
HAL Id: jpa-00210412
https://hal.science/jpa-00210412

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phase transition in cellular random Boolean nets
G. Weisbuch, D. Stauffer

To cite this version:
G. Weisbuch, D. Stauffer. Phase transition in cellular random Boolean nets. Journal de Physique,
1987, 48 (1), pp.11-18. �10.1051/jphys:0198700480101100�. �jpa-00210412�

https://hal.science/jpa-00210412
https://hal.archives-ouvertes.fr


11

Phase transition in cellular random Boolean nets

G. Weisbuch and D. Stauffer

Laboratoire de Physique de l’Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France
Laboratoire d’Hydrodynamique et Mécanique Physique, E.S.P.C.I., 10 rue Vauquelin, F-75231 Paris Cedex
05, and Inst. Theor. Phys., Cologne University, D-5000 Köln 41, F.R.G.

(Requ le 15 juillet 1986, accepté le 26 septembre 1986)

Résumé. 2014 Nous avons étudié par simulation sur ordinateur l’apparition de structures spatiales dans les cycles
limites des réseaux aléatoires d’automates cellulaires Booléens. Ces mesures ont porté sur les périodes locales des
automates comparées à la période globale du réseau et sur la percolation des structures oscillantes. Le seuil de
percolation de ces structures est le même que celui observé par Derrida et Stauffer pour le comportement des
distances entre configurations initialement différentes.

Abstract. 2014 We have monitored by computer simulations quantities related to the spatial organization of random
cellular Boolean nets during the limit cycles such as the local periods of automata, the global period of the whole net,
and percolation of the oscillating structures, and shown that they obey a phase transition for the same value of the
transition parameter as found by Derrida and Stauffer from overlaps between initially different configurations.
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Random nets of Boolean automata have been pro-
posed by Kauffman [1, 2] in 1969 as models for cell
differentiation. Since then, their dynamical properties
have been recognized as models for the properties of
organization of complex biological [1-5] or physical [6]
systems. They share some common features with spin
glasses, but their structure is more general : interactions
among units are non-symmetrical and more varied than
in spin glasses. There exist no energy functions for

Boolean automata, and their dynamics is thus more

complex. From earlier studies two different regimes
have been exhibited which depend upon the input
connectivity K, i. e. the number of automata which

directly influence the state of one automaton. For small
connectivities (K=1 or 2) there exist a few limit cycles
of short periods. For larger connectivities, very long
periods (their size is exponential as compared to the
number of automata) characterize a chaotic behaviour.

In addition to time organization during limit cycles,
Boolean nets exhibit functional organization, best re-
vealed by their cellular version. Cellular automata are
arranged in a lattice (we shall deal here with square
lattices) and connections are established among neigh-
bours. Atlan et al. [3] worked with 2 input automata
and reported the organization of independently oscillat-
ing clusters surrounded by fixed automata during the
limit cycle. This functional organization, like time

behaviour, has also two regimes which depend upon
the selection of Boolean functions [3].

Instead of varying connectivity, Derrida and Stauffer
[7] have proposed to study a square lattice of random
Boolean automata, each automaton receiving inputs
from its 4 nearest neighbours. The connectivity is thus
constant and equal to 4. The transition between the two
regimes is obtained by biasing the distribution of
Boolean laws, by imposing a given internal

homogeneity, a quantity first described by S. Kauffman
[2]. The purpose of this paper is to study the spatial
organization of the 4-inputs square lattice and to

compare our results to those of reference [7] which
concerns the evolution of overlaps. Definitions and

properties of this model will be recalled in part 1 and
local dynamics and its relation to the global dynamics of
the net will be described in part 2. Part 3 is devoted to
local properties averaged over several initial conditions
and treats the problem of percolation [8] of oscillating
clusters.

1. Definitions.

The system consists of a net of N spins ai which can
take 2 possible values (ui = 0 or 1). Following common
use in Computer Science they are from now on called
automata. The time evolution of this system is given by
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N Boolean functions of K variables each, randomly
k

chosen among the 2 ( 2 ) inputs. K is called the input
connectivity of the automaton.

At each time step (from t to t + 1), all the spins are
simultaneously updated according to (1) (parallel
iteration). In Kauffman’s original model [1], for each
automaton i the input automata cril, 03C3i2 ... , ’0’ i, are

randomly chosen among the N automata. Cellular

connectivity is a restriction of the randomness to the
choice of the Boolean functions which allows a simpler
interpretation of the dynamical interactions among
spins. It has first been suggested in Atlan et al. [3] for
K = 2. We use the square lattice with K = 4. Every
automaton receives inputs from its 4 nearest neighbours
(Derrida and Stauffer [7]). The edges of the lattice are
connected to each other (periodic boundary con-

ditions).
The system is defined once a function Ii and the

input sites i 1, i 2, .. i K have been chosen for each siste i
of the net.
The dynamics of such a net is thus fully deterministic.

Starting from any initial condition, since the system has
only 2N different configurations, after a time t &#x3E; 2N the
system must have been at least twice in the same

configuration. It must then be periodic with a period T
less or equal to 2N. The set of configurations which
occur between 2 consecutive occurrences of the same

configuration (including this configuration) is a limit

cycle. For different initial conditions, possibly different
limit cycles are reached.
The dynamical properties of the model were studied

by numerical simulations [1, 5]. Kauffman [1] reports
that the period T of the limit cycles follows different
regimes depending on K. For low K (K = 1 or 2), T
increases as the square root of the number N of
automata (to be called further frozen behaviour). For
K -- 3, T increases exponentially with N (chaotic be-
haviour).

In the 4 inputs square lattice model studied by
Derrida and Stauffer [7], if all Boolean functions are

sampled with a uniform probability, chaotic behaviour
is observed as predicted by Kauffman for randomly
connected nets. One can then bias the sampling of
Boolean functions by deciding that the probability of
function Ii to yield 1 for any input configuration is p,
different from 0.5. Values of p close to 0 or 1 yield
frozen behaviour. Because of the 0-1 symmetry, values

of p symmetrical with respect to 0.5 give equivalent
behaviours. For p = 0.26 a phase transition between
the two behaviours, frozen and chaotic, has been found
by Derrida and Stauffer [7] for the square lattice. Theii
paper mainly concerns the convergence of initially
different configurations. Two initial configurations are
selected with a small given Hamming distance (the

number of automata which are in a different state). For
p  0.26 after a large number of iteration steps, the
Hamming distance remains small and proportional to
the original distance. For p &#x3E; 0.26 the Hamming dis-
tance evolves towards a non zero asymptotic value
independent of the initial distance.

2. « Local and global » periods.
Local periods.
The first studies of cellular random nets have shown
that not all automata of a network oscillate with the

period of the limit cycle [3, 9]. Figure 1 shows that most
of them oscillate with a smaller period, which is a
divider of the period of the whole net, and that some
are even stable during the limit cycle. The results are
given for two 24*24 lattices differing only in the

concentration p of the number of ones in the functions
fit. The numbers for each lattice site or automaton give
the period observed for this site, with three stars ***

indicating a period larger than the maximum observable
in these runs (999). We see quite clearly that for

p = 0.2 we have many finite clusters with finite periods,
which we associate with the frozen regime, whereas for
p = 0.3 one cluster of « stars » (chaotic sites) is per-
colating throughout the sample. Figure 2 indicates the
fractal structure close to the phase transition.

In the frozen phase, the system splits into many
dynamic clusters, as seen already in the above figure for
p = 0.2. Each cluster is defined as a group of neigh-
bouring sites with periods larger than unity. In general
one cluster contains sites of different periods. The
period of one cluster can be identified as the lowest
common multiple of the periods of the single cluster
sites ; usually it agrees with the largest period observed
for any site in the cluster. The period T of the whole
lattice then is the smallest common multiple of the
cluster periods observed in this lattice. Figure 3 shows
more quantitatively the distribution of limit cycle
periods in the frozen phase, combined with the periods
observed for the single sites. We see that only a rather
limited number of times T in the observed interval are

actually reached.
In the chaotic phase one has a large percolating

cluster of sites with « infinite » period (for large lat-

tices), surrounding islands of small periods.
Of course, one can also average the local finite

periods on the whole lattice. These single-site periods
scatter widely according to the site, to the net and to
the initial configuration, and different moments of the
period distribution thus may be described by different
critical exponents. Figure 4 shows semiquantitative
results for the average period and the rms average
period ; both seem to have a divergence or cusp at
about p = 1/4, consistent with our other critical concen-
trations.

Global periods.
We have investigated the variation of the global period
with the size of the net for both regimes.
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Fig. 1. - Examples of local periods in 24*24 square lattices at p = 0.2 (top) and 0.3 (bottom). The numbers on each lattice site
give the period of the site observed between 500 and 1 500 iterations with one initial configuration ; thus a 1 means that the
automaton did not change at all during the limit cycle and three stars give a period larger than 999 (too large to be observed). (p
is the probability that the output of function Ii is 1 for any input configuration.)
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Fig. 2. - Local periods of a particularly complicated 24*24 sample net at p = 0.23, with two large clusters of period 456 and
440, and a lattice period T = 25080.

Fig. 3. - Histogram of the distribution of maximum periods
for the single sites in the frozen phase. The four crosses
denote the periods observed for the lattice as a whole.

For the chaotic phase, the periods of the limit cycles
are very large, and thus one can investigate in this case
only rather small lattices. For a finite lattice with

N = L *L sites, we have only 2N possible configurations
and thus after at most 2N time steps we must have
reached a limit cycle with a period not exceeding
2N. Actually, the observed periods are much smaller, as
shown in figure 5 : even for the strongest disorder,
p = 1/2, we do not observe an increase as 2N. In fact,
.Kauffman [2] predicted for randomly connected nets an
increase as 2°.37 N /2 for K = 4 and p = 1/2, which is
compatible with our data. Closer to the phase transition
the increase of the period T with system size N is
weaker.

On the other side of the phase transition, in the
frozen phase, the period is no longer exponential, as
shown in figure 6. Because the periods are widely
scattered, depending upon the net and the intial

conditions, we usually plotted in figures 5 and 6 the
« median » time t defined such that half of the observed
times are larger, and half are smaller than this median
value. (We produced usually 50 to 100 samples.) This

Table I. - Summary of the differences between the frozen and the chaotic regime. The transition between the two
regimes occurs for p = 0.26. The results concerning the convergence of configurations were obtained in reference [7].
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Fig. 4. - Variation of the average local period (t I) ( + ) ,

the r.m.s. period t2) ( x ) and the fraction P 00 ( 0 ) of

chaostic sites in a 60*60 lattice as function of p, observed over
400 time steps. (infinite periods are ignored in averaging).

Fig. 5. - Median periods of lattice limit cycles in the chaotic
phase, as function of the lattice size N = L *L, for different
value of p. The straight line correspond to T = 20.37N /2, as
predicted by Kauffman [2] for p = 0.5 for random nets.

JOURNAL DE PHYSIQUE. -T. 48, N. 1, JANVIER 1987

Fig. 6. - Median periods of lattice limit cycles in the frozen
phase for much larger systems. In contrast to figure 5 this is a

log-log plot. The straight line corresponds to T = B/N,
proposed by S. Kauffman [1] for K = 2 automata.

definition is particularly useful for those cases, where
for a small fraction of samples the period T was too
long to be found within the finite observation time.
However, while it works nicely in the chaotic phase
where many different periods occur, its use for the
frozen phase produces systematic errors when there are
large gaps between the different observed values of the
period (see again Fig. 3).
For p far below the percolation threshold we ob-

served limit cycles even for rather large lattices. Most
of seven 608*608 lattices had a period of 12 at

p = 0.05. 14 samples of size 250*250 were found to give
periods of 12 (once), 24 (7 times), 48 (once), and 120
(three times) for their limit cycles of the whole lattice at
p = 0.1; the time to get into these limit cycles is of the
same order of magnitude. For 250*250 lattices, even at
p = 0.15 we could observe periods below 1 000.

(In percolation theory [8], the number of very large
clusters for a fixed lattice size decreases exponentially
with cluster size ; thus the size of the largest finite
cluster increases logarithmically with lattice size. If this
logarithmic law would be valid also for the Kauffman
clusters, and if the typical cluster period increases

exponentially (or with a power law) with cluster size,
then the period of the largest cluster in the frozen phase
would increase with a power law (or logarithmically)
with the lattice size. We can also expect such a scaling
law for the period of the whole lattice.)
One can also notice a difference in behaviour with

2
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the ratio between the limit cycle period of the whole
lattice and the largest period found for a single site. In
the frozen phase the period of the whole lattice is

appreciably larger than the largest period observed for
a single site (see again Fig. 3), except for small lattices.
This ratio becomes even larger when we get closer to
the phase transition. In the chaotic regime one observes
usually one large cluster, with most of its sites having
the same period as tested on small nets ; this cluster is
coexisting with a minority of sites of period usually one,
i.e. of fixed sites. The ratio of lattice period to largest
period of single sites is then nearly always unity, for not
too large lattices and not too close to the phase
transition.

Remarks about clusters.

The problems in evaluating the size dependence of T in
the frozen phase might be circumvented by a detailed
investigation of the average number of clusters with a
given period, analogous to the average number of

clusters with a given number of sites in percolation
theory. However, even then there are problems, as

shown by the 24*24 example (p = 0.23 ) of figure 2.
Large clusters usually consist of sites having different
periods. If two neighbouring sites have different

periods, one of them usually is an integer multiple of
the other. Therefore most clusters have a period equal
to the maximum period of its sites. However, excep-
tions exist. Near the lower right corner of figure 2 we
see a period 22 directly between a period 20, and the
whole cluster (split by the helical boundary conditions
into a left and a right part in the figure) has a period of
440, twice as large as the largest period of any of its
sites. Apparently the functions Ii for these two sites are
accidentally chosen such that they do not feel each
other’s influence. The other large cluster, mostly with
site period 228, behaves more regular: three sites do
indeed have the cluster period of 456. We have also
observed other examples, where the cluster period was
larger than the maximum period of its sites ; but those
examples are rather rare.

It is also possible that geometrically one seems to
have one connected cluster whereas dynamically it is

split into several parts such that at all boundaries the
sites of one part do not notice, via the function

fi, the status of the neighbouring sites of the other part.
In this case the dynamic cluster structure could be
investigated by randomly flipping a very small but finite
fraction of the sites. The influence of this perturbation
would be restricted to the dynamically connected parts
of the cluster, which might be smaller than the geomet-
rical cluster observed in our figures. The « suscep-

tibility » investigated in reference [7] then might be
related to the second moment of this dynamically
corrected cluster size distribution. The fact that these

authors observed about the same threshold concen-
tration Pover suggests that the influence of these compli-
cation on plover is much less drastic than the increase in

computer time which their careful investigation would
require.

3. Cores and clusters.

Instead of studying the behaviour of the net during one
limit cycle, one can try to summarize information

concerning different initial conditions. Figure 7 is such
an example. It is an histogram which indicates for how
many initial conditions (out of 9) each automaton of a
square lattice has been oscillating at least once during a
limit cycle. Blanks correspond to nodes which do not
oscillate during any of these limit cycles (their set has
been called the stable core by Fogelman-Soulid [9]).
This set represents in fact the invariant part of the net
under the different initial conditions. When the comple-
ment of the stable core is made of disconnected parts
like in figure 7a, these clusters are functionally indepen-
dent since no information is carried across the stable

core. In this case we can expect :
- Short periods because the independent clusters

are smaller than the complete net.
- A strong convergence of configurations. Large

overlaps between configurations can be expected in the
case of disconnected clusters since all the automata

belonging to the stable core are already in the same
state. The transition between the two behaviours
occurs for a critical Pover = 0.26 ± 0.02 as reported in
reference [7].
We have then investigated the probability that the

complementary set of the stable core percolates
through the lattice as a function of p and compared this
percolation threshold P per with P over. We studied nets of
size 10*10, 20*20, 30*30, 50*50, 70*70 and 100*100 by
computer simulations. The histograms of oscillation
were drawn for 10 initial conditions and the percolation
of the oscillating set was tested. Figure 8 shows a

typical plot of the probability of percolation as a

function of p for 10*10 and 100*100 lattices (each dot
corresponds to the simulation of 40 lattices). A
threshold is reached when half the samples percolate.
Figure 9 summarizes the results according to the size of
the net. The size effects corresponding to the shift of
the percolation threshold are small as compared to the
error bars and we can conclude that the percolation
threshold per is the same as Pover the threshold for the

overlaps given in reference [7].

with a statistical error of about 0.01.

4. Conclusions.

The table summarizes the differences between the two

regimes, frozen and chaotic. Further progress would
involve considering three-dimensional nets, the meas-
urements of the scaling laws governing the local and
global periods, and the clusters’ sizes in the vicinity of
the phase transition. This would involve a lot of
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Fig. 7. - Histograms of local oscillating behaviours for 9
different initial conditions for the same net. Each figure
represent for how many initial conditions each site oscillates

during the limit cycle. In order to facilitate the visualization of
percolation of oscillating structures the zeroes have been

replaced by blanks. The upper histogram corresponds to

p = 0.21 and shows non percolating structures. The lower is
for p = 0.28 ; the set of sometimes oscillating nodes percolates
through the sample.

Fig. 8. - Probability of percolation of the set of oscillating
nodes as a function of p, the probability of 1 as output of the
Ii functions. Dots correspond to 10*10 nets and crosses to
100*100 nets.

Fig. 9. - Size effects for the percolation threshold of the set
of oscillating nodes. N is the number of automata of the net.

computer time. Other properties of interest include the
possible existence of large attraction basins the size of
which remains a finite fraction of the configuration
space when N goes to infinity as in Derida and

Flyvbjerg [6]. Finally a possible theoretical determi-
nation of pper is to use the forcing structure approach of

Fogelman-Soulid [9].
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Appendix.

NUMERICAL TECHNIQUES. - In our Fortran program
we tried to allow the simulation of relatively large
systems with moderate computer memory, and to use

algorithms which can be easily vectorized. The trivial
method of storing each of the 16 possible functions
f i (depending on the configurations of the four neigh-
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bours) for each site i =1, 2, ..., N in a separate
computer word does not only require a large memory
of 16 *N words but also hinders vectorization since it
now needs a « gather » operation. Instead, we stored
these 16 function values for each site in one « integer »
word 15, utilizing the 16 least significant bits only. The
four neighbours i + 1, i -1, i + L, and i - L of site i
in the L *L square lattice give the position KA of the bit
where the function value f for this particular neighbour
configuration is stored. For parallel iteration the state
of each automaton has to be kept in memory until all
automata are updated to their new value and two state
vectors, IS ( i ) the present state and ISN ( i ) the next
one, are necessary. If LAW ( i ) stores the 16 bits of
the function f i, then the central loop with i =1, ..., N
looks like

Here « Shift(IWORD, IBIT) » shifts the computer
word IWORD by IBIT bits to the left (IBIT&#x3E;0) or right
(IBIT0), and « and » is the Boolean bit-by-bit AND
operation, which in the present application simply
extracts the least significant bit. We used helical

boundary conditions : the first L automata are con-
nected to the last L automata.

For our largest systems (608*608) instead we worked
with techniques very similar to multi-spin coding in
Ising magnets : Each site occupied only one bit in the
state arrays IS and ISN ; thus each array required only
N/32 words of 32 bits each. The functions Ii were
stored in LAW with two indices, the first going from 1
to N/32 to cover all sites, the second from 1 to 16 to
denote the possible neighbor configurations. In this

way every bit of memory is utilized but easy vectoriza-
tion is lost.

Our computer simulations took 103 hours on several
Macintosh microcomputers.
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