
HAL Id: inria-00118652
https://hal.inria.fr/inria-00118652

Submitted on 6 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolutionary Design of Buildable Objects with
BlindBuilder : an Empirical Study

Alexandre Devert, Nicolas Bredeche, Marc Schoenauer

To cite this version:
Alexandre Devert, Nicolas Bredeche, Marc Schoenauer. Evolutionary Design of Buildable Objects with
BlindBuilder : an Empirical Study. Asia-Pacific Workshop on Genetic Programming, Oct 2006, Hanoi,
Vietnam, pp.98–109, 2006, Proceedings of the Third Asian-Pacific workshop on Genetic Programming.
<inria-00118652>

https://hal.inria.fr/inria-00118652
https://hal.archives-ouvertes.fr

Evolutionary Design of Buildable Objects with

BlindBuilder : an Empirical Study

Alexandre Devert, Nicolas Bredeche, and Marc Schoenauer

TAO team - INRIA Futurs - LRI, Bat 490 - Université Paris-Sud - France

Abstract. In a previous paper, we presented BlindBuilder, a new repre-
sentation formalism for Evolutionary Design based on construction plans.
As for other indirect encoding approaches in the literature, BlindBuilder

makes it possible to easily represent possible solutions but makes it dif-
ficult to perform structural optimization. While satisfying results are
provided, it becomes more and more difficult to build larger structures
during the course of evolution. This is due to the high disruptive rate of
variation operators as construction plans grow. In this paper, we provide
an analysis of such a problem and propose new construction operators
to avoid this. Then, we perform extensive experiments so as to identify
the key parameters and discuss the advantages, limitations and possible
perspectives of the indirect enconding approach.

1 Introduction

Evolutionary Design addresses the issue of automatic design of buildable struc-
tures and objects with the use of Evolutionary Computation. This field has been
growing along with the availability of more and more powerful computers. Major
achievements in this field range from evolved creatures[14,12, 2] to the design of
satellite antennas that were actually launched in space [5] and various designs
of everyday objects (e.g. chairs) and/or structures[1, 9, 7, 13] (e.g. brigdes, walls,
etc.).

In a recent paper [3], we proposed BlindBuilder, a new representation lan-
guage for Evolutionary Design. a BlindBuilder construction plan is defined as a
directed acyclic graph (DAG) that specifies how to build the target object rather
than describing what it looks like (indirect versus direct encoding). We already
showed that this representation language is particularly powerful and enables
hierarchy, modularity and generality, which are key features in Evolutionary
Design. BlindBuilder can easily be used to represent 3-dimensional structures
and is not limited to one set of domain-specific operators. As a consequence,
BlindBuilder makes it possible to address a wide range of Evolutionary Design
problems, from building 3D objects out of small elements such as Lego or Kapla
to 3D photolithography and so on.

In the literature, the indirect encoding approach is largely favored[8, 11] and
have lead to building objects as bridges, tables, etc [2, 9, 7]. In [3], we have
achieved comparable results with BlindBuilder by building (among other) struc-
tures as bridges with cantilevers and archs. Despite these promising results, all

2

the works in the literature (including ours) are limited to the use of a small
amount of elements (less than one hundred atomic elements), require days of
computation and are either not buildable or buildable thanks to a very con-
strained representation (e.g. 2D structures such as in [9]).

As a consequence, two questions must be asked: (1) why does it work? (2)
what are the limitations? We conducted further experiments with our work in
order to get a deeper understanding of the evolutionary process. Our primary
concern regarded the success of variations during evolution (i.e. mutations in
the graph that lead to a better individual). Indeed, most of the variations are
disruptive and produce children that are worse than their parents. During the
course of evolution, such disruptive variations tends to occur more and more
frequently, making it very difficult to improve the score of the best individual.

As a conclusion, relevant solutions are found because the search space is well-
constrained by the very representation formalism rather than by the optimization
process.

In the scope of this paper, we intend to provide an in-depth analysis in two
steps. Firstly, we shall define more constrained operators and experimental setup
so as to be able to better understand the optimization dynamics. Secondly, we
intend to perform an extensive analysis of the impact of all parameters (popu-
lation size, selection operators, variations operators, etc.) on evolution.

In the next section, we describe BlindBuilder, the representation formalism
for construction plans, as well as the evolutionary and construction operators
used in the scope of this paper. Then, we show extensive experiments on the
bridge and wall problems and provide an analysis of the results, including a
comparaison with standard approach (using Koza’s ADF[6]). We conclude with
a discussion of such results, the impact of the various parameters studied and
the consequence in terms of benefits and limitations of the indirect encoding
approach as well as future directions regarding representation issues.

2 The BlindBuilder representation

Basically, a BlindBuilder individual is a directed Acyclic Graph (DAG) where
nodes can be either atomic elements (the physical atomic elements of the con-
struction) or construction operators (that defines the way to fit the atomic el-
ements together). A much more precise description of the BlindBuilder could
be found in our previous paper [3]. No a priori assumption is given for the def-
inition of operators and elements. It is hence possible to define a wide range of
construction operators, as will be described later.

Thanks to this DAG-based representation, BlindBuilder is endowed with the
following properties, which makes it a unique powerful representation formalism
compared to that of the literature 1: (1) modularity: the ability to reuse a part of
the construction plan. Modularity may or may not be recursive; (2) hierarchy: the
ability to consider as one single element what has already been built as opposed

1 Note that in [11], some of these terms are used in the context of programs rather
than graphs, with different meaning.

3

to having to target specific sub-elements for any new operations; (3) generality:
the property according to which the representation can be easily extended to
accept new kind of elements; (4) 3D representation: some representations only
consider 2-D structures, or don’t scale-up well to 3-D structures.

2.1 Variation operators

Variation operators are used during evolution in order to generate offspring
from parents at a given generation. BlindBuilder only relies on mutation as
variation operators - this is due to the great diversity between construction
plans that makes it very difficult to perform non-disruptive cross-over. Two
kinds of mutations are considered. The first kind alterates only parameters of a
node in construction plan using a gaussian probability centered on the previous
value. The second kind deals with structural mutations, i.e. modification of the
topology of the DAG, by adding or removing a node2. In practical, there are
four structural mutation operators:

1. append : A new non-terminal gets as input the top level node and, if its arity
is greater than one, it gets other randomly chosen node as parameter. The
internal numerical parameters of the new node are randomly generated using
uniform distribution.

2. fusion: A node and all its input nodes are shrinked into one into a new
operator with randomly generated parameters.

3. reconnect : The input edges of a node are randomly reconnected to other
nodes then the operator parameters are renewed at random.

4. permute: The input edges of a node are randomly permuted and the param-
eters are randomly generated.

Any of the structural mutations are performed in a way so that the con-
straints on a construction plan (only one top level node) are never violated. If
a mutation is impossible to apply, the plan remains untouched. An individual
is initialised using all the possible terminal nodes, and a few append mutations
so that after initialisation only one DAG remains. It is important to note that
these variation operators are problem-independent and can be used with any
construction plan.

2.2 Construction operators

During evaluation of a given individual, the resulting structure is build out of
the construction operators and atomic elements that are referenced in the con-
struction plan. While variation operators are not problem specific, construction
operators should be carefully designed depending on the problem at hand. In the
following experiments, the construction operators work on 2D structures, made

2 However concerned with variation of individuals between generations, the nature of
our operators are inspired in part by the embryogenic approaches of [10]

4

name before after

append
B

C

A A
B

C
D

fusion
A B

C A D

reconnect A

B

C
D

A
B

C

D

permute

A
B

C

D

A
B

C

D

Fig. 1. The mutations operators (the double circled nodes are the affected nodes)

of layers of small wooden shelves3. Formally, a shelve is a box with an associated
mass. The atomic operator is the operator that build a unique shelf. The other
operators works on both a unique shelf or a group of shelves. drop puts a group
of shelves on another group, with a variable shift. This shift is specified as a
fraction of the length of a third building. flip flips upside-down a whole group
of shelves, mirror also flip a group but horizontaly. remove top removes the top
layer of a group of shelves. Figures 1 illustrate the function of these operators.

step.0
[block]

step.2
[drop]

step.1
[drop]

step.4
[flip]

step.3
[drop]

step.0
[block]

step.2
[drop]

step.1
[drop]

step.4
[mirror]

step.3
[drop]

step.0
[block]

step.2
[drop]

step.1
[drop]

step.4
[remove.top]

step.3
[drop]

Table 1. The flip, mirror, and remove-top construction operators

3 Compared to our previous work in [3], this setup is made simpler and makes and
allows an in-depth analysis of underlying mechanisms that takes place during evo-
lution.

5

3 Experimental settings

In this section, we present two evolutionary design problems, the tower prob-
lem and the bridge problem, along with their corresponding objective functions.
Then, the evaluation process that makes it possible to compute the fitness of
an individual, i.e. the adequacy of a given candidate solution with regard to the
objective function, is described.

3.1 Objective Functions

The tower construction problem The tower problem is simply defined as a max-
imization problem where the objective is maximize the fitness of an individual.
The fitness of an individual is defined as:

min(Ht, h)

Ht

. (1)

With the height of the current building h and the desired height of the tower
Ht (i.e. the desired height defined by the user prior to evolution). Ht was set to
the height of 300 times the thickness of a shelf.

The bridge construction problem The bridge problem consists in building a
bridge defined as the longest construction including a ”roadway” above the wa-
ter with as few shelves as possible in contact with the ground. For this problem,
two parameters must be taken into account: the height of the water plane Hw

and the target length Lb of the bridge. Φ(height) is the total number of shelves
that intersect the horizontal plane at a given height. This is a three objective
maximization problem :

1. Minimal height (fitness1):
min(Hw, h)

Hw

(2)

2. Roadway coverage ratio (fitness2):

1

Lb

∑

x∈Φ(Hw+1)

length(x)

 (3)

3. Shore coverage ratio (fitness3):

1−
1

Lb

∑

x∈Φ(0)

length(x)

 (4)

With h the height of the construction and length(x) the (horizontal) length of
shelf x. During selection and reproduction of the most fitted individuals, individ-
uals are ranked according to the following algorithm inspired for a lexicographic

6

fitness approach : Given two individuals indi and indj , indi is better than indj

only if fitness1(indi) is better than fitness1(indj) + threshold. if the two in-
dividuals cannot be ranked (because the two fitness values do not differ enough
with regard to the threshold value), comparaison is performed once again using
fitness2 in the same way. Then, if the two individuals still cannot be ranked,
fitness3 is computed and comparaison is performed without considering the
threshold. In the following, the threshold is set to 0.01. Hw was set to the height
of 4 times the thickness of a shelf and Lb to 14 times the length of a shelf.

3.2 Evaluation Process

As shown in figure 2, candidate solutions are evaluated in a two-steps process:
”building” and ”evaluation”. Firstly, construction plan are interpreted so as to
build the corresponding structure - this step is very fast to compute. Secondly,
this structure is evaluated within a solid body physics simulator4 during 250
simulation steps5. As opposed to step 1, this step is computationaly expensive.
During step 2, blocks may fall down, leading to the worst fitness possible for
the individual at hand - on the contrary, if the structure is robust with regard
to the simulation, fitnesses described in the previous section are computed. The
combination of ”smart” construction operators and a costly but accurate test
ensure buildability and relevant results with a reduced cost (because a subspace
of the quite plausible constructions is explored).

Table 2. Building and evaluation processes: before evaluation (left) ; after evaluation
(right).

4 Experimental Results

4.1 Methodology

Optimization Parameters Studied In this section, we provide results for the two
objective functions with a great variety of parameter settings. Table 3 show
all of the settings experimented. Note that only probability for mutation on
parameters mp and probability for reproduction r in the generational case are
shown. The probabilities of the Np structural mutation operators can be deduced

from the following: ms =
1−(mp+r)

Np
where ms is the probability of occurence for

one structural mutation operator.

4 We rely on Newton Game Dynamics - see http://www.newtondynamics.com/.
5 time integration step is 100msecs

7

Evolution Engine (µ + λ)-ES (µ, λ)-ES

population size 1, 10, 50, 100, 250, 500

µ/λ ratio 1, 2, 3, 5

parameters mutation prob 0.15, 0.35, 0.55, 0.75, 0.95

Evolution Engine generational with tournament

population size 10, 50, 200, 500, 1000

tournament size 2, 5, 8, 10

reproduction prob 0.3, 0.5

parameters mutation prob 0.07, 0.21, 0.35, 0.49, 0.63

Table 3. The 440 settings experimented

Comparing results from different parameter sets: Two parameter settings are
compared as follow: firstly, approx. 20 runs are performed on each settings. Sec-
ondly, the distribution of the fitness maximum at each evaluation6 is compared
using a Student T test. So for each evaluation, it is possible to identify which pa-
rameter settings is better, along with a confidence rate. If a parameter setting is
better than another for 90% of the evaluation steps with a confidence over 95%,
we conclude that this setting is better than the other - if not, we conclude to a
draw. In order to compare all parameter settings, each setting is compared to
every other setting. Every time it is concluded to be better/worse than another
setting, is gets/looses 1 point (and vice versa); if this is a draw, both setting get
0 point. Once all possible comparaison combination are exhausted, we end up
with a ranked list of parameter settings.

4.2 Results

Figures and show the results for both the tower and bridge problems. Concerning
mutations, only the mutation on parameter rate is shown and the structural
mutation rate should be deduced as stated before.

The Tower construction problem: The best settings are those with a tiny popu-
lation and with the lowest probability of mutation on parameter (i.e. high struc-
tural mutation rate). In its vast majority, these settings rely on the tournament
selection, except for the noteworthy exception of number 9 (mu,lamba). Simi-
larly, the worst settings use large populations, a high probability of parameter
mutation and are either relying on (mu,lambda) and (mu+lambda) evolution
engine. All of the experiments converge towards the highest possible tower, com-
posed of piled up shelves (see figure) : only convergence speed differs. For this
problem, the BlindBuilder representation is very efficient and the result of set-
ting number 9 highlights the fact that success is more related to representation
issues (including construction operators) rather than optimization parameters.
Indeed, setting number 9 corresponds to a stochastic hill-climbing.

The Bridge construction problem: Compared to the previous problem, bridges
structure evolved looks very differents eventhough they share similar properties:
underwater pillars and over-water pillars that guaranty stability of the roadway

6 using the number of evaluations rather than the number of generations makes it
possible to compare settings with different population sizes.

8

Rank Evolution engine Pop size Mutations settings Score

1 (µ, λ) µ/λ = 2 1 mut param = 0.15 439

2 tournament size = 2 10 mut param = 0.07 repro = 0.3 434

3 tournament size = 5 10 mut param = 0.07 repro = 0.5 431

4 tournament size = 8 10 mut param = 0.07 repro = 0.3 431

5 tournament size = 10 10 mut param = 0.07 repro = 0.5 430

6 tournament size = 8 50 mut param = 0.07 repro = 0.5 427

7 tournament size = 5 10 mut param = 0.07 repro = 0.3 421

8 tournament size = 10 50 mut param = 0.07 repro = 0.5 420

9 (µ, λ) µ/λ = 1 1 mut param = 0.15 418

10 tournament size = 10 50 mut param = 0.07 repro = 0.3 417

11 tournament size = 5 50 mut param = 0.21 repro = 0.5 417

12 tournament size = 8 10 mut param = 0.07 repro = 0.5 415

13 tournament size = 2 10 mut param = 0.07 repro = 0.5 410

14 tournament size = 10 50 mut param = 0.21 repro = 0.3 409

15 tournament size = 10 10 mut param = 0.07 repro = 0.3 406

16 tournament size = 10 10 mut param = 0.21 repro = 0.5 406

...

431 (µ + λ) µ/λ = 5 100 mut param = 0.95 -397

432 (µ + λ) µ/λ = 3 250 mut param = 0.95 -397

433 (µ + λ) µ/λ = 5 500 mut param = 0.95 -398

434 (µ, λ) µ/λ = 5 250 mut param = 0.75 -399

435 (µ, λ) µ/λ = 1 500 mut param = 0.95 -410

436 (µ, λ) µ/λ = 1 50 mut param = 0.95 -412

437 (µ, λ) µ/λ = 1 250 mut param = 0.95 -415

438 (µ, λ) µ/λ = 1 100 mut param = 0.95 -419

439 (µ + λ) µ/λ = 3 500 mut param = 0.95 -423

440 (µ + λ) µ/λ = 5 250 mut param = 0.95 -423

Table 4. the best and the worst settings for the Tower fitness case (440 settings)

node.0
[block]

node.11
[drop]

node.10
[drop]

node.9
[drop]

node.7
[drop]

node.6
[drop]

node.1
[drop] node.15

[flip]
node.14
[drop]

node.13
[drop]

node.12
[drop]

node.5
[drop]

node.8
[drop]

node.4
[drop]

node.3
[drop]

node.2
[drop]

Fig. 2. A tower structure (rotated) and its corresponding plan

Rank Evolution engine Pop size Mutations settings Score

1 tournament size = 8 10 mut param = 0.07 repro = 0.5 159

2 (µ, λ) µ/λ = 3 1 mut param = 0.15 151

3 (µ, λ) µ/λ = 2 1 mut param = 0.15 151

4 tournament size = 10 10 mut param = 0.07 repro = 0.5 151

5 tournament size = 8 50 mut param = 0.07 repro = 0.5 151

6 tournament size = 2 10 mut param = 0.07 repro = 0.3 150

7 tournament size = 10 50 mut param = 0.07 repro = 0.5 146

8 tournament size = 5 10 mut param = 0.07 repro = 0.3 145

9 (µ, λ) µ/λ = 5 1 mut param = 0.15 139

10 (µ, λ) µ/λ = 1 1 mut param = 0.15 139

11 tournament size = 5 10 mut param = 0.07 repro = 0.5 139

12 (µ, λ) µ/λ = 1 1 mut param = 0.35 135

13 tournament size = 5 50 mut param = 0.07 repro = 0.3 131

14 tournament size = 10 10 mut param = 0.07 repro = 0.3 128

15 tournament size = 10 50 mut param = 0.07 repro = 0.3 128

16 tournament size = 8 10 mut param = 0.07 repro = 0.3 127

...

151 (µ, λ) µ/λ = 3 50 mut param = 0.95 -137

152 (µ, λ) µ/λ = 1 50 mut param = 0.95 -139

153 (µ, λ) µ/λ = 5 1 mut param = 0.95 -143

154 (µ, λ) µ/λ = 2 100 mut param = 0.95 -145

155 (µ, λ) µ/λ = 2 50 mut param = 0.95 -147

156 (µ, λ) µ/λ = 2 10 mut param = 0.95 -148

157 (µ, λ) µ/λ = 5 100 mut param = 0.95 -149

158 (µ, λ) µ/λ = 1 100 mut param = 0.95 -150

159 (µ, λ) µ/λ = 3 10 mut param = 0.95 -153

160 (µ, λ) µ/λ = 5 10 mut param = 0.95 -158

Table 5. the best and the worst settings for the Bridge fitness case (160 settings)

9

are frequently encountered. Here again, high structural mutation rate along with
tournament selection is favored, but population are larger - in this case, simple
stochastic hill-climbing is worse and the population-based approach is much
more efficient. Moreover, high selection pressure for tournament selection are
favored and reproduction rate has no significant impact. As for computational
ressources, the best runs took around 1 to 3 hours on a single 2 Ghz CPU.

node.0
[block]

node.3
[drop]

node.2
[remove.top]

node.1
[drop]

node.15
[mirror]

node.14
[drop]

node.13
[flip]

node.12
[mirror]

node.11
[drop]

node.10
[drop]

node.9
[flip]

node.8
[flip]

node.7
[drop]

node.6
[drop]

node.5
[drop]

node.4
[drop]

node.0
[block]

node.3
[drop]

node.2
[drop]

node.1
[drop]

node.10
[drop]

node.9
[drop]

node.8
[drop]

node.7
[drop]

node.6
[drop]

node.5
[drop]

node.4
[drop]

Fig. 3. Some of the bridges structures obtained with their corresponding plans

For validation purpose, we also performed experiment using classic canonical
GP with ADFs - replacing DAGs with trees. Tree terminal set corresponds to
BlindBuilder terminal nodes and operator parameters (depending on the con-
text) and function set corresponds to BlindBuilder operators. It should be noted
that there is a mapping between BlindBuilder construction plans and tree-based
GP from the final construction viewpoint. Results (not shown here) are very

deceptive : we tried common GP settings: tournament selection with 8 oppo-
nents, population size of 100 and 500 individuals, 100% mutation (no crossover)
and 90% crossover (no mutation), and several ADFs number and depth. Runs
were much slower, for the same number of evaluations (3 to 10 hours versus 1
to 3 hours with BlindBuilder) and resulted with individuals genotype mostly
composed of bloat (unused code) and poor perfomance wrt. objective functions.
We also conducted runs so as to guess other good parameter settings but results
and CPU time required were discouraging enough, even for the tower problem,
that we did not dig any further. From all our experiments, tree-based GP with
ADF is not adapted for the Evolutionary Design problems considered here.

To conclude with our approach, we observe that as problems become more dif-
ficult (bridge vs. tower), evolution parameters increase in relevance (vs. stochas-

10

tic hill climbing): larger population and stochastic selection/replacement (tour-
nament selection vs. other evolution engine). To sum it up, exploration (via struc-
tural mutation and tournament selection) is favored over exploitation (parameter
mutation, more conservative approach during selection/replacement with ES-like
evolution engine). With large constructions, we begin to pay the price of such
an exploration strategy as fine (but difficult) tuning of parameters become nec-
essary. For example, tower constructions evolved are more and more unstable
during the course of evolution because blocks were not exactly aligned at first.
Note that this could be addressed with a baldwinian approach to fine tune the
parameter at evaluation time (e.g. on-line optimisation or wrapper-approach),
but will not suppress the problem of poor performance for mutation on param-
eters.

5 Discussion

Previously shown experiments produced results comparable or even bigger in size
than that of the literature, with (sometimes dramatically) less evaluations. How-
ever, it quickly becomes very difficult to expand existing structures eventhough
both construction and variation operators could make it possible. This is caused
by the fact that even a small alteration on a construction operator is likely to be
more and more disruptive as the graph grows (i.e. altering deeper construction
operators can be very disruptive). Indeed, the less disruptive way to expand an
existing individual is to add new construction operators to the construction plan
rather than to modify existing ones. As a consequence, trajectories in the search
space differ greatly between evolution, even with the same parameter settings7.
To address this issue, we could experiment with Islands Model[4] so as to better
exploit hardware resources by eliminating non-promising runs.

However, the problem of scalability is only addressed in part using Island
Models: the major results of our work is that current representation for indirect
encoding are not truly scalable. This work has lead us to consider two possible
extensions of graph-based representation for evolutionary design. The first is
based on adding a new recursivity level, and the second is to consider context-
aware construction plans. We shall describe these hereafter.

In its current form, our representation is already able to reuse substructures
in the construction process. However, this could be much easier by adding con-
struction operators defined as a parameterized production rule. For example,
such a production rule could recursively build a subgraph with only the number
of recursive calls as parameter (e.g. produce(A, 5) would create the subgraph
A ← A ← A ← A ← A ←?, with A a unary construction operator). Once
defined, such production rules are very interesting because of the very few pa-
rameters to deal with (i.e. the number of recursive calls) - moreover, resulting
construction plan should be shorter, helping in reducing the dirsuptive mutation
problem seen before.

7 In this case, of course, only the seed for random number generation differs.

11

Another promising approach is to take advantage of the environment, i.e. to
consider context-aware construction plans. In the standard setup, a construction
plan is interpreted in an environment so as to produce the candidate structure.
In some case however, it is possible to rely on information from the environ-
ment during the construction process: for example in the bridge problem, the
water level is considered to evaluate the resulting construction, but could also
be used to trigger construction phases. This would have many advantages: opti-
mizing construction plans that could be executed in different environments (i.e.
different water levels, different length needed) as well as keeping construction
plans short (i.e. simple recursive process to build the underwater part of the
bridge independently of the water level). Compared to our previous approach,
the emphasis is put on the on-line construction process rather than off-line op-
timization.

Of course, both approaches can easily be combined, since they tend to address
the same problem (scalability issue) along with being compatible (addressing
smaller construction operator and developmental process triggering). To some
extent, BlindBuilder can be extended in this direction and will be in the short
term.

6 Conclusion

In this paper we have addressed the problem of Evolutionary Design with Blind-

Builder, a new representation formalism that has been proved to be very efficient
with regard to other works in the literature. We have focused our attention on
specific construction and variation operator for optimizing classic evolutionary
design problems. We conducted an extensive set of experiments so as to provide
an in-depth analysis of comparable representation in the field of Evolutionary
Design.

The results shown in this paper are comparable in size and time, and even
better, to that of the literature. However the results were satisfying, our con-
clusions have lead us to reconsider the current approach and to highlight the
drawbacks of commonly known indirect encoding approaches. In particular, the
optimization process tends to be more and more inefficient as the size of graphs
grow. While BlindBuilder ’s specific properties make it possible to reduce the im-
pact of such considerations, it cannot really scale up. Nevertheless, our in-depth
analysis of the construction and optimization process have lead us to identify the
current conceptual locks and to draw some insightful conclusion and perspectives
on representation formalism for Evolutionary Design.

In the discussion section, we have highlighted several promising perspectives
for our work to address before-mentionned problems. The first approach, yet
more classical, is to expand our representation formalism with new construc-
tion operator embedding production rules. The second approach, more original,
intends to take into account the very environment so as to perform a context-
aware construction process, enabling both greater adaptivity to environmental

12

variations and smaller construction plans. These perspectives are currently under
investigation and will be integrated in BlindBuilder in the next few months.

References

1. Peter J. Bentley. Evolutionary Design by Computers. 1999.
2. J. Bongard and R. Pfeifer. Evolving complete agents using artificial ontogeny,

2003.
3. Alexandre Devert et al. Blindbuilder: A new encoding to evolve lego-like structures.

In EuroGP, pages 61–72, 2006.
4. Forrest H Bennett III et al. Building a parallel computer system for $18,000 that

performs a half peta-flop per day. In Proceedings of the Genetic and Evolutionary

Computation Conference, volume 2, pages 1484–1490, 1999.
5. Jason Lohn et al. Evolutionary antenna design for a NASA spacecraft. In Genetic

Programming Theory and Practice II, chapter 18, pages 301–315. 2004.
6. John R. Koza et al. Genetic Programming 3: Darwinian Invention and Problem

Solving. 1999.
7. Maxim Peysakhov et al. Using assembly representations to enable evolutionary

design of lego structures. Artif. Intell. Eng. Des. Anal. Manuf., 17(2):155–168,
2003.

8. Peter Bentley et al. Three ways to grow designs: A comparison of embryogenies for
an evolutionary design problem. In Proceedings of the Genetic and Evolutionary

Computation Conference, volume 1, pages 35–43, 1999.
9. Pablo J. Funes and Jordan B. Pollack. Computer evolution of buildable objects

for evolutionary design by computers, 1998.
10. F. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic

Algorithm. PhD thesis, Ecole Normale Suprieure de Lyon, France, 1994.
11. Gregory S. Hornby. Measuring, enabling and comparing modularity, regularity

and hierarchy in evolutionary design. In GECCO 2005, volume 2, pages 1729–
1736, 2005.

12. Hod Lipson and Jordan B. Pollack. Automatic design and manufacture of robotic
lifeforms. Nature, 406:974–978, 2000.

13. John Rieffel. Evolutionary Fabrication: The Co-Evolution of Form and Formation

.. PhD thesis, Brandeis University, USA, 2006.
14. Karl Sims. Evolving 3d morphology and behavior by competition. Artificial Life,

1(4), 1994.

