also classical logic is certainly not a conservative
extension of intuitionistic logic, since there are formulas, like Peirce’s law ((A → B) → A) → A) that are provable in classical logic,
but not in intuitionistic logic.
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There are two explanations. The first is based on the following observation. If we have a planar proof net,
i.e., a list of formula trees together with a perfect matching of their atom occurrences such that there is no
crossing among the links that connect the atoms, then we can from that data not tell a priori which formula is
the first in the list. We have to think of the formulas to be grouped in a cycle around the graph with the axiom
links. We now have to think of a proof net not as something like

π

A1 A2 A3 A4 A5 A6

but as something like

πpwqvrust


1111


 11

11

A1

A2A3

A4

A5 A6

To go along with this behavior, we cannot just drop the exchange rule, but have replace it by the cyclic exchange
rule:

⊢ Γ, A
cycl

⊢ A, Γ

where Γ is an arbitrary list of formulas. This is also the reason why the name cyclic linear logic has been chosen
for this logic. It has been investigated in detail by Yetter [Yet90].

We can now give a sequent proof that translates into (70):

id
⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥ � ⊥,

cycl
⊢ , , ⊥ � ⊥

O
⊢ , O( ⊥ � ⊥)

�
⊢ ⊥, � , O( ⊥ � ⊥)

O
⊢ ⊥ O( � ), O( ⊥ � ⊥)

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥ � a⊥, a

cycl
⊢ a, a, a⊥ � a⊥

O
⊢ a, a O(a⊥ � a⊥)

�
⊢ a⊥, a � a, a O(a⊥ � a⊥)

O
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

→
id

⊢ ⊥,

id
⊢ , ⊥

id
⊢ ⊥,

�
⊢ , ⊥ � ⊥,

cycl
⊢ , , ⊥ � ⊥

O
⊢ , O( ⊥ � ⊥)

�
⊢ ⊥, � , O( ⊥ � ⊥)

O
⊢ ⊥ O( � ), O( ⊥ � ⊥)

id
⊢ a⊥, a

id
⊢ a, a⊥

id
⊢ a⊥, a

�
⊢ a, a⊥ � a⊥, a

cycl
⊢ a, a, a⊥ � a⊥

O
⊢ a, a O(a⊥ � a⊥)

�
⊢ a⊥, a � a, a O(a⊥ � a⊥)

O
⊢ a⊥ O(a � a), a O(a⊥ � a⊥)

But there is still this disturbing fact that there are crossings in the flow-graph but no crossings in the net.
This leads us to our second explanation: The sequent calculus is simply too rigid to fully capture the

phenomenon. Recall that in Observation 2.4.4 we noted that in the calculus of structures we can provide a
derivation such that crossings appear in the flow-graph only if they also appear in the net. This means we
should now be able to come up with a derivation that has no crossings in the flow-graph, and hence does not
need the exchange rule nor a cyclic replacement. Of course, we need to adapt the system a little bit: we need
another version of i↓ and i↑, namely the one in (13) and we need two versions of switch. Note that since we
do not have σ↓ nor σ↑, we cannot generate the different four versions of switch as in (12). The new system is
shown in Figure 12 (both versions of switch are self-dual).

Here is now our favorite example without crossings:

id
⊥

O
id

⊥
O( �( O

⊥))
s

⊥
O( � ) O

⊥

id
⊥

O( � ) O(( O
⊥) �

⊥)
s

⊥
O( � ) O O( ⊥

�
⊥)

id
a⊥

O a
id

a⊥
O(a �(a O a⊥))

s
a⊥

O(a � a) O a⊥

id
a⊥

O(a � a) O((a O a⊥) � a⊥)
s

a⊥
O(a � a) O a O(a⊥

� a⊥)

→

id
⊥

O
id

⊥
O( �( O

⊥))
s

⊥
O( � ) O

⊥

id
⊥

O( � ) O(( O
⊥) �

⊥)
s

⊥
O( � ) O O( ⊥

�
⊥)

id
a⊥

O a
id

a⊥
O(a �(a O a⊥))

s
a⊥

O(a � a) O a⊥
id

a⊥ O(a � a) O((a O a⊥) � a⊥)
s

a⊥
O(a � a) O a O(a⊥

� a⊥)

That deep inference is powerful enough to get rid of the cyclic exchange rule has first been observed by Di Gi-
anantonio [DG04]. But he did not use proof nets to show this fact.
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i↓
A⊥

O A

A�A⊥

i↑

S{B}
i↓

S{(A⊥
OA) � B}

S{(A�A⊥) OB}
i↑

S{B}

S{B}
i↓

S{B �(A⊥
OA)}

S{B O(A� A⊥)}
i↑

S{B}

S{AO(B O C)}
α↓

S{(AOB) O C}

S{A�(B �C)}
α↑

S{(A�B) �C}

S{A�(B OC)}
s

S{(A�B) O C}

S{(AOB) � C}
s

S{AO(B �C)}

Figure 12: A system for cyclic MLL− in the calculus of structures

By combining the last two sections, i.e., proof nets for cyclic linear logic and intuitionistic linear logic, we
can obtain proof nets for the Lambek calculus [Lam58]. We leave the details as an exercise. The interested
reader is referred to [LR96] or [Lam01], which contain a systematic treatment.

It is also possible to combine usual commutative MLL− and cyclic MLL− together in a single system. Then
there is a par/tensor pair which is commutative and one which is non-commutative. This is done in [AR00].

3.5 Multiplicative linear logic with units

Let us now finally discuss the problem of the units. We stick to the multiplicative fragment of linear logic. The
formulas of MLL are generated by

F ::= A | A ⊥ | F O F | F �F | ⊥ | 1

where again everything is as in Section 2.1. The two units are dual to each other:

⊥⊥ = 1 1⊥ = ⊥

The inference rules in the sequent calculus are the same as in (1) plus the ones for the units:

⊢ Γ, ∆
⊥
⊢ Γ,⊥, ∆

1
⊢ 1

(71)

If we now follow the argumentation of avoiding trivial rule permutations as in (10), we have to identify the
following three derivations in the sequent calculus:

Γ, A
⊥
⊥, Γ, A B, ∆

�
⊥, Γ, A�B, ∆

←→

Γ, A B, ∆
�

Γ, A�B, ∆
⊥
⊥, Γ, A�B, ∆

←→ Γ, A

B, ∆
⊥
⊥, B, ∆

�
⊥, Γ, A�B, ∆

because they are obtained from each other by permuting the ⊥-rule under and over the �-rule. Furthermore,
following the equations that are imposed on proofs by the axioms of *-autonomous categories (with units) these
three proofs have to be identified.

However, if we follow the idea of having a graph as proof net, we have to attach the ⊥ somewhere. But there
is no canonical place to do so. This is explained in further detail in [LS06]. That there is this problem with the
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⊥-rule, and in fact with every kind of weakening rule has already been observed in [Gir87, Laf95, Gir96] and
others.20

The solution to the problem is instead of considering graphs as proof nets, to consider equivalence classes of
such graphs. There are now three different proposals in the literature to do so. In [BCST96] the authors use a
two-sided version of proof nets and attach the ⊥ to the edges in the graph (see also Section 5.1). We will show
here the approach taken by [SL04, LS06] which clearly follows Ideology 2.3.1. The additional graph structure
attached to the sequent forest does no longer consist of only the identity links, but of another formula tree.
Then the resulting graph behaves as ordinary unit-free proof net and obeys the usual correctness criteria. The
basic idea is the following. The ordinary proof net

a a⊥ b b⊥

�

is now written as
O

� �

a a⊥ b b⊥

�

i.e., the identity links are replaced by �-nodes which are connected by a O.21 If we now have to attach a ⊥, we
attach it via a � to the root of linking tree of the proof to which we apply the ⊥-rule. Figure 13 shows three
examples. Since all three of them are the same proof according to what has been said above, we have to put
them in the same equivalence class. To achieve this, we consider linking trees equivalent modulo the following
equation:

�

O

⊥ P Q

=

O

�

⊥ P Q

(72)

provided going from right to left in (72) does not destroy the correctness.22

The details of this kind of proof nets are carried out in [SL04, LS06], where it is also shown that they form
the free *-autonomous category (in the usual sense, with units).

Let us note here only that the linking tree of an MLL proof net can be seen as the up-side in a two-sided
unit-free proof net, as we discussed it in Section 2.6, provided we read the units ⊥ and 1 as ordinary atoms.
Here is an example:

O

�

� �

⊥ a a⊥ b b⊥

�

;

O
•

�
•

�
•

�
•

⊥• a• a⊥• b• b⊥•

⊥◦ a◦ a⊥◦ b◦ b⊥◦

�
◦

20To be precise, one should note that the problem has already been noted in [KM71].
21If there are more than two axiom links we either use n-ary O or take the equivalence class modulo associativity and commuta-

tivity of O in the linking tree. This is not problematic since we have to take equivalence classes anyway.
22Observe that going to left to right cannot destroy correctness because this corresponds to an application of the switch rule in

the calculus of structures, which always preserves correctness (see second proof of Theorem 2.5.5).
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id
⊢ a, a⊥

⊥
⊢ ⊥, a, a⊥

id
⊢ b, b⊥

�
⊢ ⊥, a, a⊥

� b, b⊥

;

O

�

� �

⊥ a a⊥ b b⊥

�

id
⊢ a, a⊥

id
⊢ b, b⊥

�
⊢ a, a⊥

� b, b⊥
⊥
⊢ ⊥, a, a⊥

� b, b⊥

;

�

O

� �

⊥ a a⊥ b b⊥

�

id
⊢ a, a⊥

id
⊢ b, b⊥

⊥
⊢ b, b⊥,⊥

�
⊢ a, a⊥

� b, b⊥,⊥

;

O

�

� �

a a⊥ b b⊥ ⊥

�

Figure 13: From sequent calculus to MLL proof nets with units

An alternative approach to the problem of the units has recently proposed by Hughes. In [Hug05b] he
defines a notion for proof nets for MLL (also following Ideology 2.3.1) where he attaches the ⊥ to some atom
in the proof. This has the advantage that there is no need to consider equivalence classes of proof nets for
defining cut elimination. However, for constructing the free *-autonomous category he also needs equivalence
classes [Hug05a].

3.5.1 Open Research Problem Find for a notion of proof nets that is also able to accommodate the
additive units ⊤ and 0 of linear logic.

3.6 Mix

In order to avoid the problems with the units, one can simply ignore them, as we did in the whole first part of
these notes. An alternative is to add the rules

⊢ Γ ⊢ ∆
mix

⊢ Γ, ∆
and mix0

⊢
(73)

called mix and nullary mix. Adding these two rule to (1) or (1)+(71) is equivalent to saying that ⊥ = 1. By
doing this, the correctness criteria shown in Section 2.5 change only slightly: The acyclicity condition remains,
but the connectedness condition has to be dropped. A detailed analysis for this can be found in [FR94].

3.7 Pomset logic and BV

Before we leave the realm of linear logic, let us show another variation, which has a particularly nice theory
of proof nets. It has been introduced by Retoré [Ret97] under the name pomset logic. The set of formulas is
generated via

F ::= A | A ⊥ | F O F | F �F | F ⊳F
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Negation is defined as in Section 2.1. The new connective ⊳ is non-commutative and self-dual, i.e.,

(A⊳ B)⊥ = A⊥
⊳B⊥

We will also allow to write A⊲ B for B ⊳ A.
For defining proof nets we use Retoré’s RB-graph presentation. The O, the �, the cut and the identity are

translated into RB-graphs as in Section 2.5. The new connective is translated as follows:

⊳

A B

A ⊳B

;

The correctness criterion hast to be changed such that in an Æ-cycle we can walk through a red edge with an
arrow only in the direction of the arrow. Through undirected edges we can still walk either way. Furthermore,
the connectedness condition has to be dropped.23 Here are 4 examples:

(74)

(75)

The two examples in (74) fulfill the correctness criterion, while the two examples in (75) do not.
Note that we can define cut elimination as before, but we have to make sure that the arrows go in the right

direction. Here is the new reduction rule that has to be added to the ones in (47) and (48):

; (76)

With the same methods as in Section 2.7, we can show the following theorem:

3.7.1 Theorem Cut elimination for pomset logic proof nets is terminating, confluent, and preserves cor-
rectness.

You might already have wondered why for pomset logic we did not introduce the sequent calculus system
before introducing the proof nets, as we did it with all other logics so far. The reason is simple. There is no
sequent calculus system for pomset logic.

This of course questions the label “logic” for the object we have here, if there is not even an ordinary
deductive system for it. And what is the meaning of cut elimination in that respect?

Fortunately, there is deep inference and the calculus of structures. The system shown in Figure 14 has been
introduced by Guglielmi [Gug02] who called it SBV. For that system, we extend our language for formulas
with another generator, the unit ◦. Furthermore, we consider formulas to be equivalent modulo the smallest
congruence relation generated by the equations

AO ◦ = A = ◦OA A� ◦ = A = ◦�A A⊳ ◦ = A = ◦⊳A (77)

23The reason for this is that because of the self-duality of the new connective ⊳ the two units ⊥ and 1 are identified.
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S{◦}
i↓

S{A⊥
O A}

S{A�A⊥}
i↑

S{◦}

S{AOB}
σ↓

S{B OA}

S{A�B}
σ↑

S{B � A}

S{AO(B O C)}
α↓

S{(AOB) O C}

S{A�(B �C)}
α↑

S{(A�B) �C}

S{A⊳(B ⊳ C)}
α⊳↓

S{(A⊳B) ⊳ C}

S{(A⊳B) ⊳C}
α⊳↑

S{A⊳(B ⊳C)}

S{A�(B OC)}
s

S{(A�B) O C}

S{(AOC) ⊳(B O D)}
q↓

S{(A⊳B) O(C ⊳ D)}

S{(A�C) ⊳(B �D)}
q↑

S{(A⊳B) �(C ⊳D)}

Figure 14: System SBV in the calculus of structures

The reason for this is to avoid to have five different versions of i↓ and i↑.24 Furthermore, we want the following
derivation to be valid:

A�B
=

(A⊳ ◦) �(◦⊳B)
q↑

(A� ◦) ⊳(◦�B)
=

A⊳B
=

(AO ◦) ⊳(◦OB)
q↓

(A⊳ ◦) O(◦⊳B)
=

AOB

!

A�B
q↑

A⊳B
q↓

AOB

(78)

Here we implicitly use the “fake inference rule”

S{B}
=

S{A}

where A = B according to the equations in (77). Without it, we would need several more variants of q↓ and
q↑, and the system would become rather big. The fragment of SBV without the up-rules (i.e., without the rules
with the ↑ in the name) is called BV. As usual in the calculus of structures, the up-fragment corresponds to the
cut, and we have for BV the cut elimination theorem (proved by Guglielmi [Gug02]):

3.7.2 Theorem Let A be any pomset formula. Then,

for every derivation

◦

SBV ‖‖
A

there is a derivation

◦

BV ‖‖
A

.

The proof uses the technique of splitting and works essentially the same way as we have sketched it for
Theorem 2.7.3. The logic that is defined by BV is the first logic that definitely needs deep inference. Alwen
Tiu [Tiu01, Tiu06] has shown that there cannot be a shallow inference system (in particular, no sequent calculus
system) defining the logic of BV.

We can apply the flow-graph method (see Section 2.4 to obtain proof nets from proofs in BV. Or, if you
prefer, you can obtain two-sided proof nets from derivations in SBV. Everything that has been said in Section 2.6

24Remember that for cyclic linear logic we had already three of them.
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◦
i↓

b O b
=

bO(◦⊳(◦O b⊥))
i↓

b O((a O a⊥) ⊳(◦O b⊥))
q↓

b O(a ⊳ ◦) O(a⊥
⊳ b⊥)

=
bO aO(a⊥

⊳ b⊥)

◦
i↓

b O b
=

(b O b⊥) ⊳ ◦
i↓

(b O b⊥) ⊳(a O a⊥)
q↓

(b ⊳ a) O(b⊥ ⊳ a⊥)
=

(b ⊳ a) O(a⊥
⊲ b⊥)

↓ ↓

◦
i↓

O
=

O(◦⊳(◦O
⊥))

i↓
O(( O

⊥) ⊳(◦O
⊥))

q↓
O( ⊳ ◦) O( ⊥

⊳
⊥)

=
O O( ⊥

⊳
⊥)

◦
i↓

bO b
=

b O(◦⊳(◦O b⊥))
i↓

bO((a O a⊥) ⊳(◦O b⊥))
q↓

b O(a ⊳ ◦) O(a⊥
⊳ b⊥)

=
b O a O(a⊥

⊳ b⊥)

◦
i↓

O
=

( O
⊥) ⊳ ◦

i↓
( O

⊥) ⊳( O
⊥)

q↓
( ⊳ ) O( ⊥

⊳
⊥)

=
( ⊳ ) O( ⊥

⊲
⊥)

◦
i↓

bO b
=

(b O b⊥) ⊳ ◦
i↓

(b O b⊥) ⊳(a O a⊥)
q↓

(b ⊳ a) O(b⊥ ⊳ a⊥)
=

(b ⊳ a) O(a⊥
⊲ b⊥)

↓ ↓
◦

i↓
O

=
O(◦⊳(◦O

⊥))
i↓

O(( O
⊥) ⊳(◦O

⊥))
q↓

O( ⊳ ◦) O( ⊥
⊳

⊥)
=

O O( ⊥
⊳

⊥)

◦
i↓

b O b
=

bO(◦⊳(◦O b⊥))
i↓

bO((a O a⊥) ⊳(◦O b⊥))
q↓

b O(a ⊳ ◦) O(a⊥
⊳ b⊥)

=
bO a O(a⊥

⊳ b⊥)

◦
i↓

O
=

( O
⊥) ⊳ ◦

i↓
( O

⊥) ⊳( O
⊥)

q↓
( ⊳ ) O( ⊥

⊳
⊥)

=
( ⊳ ) O( ⊥

⊲
⊥)

◦
i↓

b O b
=

(b O b⊥) ⊳ ◦
i↓

(b O b⊥) ⊳(a O a⊥)
q↓

(b ⊳ a) O(b⊥ ⊳ a⊥)
=

(b ⊳ a) O(a⊥
⊲ b⊥)

↓ ↓

b a a⊥ b⊥

O ⊳

b a a⊥ b⊥

⊳ ⊲

Figure 15: From BV to proof nets

does also apply here. Figure 15 shows two small examples of proof nets obtained from BV derivations. They,
in fact, correspond to the two RB-graphs in (74).

The reason for mentioning all this is the following theorem:

3.7.3 Theorem Let A and B be any pomset logic formulas. Then

A

SBV ‖‖
B

if and only if

◦

BV ‖‖
A⊥

OB

(79)

and if these derivations exist, then they have the same proof net, and this proof net obeys the pomset logic
correctness criterion, when written as RB-graph.

Proof (Sketch): Let us start with the first part of the theorem which is easy, provided we have cut elimination:
From

A

SBV ‖‖
B
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we can build
◦

i↓
A⊥

OA

SBV ‖‖
A⊥

O B

Now we apply Theorem 3.7.2 to get
◦

BV ‖‖
A⊥

OB

(80)

The other direction is even easier. From (80), we can directly build

A
=

A� ◦

BV ‖‖
A�(A⊥

OB)
s

(A� A⊥) OB
i↑

◦OB
=

B

Note that this part of the proof did not use the fact that we are speaking about BV. It in fact holds for any
logical system in the calculus of structures, provided we have the switch rule and a cut elimination that preserves
the flow-graph.25

Let us now come to the second more interesting and more difficult part or the theorem. There are two ways
to show that every BV proof net obeys the pomset logic criterion. The first is to show that every rule in BV
preserves the criterion (and that the unique net with ◦ as conclusion is correct). This has been done already by
Retoré [Ret99b]. The second way, which has been used in [Str03a, GS02] is based on the following claims:

Claim 1: Let n ≥ 1 and atoms a1, . . . , an and formulas A1, . . . , An be given, such that for all i ∈ {1, . . . , n},
we have Ai = a⊥

i � ai+1 or Ai = a⊥

i ⊳ ai+1 (where we count indices modulo n). Then there is no
derivation

◦

BV ‖‖
A1 O · · ·O An

(81)

For proving the claim we proceed by way of contradiction and by induction on n. We have to perform a
case analysis how the rules of BV could be applied inside A1 O · · ·OAn. We also need the concept of a quasi-
subformula. We say that A is a quasi-subformula of B, if A can be obtained from B by replacing some atom
occurrences by ◦.26

Claim 2: Let π be a pomset logic pre-proof net with conclusion B, and let A be a quasi-subformula of B such
that whenever an atom occurrence is replaced by ◦, then also its mate (according to the linking in
π) is replaced by ◦. Then we have the following:

If

◦

BV ‖‖
B

then

◦

BV ‖‖
A

.

This is easy to see because the proof of B remains valid if we replace pairs of atoms by ◦.

Claim 3: Let π be a pomset logic pre-proof net with conclusion B. Then π does not fulfill the pomset logic
correctness criterion if and only if B has a quasi-subformula A1 O · · ·OAn, where all Ai are as in
Claim 1, and all pairs ai, a⊥

i are paired up in the linking of π.

Claims 1–3 together imply the result. ⊓⊔

25Roughly speaking, this is the same as saying that the proofs in the logic form some sort of *-autonomous category.
26When A is a quasi-subformula of B, then the relation web (see Definition 2.5.18) of A is a subweb of the relation web of B.
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3.7.4 Remark The Claim 3 in the proof above states a second correctness criterion for BV/pomset logic,
which does not need RB-graphs, and which first appears in [Str03a]. Claims 1 and 2 in the proof above show
that BV derivations obey this criterion. Proving Claim 3 then means showing that the two criteria are indeed
equivalent.

3.7.5 Exercise Complete the proof of the second part of Theorem (3.7.3), i.e., show that every proof net
coming from a BV derivation obeys the pomset logic correctness criterion.

3.7.6 Open Research Problem Prove the converse. I.e., show that for every correct pomset logic proof
net there is a BV derivation having it as flow graph.

Solving this problem would finally (because of Tiu’s result [Tiu06]) show that it is indeed impossible to give
a sequent calculus system for pomset logic.

4 Intuitionistic logic

We will not speak about intuitionistic logic in this course. But I will mention here some important facts related
to the title of the lecture notes, because these facts have had a strong impact on the development of proof nets
for classical logic that we will discuss in the next section.

The inference rules in natural deduction for implication in intuitionistic logic

Γ, A ⊢ B
→I

Γ ⊢ A→ B
and

Γ ⊢ A→ B Γ ⊢ A
→E

Γ ⊢ B

are the same as the typing rules

Γ, x : A ⊢ u : B
abs

Γ ⊢ λx.u : A→ B
and

Γ ⊢ u : A→ B Γ ⊢ v : A
app

Γ ⊢ uv : B

for the simply typed λ-calculus. This is the basis for the so-called Curry-Howard-correspondence (also known
as formulas-as-types-correspondence and proofs-as-programs-correspondence). It is also called “isomorphism”
because the normalization in natural deduction [Pra65] does the same as β-reduction in the λ-calculus.27 If we
add conjunction to the logic (or equivalently product types to the λ-calculus) we can use the proofs in natural
deduction (or equivalently λ-terms) for specifying morphism in cartesian closed categories (short: CCCs). What
makes things interesting is the fact that the identity forced on proofs by the notion of normalization in natural
deduction (or equivalently the identity forced on λ-terms by normalization28) is exactly the same as the identity
of morphism that is determined by the axioms of CCCs. For further details on this see [LS86]. Of course, this
simple observation has been extended to more expressive logics and larger type systems (e.g., System F [Gir72],
calculus of constructions [CH88], . . . ).

Since there is already a well-understood canonical and bureaucracy-free presentation of proofs in intuitionistic
logic, namely terms in the (simply) typed λ-calculus, the concept of “proof nets for intuitionistic logic” is not well
investigated. To my knowledge there are only two proposals in that direction. The first, by Lamarche [Lam94]
uses the encoding of intuitionistic logic into (intuitionistic) linear logic (the multiplicative exponential fragment).
The second, by Horbach [Hor06], restricts a class of proof nets for classical logic (that we will discuss in the
next section) to intuitionistic logic. Of course, this cannot be as simple as for IMLL− (see Section 3.3) because
classical logic is not a conservative extension of intuitionistic logic.

5 Classical Logic

It is surely very tempting to extend the beautiful connection between deductive system, λ-calculus, and category
theory from intuitionistic logic to classical logic.

We get from intuitionistic logic to classical logic by adding the law of excluded middle (i.e., A ∨ Ā), or

equivalently, an involutive negation (i.e., ¯̄A = A). Adding this to a Cartesian closed category C , means adding

a contravariant functor (−) : C → C such that ¯̄A ∼= A and (A ∧B) ∼= Ā∨ B̄ where A∨B = Ā⇒B. However, if

27One could also argue that we have here just two different syntactic presentations of the same mathematical objects.
28β-reduction, η-expansion, and α-conversion
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we do this we get a collapse: all proofs of the same formula are identified, which leads to a rather boring proof
theory. This observation is due to André Joyal, and a detailed proof and discussion can be found in [LS86] and
in the appendix of [Gir91].

We will not show the category theoretic proof of the collapse. But we will explain the phenomenon in terms
of the sequent calculus (the argumentation is due to Yves Lafont [GLT89, Appendix B]). Suppose we have two
proofs of the formula B in some sequent calculus system:

��
��

��
??????

Π1

⊢ B and
��

��
��

??????
Π2

⊢ B

Then we can with the help of the rules weakening, contraction, and cut

⊢ Γ
weak

⊢ Γ, A

⊢ Γ, A, A
cont

⊢ Γ, A

⊢ Γ, A ⊢ Ā, ∆
cut

⊢ Γ, ∆

form the following proof of B

��
��

��
??????

Π1

⊢ B
weak

⊢ B, A

��
��

��
??????

Π2

⊢ B
weak

⊢ A⊥, B
cut

⊢ B, B
cont

⊢ B

(82)

If we eliminate the cut from this proof, we get either

��
��

��
??????

Π1

⊢ B
weak

⊢ B, B
cont

⊢ B

or
��

��
��

??????
Π2

⊢ B
weak

⊢ B, B
cont

⊢ B

(83)

depending on a nondeterministic choice. Now note that one can hardly find a reason why for any proof Π, the
two proofs

��
��

��
??????

Π

⊢ B
weak

⊢ B, B
cont

⊢ B

and
��

��
��

??????
Π

⊢ B

(84)

should be distinguished. After all, duplicating a formula and immediately afterwards deleting one copy is not
doing much. Also the laws of category theory tell us to identify the two.

On the other hand, if we want the nice relationship between deductive system and category theory, we need
a confluent cut elimination, which means we have to equate the two proofs in (83). Consequently, by (84), we
have to equate Π1 and Π2. Since there was no initial condition on Π1 and Π2, we conclude that any two proofs
of B must be equal.

But the problem with weakening, which could in fact be solved by using mix (see Sections 3.6 and 5.2), is
not the only one. We run into similar problems with the contraction rule. If we try to eliminate the cut from

��
��

��
??????

Π1

⊢ Γ, A, A
cont

⊢ Γ, A

��
��

��
??????

Π2

⊢ Ā, Ā, ∆
cont

⊢ Ā, ∆
cut .

⊢ Γ, ∆

(85)

we again have to make a nondeterministic choice. In the sections below, we will see a concrete example for this.

There are several possibilities to cope with these problems. The easiest is to say that there cannot be any
good proof theory for classical logic, and stop thinking about the problem29. A more serious and more difficult

29and making sure that also other people do not think about the problem...
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approach is of course to say that we have to drop some of the axioms, i.e., some of the equations that we would
like to hold between proofs in classical logic. But which ones should go?

There are now essentially two different approaches, and both have their advantages and disadvantages.

1. The first says that the axioms of cartesian closed categories are essential and cannot be dispensed with.
Instead, one sacrifices the duality between ∧ and ∨. The motivation for this approach is that a proof
system for classical logic can now be seen as an extension of the λ-calculus and the notion of normalization
does not change. With this approach one has a term calculus for proofs, namely Parigot’s λµ-calculus
[Par92] and a denotational semantics [Gir91]. An important aspect is the computational meaning in terms
of continuations [Thi97, SR98]. There is a well explored category theoretical axiomatization [Sel01], and, of
course, a theory of proof nets [Lau99, Lau03], which is based on the proof nets for MELL (see Section 3.1).
Although these proof nets are very important from the “normalization-as-computation” point of view, we
will not discuss them here because at the current state of the art it is not clear how they can be used to
identify proofs in various deductive systems for classical logic (sequent calculus, resolution, tableaux, . . . ).

2. The second approach considers the perfect symmetry between ∧ and ∨ to be an essential facet of Boolean
logic, that cannot be dispensed with. Consequently, the axioms of cartesian closed categories and the close
relation to the λ-calculus have to be sacrificed. It is much less clear than in the first approach, what the
category theoretical axiomatization [DP04, FP04, LS05a, McK05, Str05b, Lam06] should be, and how a
theory of proof nets should look like. There are now two different versions in the literature, one following
Ideology 2.2.1 (Section 5.1), and the other following Ideology 2.3.1 (Sections 5.2 and 5.3).

5.1 Sequent calculus rule based proof nets

Classical logic can be obtained from multiplicative linear logic by adding the rules of contraction and weakening.
But for obvious reasons we will here change the notation and use the symbols ∧ and ∨ instead of � and O.
Negation will be denoted by ·̄, instead of ·⊥. In other words, our formulas are generated by the syntax

F ::= A | Ā | F ∨F | F ∧F (86)

Note that as before, we ignore the units30 and push negation to the atoms. Here are the inference rules in the
sequent calculus:

id
⊢ Ā, A

⊢ Γ, A ⊢ Ā, ∆
cut

⊢ Γ, ∆

⊢ Γ, A, B, ∆
exch

⊢ Γ, B, A, ∆

⊢ Γ
weak

⊢ A, Γ

⊢ A, A, Γ
cont

⊢ A, Γ

⊢ A, B, Γ
∨
⊢ A ∨B, Γ

⊢ Γ, A ⊢ B, ∆
∧
⊢ Γ, A ∧B, ∆

(87)

Note that there are various different sequent calculus systems for classical propositional logic, starting with
the one by Gentzen [Gen34]. For a systematic treatment, the reader is referred to [TS00]. The motivation for
choosing the one in (87) is that it allows for the simplest notion for proof nets according to Ideology 2.2.1.
When we look at Ideology 2.3.1 and the notion of flow-graphs in the next sections, it does not matter which
sequent system is taken as starting point.

The rules in (87) are essentially the same as the ones in (1) plus the ones for contraction and weakening. In
order to obtain proof nets according to Ideology 2.2.1, we can therefore proceed as shown in Figures 1 and 10.

5.1.1 Exercise Give the translation of the rules in (87) into proof nets as it is done in Figures 1 and 10.

Here is an example of a sequent calculus proof
id
⊢ b̄, b

id
⊢ a, ā

∧
⊢ b̄ ∧ a, ā, b

id
⊢ b̄, b

∧
⊢ b̄ ∧ a, ā ∧ b̄, b, b

cont
⊢ b̄ ∧ a, ā ∧ b̄, b

id
⊢ b̄, b

id
⊢ a, ā

id
⊢ b̄, b

∧
⊢ b̄, a, ā ∧ b

∧
⊢ b̄, b̄, b̄ ∧ a, ā ∧ b̄

cont
⊢ b̄, b ∧ a, ā ∧ b

cut
⊢ b̄ ∧ a, ā ∧ b̄, b ∧ a, ā ∧ b

(88)

30Note, that in classical logic, this does not change the logic because we can pick a distinguished atom, say p0, which may not
appear in the formulas, and define t = p0 ∨ p̄0 and f = p0 ∧ p̄0.
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and its translation into a proof net:

id id

id id id id

∧ ∧ cont cont ∧ ∧

cut

a ā b̄ b

b̄
b

a ābb̄

b
b̄

b b̄b̄ ∧ a ā ∧ b̄ b ∧ a ā ∧ b

(89)

That this can easily be done has already been noted by Girard in the appendix of [Gir91], where he also
explained the problems with this approach that we will discuss below. In [Rob03], Robinson carries out the
details. He uses a two-sided version of the set of rules in (87), but with what we learned in Section 2.6, it is an
easy exercise to translate back and forth between the one- and two-sided version.

Robinson also proves the soundness and completeness of the switching correctness criterion (see Defini-
tion 2.5.4 and Theorem 2.5.5). For the acyclicity condition this is not surprising since the rules in (87) are
the same as in (1) (recall that contraction behaves as O). The connectedness condition is obtained simply by
attaching a weakening somewhere, similarly as we did it with ⊥ in Section 3.5. The price to pay is that now
certain proofs are distinguished that should be identified according the rule-permutability-argument. To see a
very simple example, consider the following three sequent calculus proofs (we systematically omit the exchange
rule).

id
⊢ ā, a

weak
⊢ c, ā, a

id
⊢ b, b̄

∧
⊢ c, ā, a ∧ b, b̄

id
⊢ ā, a

id
⊢ b, b̄

∧
⊢ ā, a ∧ b, b̄

weak
⊢ c, ā, a ∧ b, b̄

id
⊢ ā, a

id
⊢ b, b̄

weak
⊢ c, b, b̄

∧
⊢ c, ā, a ∧ b, b̄

(90)

They differ from each other only via some trivial rule permutation, and should therefore be identified. But
according to [Rob03] they can be translated into five different proof nets. Two of them are shown below:

id id

weak ∧

ā a b

b̄
c ā a ∧ b

(91)

and

id

id weak

∧

a

b

b̄

ā

c

b

a ∧ b

(92)
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5.1.2 Exercise What are the other three proof nets corresponding to (90)? Compare the nets with the ones
in Figure 13.

Let us now come to cut elimination. We have already seen in the introductory part of Section 5, that there
is a problem with weakening. The short discussion in Section 3.1 suggests that there might also be a problem
with contraction. Observe that in Section 3.1, the contraction rule could appear only on one side of the cut,
never at both sides at the same time (because only ?-formulas could be contracted, never !-formulas). This is
the reason why in the end we get confluence of cut elimination for MELL− proof nets. However, for classical
logic the situation is different. Contraction can appear on both sides of the cut, as it is shown in the example
in (88) and (89). For typesetting reasons, let us use the more compact notation (as we also did in Section 2.5):

b̄ a ā b̄ b b b̄ b̄ b a ā b

∧ ∧ cont cont ∧ ∧
(93)

Let us stress that (89) and (93) are only different notations for the same proof net. Note that we have
here an example for the general case in (85). If we want to eliminate the cut from (93), we have to make a
nondeterministic choice, which subproof we duplicate. As outcome we get either

b̄ a ā b̄ b̄ a ā b̄ b b a ā b b

∧ ∧ ∧ ∧ cont cont

cont cont ∧ ∧

(94)

or

b̄ b̄ a ā b̄ b̄ b a ā b b a ā b

cont cont ∧ ∧ ∧ ∧

∧ ∧ cont cont

(95)

In the appendix of [Gir91], Girard argues that for this reason it is impossible to have a confluent notion
of cut elimination for proof nets for classical logic. Of course, his argumentation is valid only for proof nets
following Ideology 2.2.1.

5.1.3 Exercise Show that (94) and (95) obey the switching criterion, and give the sequent proofs corre-
sponding to (94) and (95).

Although there is no confluent cut elimination, Führmann and Pym [FP04] managed to give a category
theoretical axiomatization for the proof identifications made by these proof nets. This could be done because
the authors dropped the “equation”

cut elimination = arrow composition in the category of proofs

and added an order enrichment instead. They defined for two proofs f, g : A→ B that f 4 g iff f reduces to g
via cut elimination. See [McK05] for relating this to the calculus of structures.
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id
⊢ ā, a

weak
⊢ ā, a, a

id
⊢ ā, a

id
⊢ ā, a

weak
⊢ ā, ā, a

∧
⊢ ā, a ∧ ā, ā, a

∧
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5

⊢ ā, ā, a ∧ ā, a ∧ ā, a, a
cont3

⊢ ā, a ∧ ā, a

↓

id
⊢ ¯,

weak
⊢ ¯, ,

id
⊢ ¯,

id
⊢ ¯,

weak
⊢ ¯, ¯,

∧
⊢ ¯, ∧ ¯, ¯,

∧
⊢ ¯, , ∧ ¯, ∧ ¯, ¯,

exch5

⊢ ¯, ¯, ∧ ¯, ∧ ¯, ,
cont3

⊢ ¯, ∧ ¯,

id
⊢ ā, a

weak
⊢ ā, a, a

id
⊢ ā, a

id
⊢ ā, a

weak
⊢ ā, ā, a

∧
⊢ ā, a ∧ ā, ā, a

∧
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5

⊢ ā, ā, a ∧ ā, a ∧ ā, a, a
cont3

⊢ ā, a ∧ ā, a

↓

id
⊢ ¯,

weak
⊢ ¯, ,

id
⊢ ¯,

id
⊢ ¯,

weak
⊢ ¯, ¯,

∧
⊢ ¯, ∧ ¯, ¯,

∧
⊢ ¯, , ∧ ¯, ∧ ¯, ¯,

exch5

⊢ ¯, ¯, ∧ ¯, ∧ ¯, ,
cont3

⊢ ¯, ∧ ¯,

id
⊢ ā, a

weak
⊢ ā, a, a

id
⊢ ā, a

id
⊢ ā, a

weak
⊢ ā, ā, a

∧
⊢ ā, a ∧ ā, ā, a

∧
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5

⊢ ā, ā, a ∧ ā, a ∧ ā, a, a
cont3

⊢ ā, a ∧ ā, a

ւ ց

(simple) ā a ā a

∧

ā a ā a

∧

(extended)

Figure 16: From sequent calculus to classical logic proof nets via flow graphs

5.2 Flow graph based proof nets (simple version)

In the previous section we have seen what happens if we naively carry the approach of Section 2.2 to classical
logic. Now we are going to see what happens if we naively carry the approach of Section 2.3 to classical logic.
We can define a pre-proof net as in Definition 2.5.1, but now the identity links do not provide a perfect matching
for the set of leaves of the sequent forest. It can happen that some atoms have no mate, i.e., live celibate, and
that some atoms have more than one mate, i.e., live polygamous. It could even happen that there are two or
more identity links between a pair of atoms, as the example (on the right) in Figure 16 shows. This example
also shows that we can now completely forget about the correctness criteria that we have seen in Section 2.5.
But most importantly, this example shows that for classical logic it makes a huge difference whether we follow
Ideology 2.2.1 or Ideology 2.3.1 to obtain proof nets. This also means, that the term “proof net” should be used
with care, because it is not necessarily clear what a proof net for classical logic actually is.

Let us, for the time being, restrict ourselves to those nets that have at most one identity link between any
pair of atoms, and call them simple prenets :

5.2.1 Definition A simple prenet is a sequent forest Γ, possibly with cuts, together with a symmetric,
irreflexive binary relation P on its set of leaves, such that whenever two atom occurrences are related by P then
they must be dual to each other. We will use the notation P � Γ.
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As in Section 2.5, we have to treat cuts as special formulas (see page 19).
In the left of Figure 16 we have shown an example how to translate a sequent calculus proof into a simple

prenet. We draw the flow-graph as we did in Section 2.3 and forget how often a pair of atoms is connected to
each other. Here is an example of a simple prenet with cut. It is the one obtained from (88):

b̄ a ā b̄ b b̄ b a ā b

∧ ∧ ∧ ∧

(96)

We will call a simple prenet sequentializable if it can be obtained via the flow-graph method from the sequent
calculus system in (87) extended by the mix-rule

⊢ Γ ⊢ ∆
mix

⊢ Γ, ∆

5.2.2 Exercise Draw the simple prenets that are obtained from the sequent calculus proofs corresponding
to the proof nets in (94) and (95). Hint: You can do this exercise without doing Exercise 5.1.3.

We are now going to define a correctness criterion for simple prenets.

5.2.3 Definition Let Γ be a sequent. A conjunctive pruning of Γ is the subforest obtained Γ by deleting
one of the two immediate subformulas for every ∧ and for every cut. Let π = P � Γ be a simple prenet. we call
the prenet π′ = P ′

� Γ′ a conjunctive pruning of π if Γ′ is a conjunctive pruning of Γ and P ′ is the restriction
of P to (the set of leaves of) Γ′.31

Here are two examples for conjunctive prunings of (96):

b̄ a ā b̄ b b̄ b a ā b

∧ ∧ ∧ ∧

and

b̄ a ā b̄ b b̄ b a ā b

∧ ∧ ∧ ∧

5.2.4 Exercise How many others are there?

5.2.5 Definition A simple prenet P�Γ is called correct (or, obeys the pruning condition, if every conjunctive
pruning P ′

� Γ′ of π contains at least one identity link, i.e., P ′ is not empty.

Clearly, the example in (96) is correct. Here is an example, which is not correct, because there is a pruning,
in which all links disappear:

a b b̄ ā

∧ ∧

→ a b b̄ ā

∧ ∧

Interestingly, also in the correctness criterion given by Hughes and van Glabbeek in [HvG03] for MALL−

(see Section 3.2) the pruning condition plays a role.

31Strictly speaking, π′ is not a simple prenet because Γ′ is not a sequent because every ∧ in Γ′ is unary. For this reason π′ is
not a subprenet in the sense of Definition 2.5.7.
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5.2.6 Theorem A simple prenet π is correct, if and only if it is sequentializable.

Proof: First, observe that the id-rule produces correct prenets and that all rules in (87), including mix, preserve
correctness. For the rules ∨, exch, weak, cont, and mix, this is obvious. Let us show it here for the ∧-rule. Let
π1 and π2 be the simple prenets obtained from

��
��

��
??????

Π1

⊢ Γ, A and
��

��
��

??????
Π2

⊢ B, ∆

respectively. Let us assume by induction hypothesis that they are correct, and let π be the simple prenet
obtained from

��
��

��
??????

Π1

⊢ Γ, A
��

��
��

??????
Π2

⊢ B, ∆
∧

⊢ Γ, A ∧B, ∆

Let π′ be a conjunctive pruning of π. If it removes B from A∧B, then π′ contains a link because π1 is correct,
and if π′ removes A, then it must contain a link because π2 is correct. For the cut-rule it is similar.

Conversely, let π = P � ∆ be a correct prenet. we will proceed by induction on the size of ∆ (that is, the
number of ∧, ∨, atoms, and cuts appearing in it) to construct a a corresponding sequent proof using the rules
in (87) plus mix.� If ∆ contains a formula A ∨B, then we can apply the ∨-rule and proceed by induction hypothesis.� If ∆ contains a formula A ∧ B, i.e., ∆ = Γ, A ∧ B, then we can form three correct simple prenets

π1 = P ′
� Γ, A, and π2 = P ′′

� Γ, B, and π3 = P � Γ, A, B, where P ′ and P ′′ are the restrictions of P to
Γ, A and Γ, B, respectively. Since π1, and π2, and π3 are all correct, we get three sequent calculus proofs

��
��

��
??????

Π1

⊢ Γ, A
��

��
��

??????
Π2

⊢ Γ, B
��

��
��

??????
Π3

⊢ Γ, A, B

from which we can form the following proof (we omit the instances of exch):

��
��

��
??????

Π1

⊢ Γ, A
��

��
��

??????
Π3

⊢ Γ, A, B
∧
⊢ Γ, Γ, A ∧B, A

��
��

��
??????

Π2

⊢ Γ, B
∧

⊢ Γ, Γ, Γ, A ∧B, A ∧B
cont

...
cont

⊢ Γ, A ∧B

(97)

which translates into π. Let us make three remarks about that case:

– Note that we made crucial use of the fact that we forget how often an identity link is used inside the
proof.

– The proof Π3 is needed for keeping the links that cross A ∧ B. If there is in π no link between an
atom in A and an atom in B, then we do not need Π3 and could replace (97) by

��
��

��
??????

Π1

⊢ Γ, A
��

��
��

??????
Π2

⊢ Γ, B
∧

⊢ Γ, Γ, A ∧B
cont

...
cont

⊢ Γ, A ∧B
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– For dealing with cuts we proceed similarly. But to be formally precise, we need to allow to apply the
contraction rule not only to formulas in the sequent, but also to cuts.� If ∆ = Γ, A such that no link is coming out of A, then we apply the weakening rule and proceed by

induction hypothesis.� The only remaining case is where all formulas in ∆ are atoms. Then our sequent calculus proof is obtained
by a sufficient number of instances of id, cont, exch, and mix. ⊓⊔

We will use the term simple proof net for the correct (i.e., sequentializable) simple prenets. They have
been introduced in [LS05b]. However, the idea of looking at paired atom occurrences in classical logic is much
older. In [And76] Andrews applied the “flow-graph” method to resolution proofs and called the result matings.
He had, in fact, exactly the same correctness criterion as we have seen above. Independently, Bibel [Bib81]
investigated the same objects and called them connection proofs. Also the term matrix proofs is used because
formulas have been written in form of matrices.

However, both authors, Andrews and Bibel, did not allow the linking of two atoms that are connected in the
tree by a conjunction32. From the viewpoint of provability/correctness, this perfectly makes sense. Note that
such links (we have an example in Figure 16) disappear in every conjunctive pruning. So, why having them in
the first place?

The reason is cut elimination, i.e., the composition of proofs. We define it in the same way as for MLL− in
Section 2.7. In the case of a cut on a compound formula, we do the obvious thing:

A B B̄ Ā

∧ ∨ →
A B B̄ Ā

(98)

To see that this preserves correctness, note that a conjunctive pruning of the cut on the left yields either A or
B or B̄∨ Ā, and a conjunctive pruning of the cut on the right yields either A, B or A, B̄ or Ā, B or Ā, B̄. Hence,
every conjunctive pruning of the reduced simple prenet contains a conjunctive pruning of the non-reduced simple
prenet. Therefore it most contain at least one link.

For the cut reduction on atomic cuts, we have to be careful, since the atoms can be connected to many other
atoms (or no other atoms). Instead of simply having:

ā a ā a → ā a

the reduction looks as follows:

ā ā · · · ā a ā a · · · a → ā ā · · · ā a · · · a

If one of the two cut atoms is celibate, no link remains:

ā ā · · · ā a ā → ā ā · · · ā

If the two cut atoms are linked together, then this link is ignored in the reduction (and, of course, removed with
the cut):

ā ā · · · ā a ā a · · · a → ā ā · · · ā a · · · a

The atomic cut reduction also preserves correctness. If we could in the reduced simple prenet construct a
conjunctive pruning that does not contain an identity link, then the same pruning would not contain a link in
the non-reduced net, where one cut atom is always removed.

32That means they are connected by a red edge in the relation web, see Definition 2.5.18.
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5.2.7 Theorem Cut elimination for simple proof nets preserves correctness, is confluent, and terminating.

Proof: Preservation of correctness has already been shown above. Termination is obvious since each step
reduces the size of the simple proof net. For confluence we only need to consider atomic cuts since the reduction
of compound cuts does not create critical pairs. Let π be a simple proof net with atomic cuts and let π′ be
the result of reducing these atomic cuts. Then there is a link between two dual atom occurrences a and ā in
π′, if either that link is already present in π, or there is an alternating link-cut-link-cut-. . . -link path in π that
connects a and ā. This is independent from the order in which the atomic cuts are reduces. ⊓⊔

The natural question that arises now is: How does this confluent cut elimination relate to the non-confluent
cut elimination in the sequent calculus?

Let us look again at the two problematic cases (82) and (85). The problem with weakening (82) can easily
be solved by using the mix-rule:

��
��

��
??????

Π1

⊢ Γ
weak

⊢ Γ, A

��
��

��
??????

Π2

⊢ ∆
weak

⊢ Ā, ∆
cut

⊢ Γ, ∆

→ ��
��

��
??????

Π1

⊢ Γ
��

��
��

??????
Π2

⊢ ∆
mix

⊢ Γ, ∆

Both subproofs Π1 and Π2 are kept in the reduced net. With the help of mix, this can also be done in the
sequent calculus, and in simple proof nets it is done in the same way.

For the contraction case (85) the situation is less obvious. Consider again the simple proof net in (96), which
corresponds to the sequent calculus proof in (88). If we apply the cut elimination for simple proof nets, we
obtain the following result:

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

(99)

If you did Exercise 5.2.2, you will notice that this is exactly the simple proof net obtained from the sequent
proofs corresponding to (94) and (95). However, let us emphasize that this correspondence also makes crucial
use of the fact that we deliberately forget how often an identity link is used in the proof. If we kept this
information, the proofs in (94) and (95) would be represented by

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

and
b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

respectively. See [LS05b] for further details.
It should be clear that simple proof nets are not particularly connected to the sequent calculus. We can

obtain them in the same way from proofs presented in the calculus of structures. Figure 17 shows a deductive
system for classical logic in the calculus of structures. It is a (unit-free) variation of system SKS, presented
in [BT01]. The rules are the same as the ones for MLL− in Figure 5. As in the sequent calculus, we add the rules
for contraction, weakening, and mix. We also add the m-rule, called medial. As it is the case with mix, it is is
not necessary from the viewpoint of provability, but its presence gives the system a much nicer proof-theoretic
behavior. See [BT01, Brü03, Str05b, Lam06] for further details.

Most of the theory on the relation between proof nets, sequent calculus and calculus of structures, that has
been developed in Section 2, can be ported easily to classical logic. In particular, we can obtain Theorem 2.6.2
and the commutativity of (49), provided we restrict ourselves to simple proof nets.

5.2.8 Open Research Problem Find a category theoretical axiomatization that generates the same iden-
tification for proofs as it is done by simple proof nets for classical logic. (This is meant in the same sense as
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i↓
Ā ∨A

A ∧ Ā
i↑

S{B}
i↓

S{(Ā ∨A) ∧B}

S{B ∨ (A ∧ Ā)}
i↑

S{B}

S{A ∨B}
σ↓

S{B ∨A}

S{A ∧B}
σ↑

S{B ∧A}

S{A ∨ (B ∨C)}
α↓

S{(A ∨B) ∨ C}

S{A ∧ (B ∧C)}
α↑

S{(A ∧B) ∧ C}

S{A ∧ (B ∨C)}
s

S{(A ∧B) ∨ C}

S{A ∧B}
mix

S{A ∨B}

S{(A ∧B) ∨ (C ∧D)}
m

S{(A ∨ C) ∧ (B ∨D)}

S{A ∨A}
c↓

S{A}

S{A}
c↑

S{A ∧A}

S{B}
w↓

S{B ∨A}

S{A ∧B}
w↑

S{B}

Figure 17: A system for classical logic in the calculus of structures

*-autonomous categories provide the axiomatization for proof nets for MLL, and cartesian closed categories for
typed λ-terms.)

There is already preliminary research in this direction in [LS05b, LS05a, Str05a, Lam06, Str05b], but there
is still no satisfactory solution.

5.3 Flow graph based proof nets (extended version)

The first problem with simple proof nets is that they are too simple. When speaking about the identity of
proofs one should also take into account the size of proofs. But simple proof nets have a size at most quadratic
in the size of the conclusion sequent. This means they are not able to observe any kind of complexity, not even
the exponential blow-up related to cut elimination.

The second problem with simple proof nets is that they are too simple. They omit too much important
information about the proof. Checking their correctness takes exponential time, which is not faster than trying
to prove the conclusion from scratch. But checking a proof should be a feasible task, taking only linear time in
the size of the proof.

A naive solution could be to simply keep track of how often an identity link is used in the proof, i.e., allow
more than one link between a pair of dual atoms, as shown on the right in Figure 16. Let us call these new
objects extended prenets.

The first problem we encounter now is not only to define what correctness means, but also, what sequential-
izable means. To see the difficulty, consider again the simple proof net in (99). Now, all of the sudden, there is
no sequent calculus proof that has it a flow-graph. However, we can find a proof in the calculus of structures,
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in the system shown in Figure 17:

i↓
( ∧ ) ∨ ( ∧ ) ∨ (( ∨ ) ∧ ( ∨ ))

m
(( ∨ ) ∧ ( ∨ )) ∨ (( ∨ ) ∧ ( ∨ ))

c↓4
( ∧ ) ∨ ( ∧ )

i↓2
( ∧ ( ∨ ) ∧ ) ∨ ( ∧ ( ∨ ) ∧ )

s4
( ∧ ) ∨ ( ∧ ) ∨ ( ∧ ) ∨ ( ∧ )

i↓
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ((b ∨ b) ∧ (b ∨ b))

m
((b̄ ∨ b̄) ∧ (b̄ ∨ b̄)) ∨ ((b ∨ b) ∧ (b ∨ b))

c↓4
(b̄ ∧ b̄) ∨ (b ∧ b)

i↓2
(b̄ ∧ (a ∨ ā) ∧ b̄) ∨ (b ∧ (a ∨ ā) ∧ b)

s4
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

i↓
( ∧ ) ∨ ( ∧ ) ∨ (( ∨ ) ∧ ( ∨ ))

m
(( ∨ ) ∧ ( ∨ )) ∨ (( ∨ ) ∧ ( ∨ ))

c↓4
( ∧ ) ∨ ( ∧ )

→ i↓2
( ∧ ( ∨ ) ∧ ) ∨ ( ∧ ( ∨ ) ∧ )

s4
( ∧ ) ∨ ( ∧ ) ∨ ( ∧ ) ∨ ( ∧ )

i↓
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ((b ∨ b) ∧ (b ∨ b))

m
((b̄ ∨ b̄) ∧ (b̄ ∨ b̄)) ∨ ((b ∨ b) ∧ (b ∨ b))

c↓4
(b̄ ∧ b̄) ∨ (b ∧ b)

→ i↓2
(b̄ ∧ (a ∨ ā) ∧ b̄) ∨ (b ∧ (a ∨ ā) ∧ b)

s4
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

This means that for extended prenets, it depends on the chosen deductive system whether a given prenet is
sequentializable or not.

5.3.1 Open Research Problem Find a good notion of “sequentializability” and a corresponding correct-
ness criterion for extended prenets.

The second, more serious problem comes with cut elimination. In [LS05b] it is explained, how cut elimination
for extended prenets has to look like. For a cut on compound formulas it is the same as for simple proof nets.
But for an atomic cut, we now have to multiply the number of edges. For example

ā a ā a reduces to ā a

If there are already some links between the remaining pair of atoms, then these links have to be added. For
example

ā a ā a reduces to ā a

Of course, we cannot say whether this preserves correctness, since we do not know what correctness means. But
the good news is that cut reduction is still terminating, and that we can get an exponential blow-up in the size
of the proof when doing cut elimination.

The bad news is that cut elimination is no longer confluent. This has already been observed in [LS05b]. The
following example is taken from [Hor06]. Depending on which cut in

ā a ā a ā a

we reduce first, we get either

ā a ā a or ā a ā a

If we reduce the remaining cut, we get

ā a
or

ā a

respectively. The basic reason of this non-confluence is that we do not have the acyclicity condition anymore,
and it depends on the order of the cut reductions how often “the flow-graph runs through a cycle”. In [Hor06],
Horbach proposes a way of keeping track of the cycles in order to get confluence for cut elimination on extended
prenets representing intuitionistic proofs.

RR n° 6013



70 Lutz Straßburger

An alternative possible solution could be to redefine cut elimination such that no longer all atomic cuts are
reduced. In [Str05a, Str05b] it is shown how this can be done such that we get a confluent cut elimination which
corresponds to composition of derivations in the calculus of structures:

A

‖
‖
B

‖
‖
C

→

A

‖
‖
C

Which still allows to keep the equation

cut elimination = arrow composition in the category of proofs

But then cut elimination for extended prenets does no longer correspond to cut elimination in the sequent
calculus. That it is indeed impossible to make the diagram (49) commute for the sequent calculus and extended
prenets has already been shown with the example in (99) in the previous section. But it is not known whether
we can make it commute for the calculus of structures.

5.3.2 Open Research Problem Find for the calculus of structures (possibly for the system in Figure 17)
a cut elimination procedure, possibly based on splitting (as done in the proof of Theorem 2.7.3) such that it
behaves in the same way as the cut elimination for extended prenets, i.e., such that diagram (49) commutes.

In any case, what has been said in this section shows that for classical logic the answer to the Big Ques-
tion 2.7.9 on page 39 is no longer an obvious yes. In fact, the answer might be No!

5.3.3 Open Research Problem Make a nice theory out of this mess.
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[DG04] Pietro Di Gianantonio. Structures for multiplicative cyclic linear logic: Deepness vs cyclicity. In
Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, CSL 2004, volume 3210
of Lecture Notes in Computer Science, pages 130–144. Springer-Verlag, 2004.

[DHPP99] H. Devarajan, Dominic Hughes, Gordon Plotkin, and Vaughan R. Pratt. Full completeness of the
multiplicative linear logic of chu spaces. In 14th IEEE Symposium on Logic in Computer Science
(LICS 1999), 1999.
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Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
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