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TRANSPORT COEFFICIENTS OF DENSE PLASMAS 

Abstract.- Recent attempts to construct a kinetic theory for strongly coupled plas
mas are discussed. The predictions of these theories for the shear viscosity and 
the self-diffusion coefficient of a one-component plasma are in good agreement with 
the available computer simulation data throughout the whole fluid phase. 

1. Introduction.- The last sentence of Spit-r 

zer's famous paper on "Transport Phenomena 

in a completely Ionized Gas" states [l]: "In 

view of the lack of observational data in 

this field, development of a more refined 

theory does not seem worth the very conside

rable effort required". This was written mo

re than 25 years ago and although some pro

gress has been accomplished in the past deca

des the situation has remained the same for 

many years. Only very recently have things 

started to change. This is due partly to the 

fact that the use of sophisticated laboratory 

techniques has produced electrical conducti

vity data for plasmas outside the traditio

nal weak-coupling region [2]. The main impe

tus however has come from the fact that the 

application of computer simulation techniques 

to ionized matter [3] has produced transport 

data for plasmas which are very dense, i.e. 

strongly coupled. It is our purpose here to 

summarize the main steps of the modern theo

ries of transport in charged systems and to 

compare the few cases which have been worked 

out completely to the available numerical da

ta. 

2. Transport theory of weakly coupled plas

mas.- Let us first recall some features of 

the traditional transport theory of plasmas. 

We will consider here only fully ionized 

plasmas and for the sake of presentational 

commodity we will always display expressions 

relevant to the one-component plasma, i.e. 

the theoretical model in which one of the 

charged species forms an uniform and inert 

neutralizing background in which the order 

specie moves according to classical dyna

mics, the interactions being restricted to 

the Coulomb forces. This model which looks 

rather theoretical can nevertheless yield 

realistic results for fully ionized matter 

in a restricted portion of the density-tem

perature plane including, for instance, ty

pical white-dwarf conditions [4], Besides 

the simplified dynamics this model has the 

advantage that the thermodynamic and trans

port data when suitably reduced, do depend 

only or a single parameter which we call 

the coupling parameter. For a system of mo

bile charges of electric charge e, number 

density n and inverse temperature (in ener

gy units) 3 = (kBT) this coupling parame

ter is obtained by estimating the ratio 

B e2/r of the average potential energy 

(e2/r , r being a characteristic distance) 

to the average kinetic energy (£ _ 1). If r 

is taken to be the Debye length, A = (4TT 

e2nB) V2 the coupling parameter becomes 

X/4TT where X = (nXi?)- is the inverse of 

the average number of particles in a "Debye 

cube" and as, such X has played an important 

role in weak-coupling expansions of equili

brium quantities. When discussing strong-

coupling data however it is more convenient 

to us the "ion-sphere radius" a, with 

n = /4ir 3\ 1 , as the characteristic dis-

tance r in which case the coupling para-
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meter becomes r = 6e2/a. The relation bet- pn ; Z) = SdE*zc (p,pl) 6 f (k,p8 ; z )  + is f (k, - - - - 
ween both p&ameters is A = 47r J3 r3/2. 

p; t=o) 
The early transport theory has been concer- - (5) 

ned exclusively with weakly coupled or dilu- where 6f(k,ptz denotes the Fourier trans- 
te plasmas for which A is small << 1). In form with respect to g and the Laplace 
this case the kinetic equation, which is at transform with respect to t of Gf(g,p;t) - 
the basis of the transport theory, can be whereas the first term in the r.h.s. of eq. 
written in standard notation [5]: (5) is the Fourier-Laplace transform of the 

linearized version of J(f,f) , i.e. of J(n$, 
affy,g;t) + v. df +e E(2,t). df = ~(f,f) (1) - 
at ap; ef) + J( f,n$). 

aF_ - A rough order of magnitude estimate of the 

where f (g,p ;t) denotes the one-particle re- collision term of eq. (51, say v 6f, yields - 
duced distribution function, - E the mean elec- a collision frequency v of the form v-A Up 
tric field and J(f,f) the collision term X being the coupling parameter and up the 

which drives f towards its equilibrium value plasma frequency of the mobile charges of 

fo = nq, $(f) being the Maxwellian. For weak- m (a?= 4ne2n/m). This is easily under- P 
long range fdrces, small-angle scattering do- stood since the collision term divided by 
minates and J (f,f) is of Fokker-plan& type : 6 f has the dimension of a frequency (up be- 

ing the only characteristic frequency at 

J (f t f) = J ~ P *  2 : $(f if' ) - a f (2.p it) our disposal here) while the pair correla- 
af - (%i ~ £ 4  - 

tion (say g) entering the collision term 
f (r,pl ; t) - (2) has been estimated to order A (weak-cou- 

pling approximation). This weak coupling 
where M is a non-negative matrix which can 

assumption for g is clearly in error for 
be written : 

small interparticle distances since the two 

particle distribution (say f2 = ff (l+g) ) 
has to vanish for vanishing interparticle 

distances which in turn requires the two- 

particle correlations to be of order one 
(3) (g 2 -1) in this region instead of 0 ( A ) .  

where V(k) = 4, IT e' '/k2 is the Fourier-trans- 

form of the Coulomb interaction energy where- 

as c0 (&,Z) is the dielectric function of a 

weakly coupled system : 

This underestimation of g leads then to the 

logarithmic large-k divergence of the r.h. 

s. of eq. (3) which, when cut off, leads in 

turn to the appearance of the so-called 

"Coulomb logarithm" in the collision fre- 

E~(~,Z) = 1 + V(k) - k .- af (4) quency v-Awp ln(a/h). 
A large number of authors [ 5 ]  have tried to 

estimate the undetermined coefficient a. 
Equations' (2-4) define the well-known Bales- 

This is tentamount to pushing the small- A 
cu-Guernsey2Lenard collision integral which 

expansion of v one step further, viz. v -. 
yields the most refined weak-coupling theory 

w (A lnh-I + Xln a +,.. X21n A-I +... ) .  
and which will serve-as a reference point for P 

us. The linearized kinetic equation which 

contains all the information necessary for a 

transport theory can be obtained from eq.(l) 

by putting f = n$ + a£ and neglecting 
o((af12) terms. In a form which will be use- 

full when comparing with the strong coupling 

results this linearized equation can be writ- 

ten : 

(z-k.1) 6f (&,pi Z) - nBV(k1. &.I$ (p) ldp' 6f (&, - - - 

However we now know that a straightforward 

small-X expansion of v does not exist be- 
cause of the feedback effect of hydrodyna- 

mic fluctuations onto the transport coef- 

f icients, a phenomen better known as the 

"long time tails" [7]. The dominant term - 1 
v - X  up 1nX for X<<1 should however 

remain reliable.. If we consider a trans- 

port coefficient, say the shear viscosity 

12 , its reduced value q/nmw h2.becomes then 
P D 



simply : prevents it from adequately treating dense 

while the remaining task of any weak-cou- 

pling kinetic theory (usually the ha~d part 

of the job ! ) consists solely in the deter- 

mination of the proportionality constant 

y (V = yXw InX-'1. The BGL kinetic equation 
P 

yields for instance y = 1 / 10 a312 in the 

first Sonine polynomial approximation. 

Turning now to the subject of our concern, 

one could be temptedto use the small- A re- 
sults like eq. (6) as an empirical expres- 

sion for estimating transport coefficients 

outside the weak-coupling region. Recent mea- 

surements of the electrical conductivity of 

ionised inert gases [2]indicate however 

that a departure from the typical (XlnA-I)-' 

behavior becomes detectable already for in- 

termediate A(- 0.8). Moreover direct compu- 

tersimulations [3]have revealed that for 

strong coupling (X > 1) n/nmwphi passes 

through a minimum as a function of X after 
which it increases slowly with 1. For strong 

coupling eq. (6) clearly becomes inadequate 

and a new starting point is needed. 

media is that it describes a local colli- 

sion process. In a dense medium a collision 

occuring at a given point will depend on 

the state of the system in the neighbour- 

hood of that point. As a consequence the 

BLG theory neglects important potential 

contributions to the transport coefficients. 

What we would like is some kind of Enskog 

theory for plasmas in which delocalisation 

effects are taken into account together 

with the exact equilibrium correlations. 

Systematic methods which realize this pro- 

gram, leading to so-called "fully renorma- 
lized kinetic equations", have been deve- 

loped in recent years for dense fluids of 

uncharged particles [9], Here we will in- 

dicate how these methods can be taken over 

to dense plasmas [lo1 

3,.1. Renormalized B.Gz&t-eguation.- In the 

modern approach to transport theory the ba- 

sic quantities are the equilibrium phase- 

space correlation functions (also called 

propagators or classical Green's functions) 

: S(g1-g2,tl-tZ; pl ,p2) = <6N(gl ,p~;tl) - - - 

3. Transport theory of strongly coupled plas- where < * * * >  denotes a canonical average, 

mas.- The main defect of the BGL kinetic the- 6N = N - <N> is the fluctuation of the 
ory, as far as its application to dense plas- phase-space density N : 

mas is concerned, stems from the fact that 
~(g,~;t) = ; ' 6(_r - r .(t)) 6 (F - P, (t)) it is still too much of a perturbation theo- - 

J - 3 - - 
I Q \ 
\ U l  ry with respect to the potential. The renor- 

malizations (i.e. infinite order resummations of the N particles of positions {g;(t)} and 

of potential contributFons) .which have been momenta {pj (t) ?I The fact that S (g,t ; p ,pl - - 
performed to obtain the BGL-equation have ' is considered as the basic quantity instead 

led merely to the introduction of the dielec- of the one particle distribution function 

tric function E~(~,Z) of eq. (4) which des- implies that we will be concerned from the 

cribes collective effects in a weak-coupling start with a linearized kinetic theory whe- 

approximation. The BLG equation as such still reas in the ordinary kinetic theory based 

predicts ideal gas thermodynamics, conserves on the particle distribution functions one 

only the kinetic energy, while the transport starts from a nonlinear kinetic theory and 

coefficients derived from it barely differ linearizes it a posteriori. The present 
[81 from those obtained from Landau's procedure turns out to yield a difinite ad- 

straightforward weak-coupling kin5tic equa- vantage since progress in the ordinary non- 

tion corresponding1to eqs (1-3) with the ap- linear kinetic theory beyond the BGL appro- 

proximation E~(&,Z) = 1. What we need here ximation is known to be very difficult. He- 

is to eliminate as much as possible the bare re one can write down immediately an exact 

potential in favor of the exact equilibrium kinetic equation for S(g,t ; p,_pl) or its - 
correlations. Fourier-Laplace transform S (k, Z ; g ,p ' ) : 

A second feature of the BLG equation which (Z - kc) S (k,Z ; p,p') + C(k)k-y $ (2) I dp' - - - 
S(k.2 ; p ,pl) = Jdk' Cc(klz ; g , ~ ' )  b(&,z - 
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p' ,PI) + is (k,t = 0 ;)?,PI) (9) zation of the two-point function S(1,2;t) 

which is our basic quantity. Performing a 

where the initial value of S is easily cluster expansion we can write : 

seen from eq. (7) to be : C(1l1;22*;t) = S(1,2;t) S(11,2';t) + S(l, 
2';t)S(11,2;t) + Cc(1l1;22';t) 

(13) 
S(k,t-0 ; - PI 1 ~ 2 1  = n +  [8(pl - p2) + - - where Cc is the non-factorisable or "connex" 

(PZ) h(k)] (1 0) part of C. The quantity Cc is known to des- 

cribe close interactions and is extremely 

complicated except at t = 0 where it is 

known explicitly in terms of equilibrium 

correlation functions, A technique anologue 

to the "vertex renormalization" of the 

Green's functi0.n methods allows us to in- 
In eqs. (9-10) , C (k) and h (k) are, respecti- corporate this known piece of information 
vely, the Fourier transforms of the direct about Cc. Skipping the details we merely 
correlation function c(r) and of g(r) -1, g(r) note here that it amounts to replace the 
being the equilibrium pair correlation func- bare vertex (V (k) ) by a renormalized one 
tion,. These functions are further related by (-c(k)/nB. Dropping Cc for later times leads 
the Ornstein-Zernike relation & 1 + h(k) = 

then finally to the following expression 
(1 - C(k)-I. Several methods have been devi- for the linearized collision operator : 
ced to derive eq. (9) from first principles 

[9] but here we will skip this rather techni- Zc(k,t;pl ,p~) = i I dk' I dpl ,dpn, c(&') 
cal point and for us eq. (9) can serve merely 7%T2 3 7  

as a definition of Cc, the exact "linearized kI.2 
collision operator", which in this context is apl - (14) 

usually designed as the "memory function". 
' {~(k-kl,t;pl ,pn) s(kl ,t;pp,pl~) c(kl)k' 3 

~t is important to observe that without ma- ~ P P  

king any approxima$ion we have already part- - S(k-&' ,t;pl r ~ ' )  S(k1rt;p1'rp2) C(lf-kl) 
ly realized the above mentioned programme. 

Indeed comparing eq. (9) with eq. (5) we see (k-['I. 2 1 (n$(P2))-1 
that the bare potential (V(k)) appearing in ap2 

eq. (5) has been eliminated in favor of an which when Laplace transformed with respect 

equilibrium correlation function (nBV(k) -+ to t and substituted back into eq. (9) cons- 

- ~(k)) whereas the collision process descri- titues the basic approximate kinetic equa- 
bed by eq. (9) is clearly nonlocal in space tion we propose for dense plasmas [7,10,11] . . . 
(and time) because of the k (and Z) dependen- 
ce of Cc. To proceed we need an explicit ex- 3.2. Some prgperties of the renormalized 

pression for Cc. It can be shown 9.Ithat Cc theory.- The kinetic theory based on eqs 

can be writt!en,as : (9, 10,14) has been obtained from the exact 

but formal results by neglecting dynamic 

icc'(1,2;t) n$(p2) = bd11d2' L(ll')L(22')C1 close interactions.. The static close inter- 

(11' ; 22I ; t) actions however are retained in the exact 

where 1 E (rl , J ? ~ ) ,  dl 5 dr1,dpl, etc . . . whi- equilibrium correlations which appear in 

le L(12) is the familiar two-body interaction eqs (9114)- This kinetic equation can be 

operator : , shown 30: to conserve the total number, 

total momentum and total energy of the par- 
~(12) = - = (5 - s,). - a - a (I2) ticles. Physically it corresponds to a ful- ar, a_pl a_p2 

ly renormalized version of the BGL theory 

The quantity C(111;22';t) which appears in in which the ipteractions proceed via an 

eq, (11) is (apart from .some technical irre- , 
effective potential f-C(k)/qB) while the 

ducibLliw condition) the f our-point generali- particles are propagated during the nonlo- 



cal collision process with their exact propa- 

gator S instead if its Vlassov approximation. 

Notice that although we are concerned here 

with linear transport theory the kinetic e- 

quation is nonlinear in S. This is a typical 

feature of dense media as it allows for the 

feedback action of the medium onto itself. 

An explicit example of this effect, the so- 

called long-time tails of the integrands of 

the transport coefficients has been treated 

elsewhere [7]on the basis of eq. (14). The 

time non-locality of the collision operator 

of eq. (14) also allows for the description 

of finite frequency effects which are essen- 

tial for a proper treatment of the plasma os- 

cillations of dense plasmas [ll]. Finally a 

slight modification of eq. (14) which guaran- 

tee,s that the short-time behavior of S (as 

characterized by its three first frequency 

moments) be rendered exactly has also been 

worked out [lo]. 

As far as transport theory is concerned, the 

relation between eq. (14) and the linearized 

BGL collision operator, i.e. Cc (_p,pr) of eq. 
(5), can be seen as follows. If the colli- 

sions are weak the approximate nonlinear ki- 

netic equation defined by eq. (9) and eq. 

(14) can be solved by iteration. As a first 
approximation we can compute eq. (14) by u- 

lation function C(k) by its weak coupling 

value, i.e. -nBV(k), then E(~Z) of eq. (16) 

reduces to the Vlassov result, c0(k,Z) of 

eq. (4) , while eq. (15) yields back the li- 

nearized BGL operator defined by eqs.(2-5). 

Hence, within the present framework, eq.(14) 

represents clearly a finite coupling, non- 

local (finite k) and non-Markovian (fl nite 

z) generalization of the BGL theory. 

3-3. The renormalized interactio2.- As sta- 

ted above, the present theory is expressed 

in terms of a renormalized interaction 

which is proportional to the direct correla- 

tion function C(k) for which explicit data 

are needed. Originally [lo] these data were 

taken from the Monte Carlo simulations 1121. 

As we now known, however, one can also pre- 

dict theoretically very good data for C(k) 

by solving the hypernetted chain (HNC) equa- 

tions for the Coulomb potential[4]. Recent- 

ly it was shown [13, 141 that these equa- 

tions can also be rewritten as an integral 

equation directly for C(k) : 

C(k) = -@(k) + I; dk' k.kl-[~(k-k1j)c(k') 
n '8TT71CI 1- c(k-kl) 

sing for S its value obtained from the colli- 

sionless kinetic equation, i.e. eq. (9) with where $(k) = 4ne2ns/k2. A less accurate but 

Cc deleted. This collisionless kinetic equa- very simple model for C(k) has also been 

tion is nothing but a linearized Vlassov e- 
proposed recently [14]. This model is based 

quation including however the exact statics on the ansatz that for small r, C(r) can be 

through C(K) . The BGL theory approximates written as a polynomial in r2 whereas for 

moreover Cc by its local Markovian approxima- large r, C(r) reduces to the Coulomb poten- 

tial. We will not dwell any further on the- 
tion, Cc (k,Z;p,pl) =! Cc (k=o, z=o;g,_p'), for 

which the above first-approximation becomes : 
se static aspects except for the observa- - - 
tion that the above transport theory can be 

ec (k=o , z=o; pl ,p2) n~) (.pi ) = i2 s: k' 02 completed by computing c (k) , for any value - - - 8n apl - of the coupling parameter belonging to the 

system's fluid phase, directly from eq. (17) 
k' .a - 

- 3.4. Transport coefficients.- To proceed 

*~1~s(k'.~1-lf'~~2) $ ( _ P I )  $(_P*) - 6(~1-12) @ 
with this transport theory we still need 

an explicit expression for the transport 

(p2 )  J dp, ~8 (k'.vl-k1v3) + ( _ P ~ ) ]  
(15) coefficients. In the traditional theory 

- - - one usually performs a Chapman-Enskog ex- 

where E (k,Z) is defined as : pansion of the kinetic equation. In the 

plasma case this expansion is hard to jus- 
E (k,Z) = 1- C(k) / dg 1 k.*(~) 

B z - k.y a_p (I6) tify except in the limit of strong coupling 

If we moreover approximate the &=rect corre- 
[4, 5, 7, 11). In the present scheme we can 

circonvent this difficulty and obtain ex- 
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pressions for the transport coefficients di- ce, of the collision operator is concerned. 

rectly from eq. (9). Here we will sketch Taking the indicated limiting values, the 

the procedure for the case of the shear vis- first term in the r.h.s. of eq. (18) is 

cosity which is very simple, Indeed from eq. seen to depend on the second derivative of 

(9) one can compute directly the transverse- Cc with respect to k while the second term 

momentum correlation function Gl (k,Z) = / dp does depend on Cc(k=o,o) and on the first 
- 

dp' 5.2 I.&' S (k_,Z;_p,pl) , being a unit k-derivative of Cc (k,o) (notice that Co I. 

vector othogonal to k. Because of the rota- O(k) ) .  Hence if one straightforwardly ne- 

tional invariance of the various equilibrium glects the nonlocal character of the colli- 

quantities involved,GI decouples complete- sion process by taking from the start Zc - 
ly from the remaining "hydrodynamic" corre- Cc(k=o,Z=o) as is done in the standard BGL 

lation functions and can be written exactly theory, one is left over with : 

as G (k Z) = 1- (Z - nl(kZ) ) where nl (k, 
1 - 

Z) plays the r8le of a memory function for q = nm <llno Q(iQCC(o,o)Q)-' Q L/l> (19) 
r 1- 

K Gl(k,Z). Because of momentum conservation 

we can write nL(k Z) = - i c  q (kZ), q(kZ) be- i.e. a matrix element of the (non-hydrodyna- 
nrn mic part of the) inverse collision operator. 

ing a non-local shear viscosity related to This will clearly be a good approximation 
the ordinary shear viscosity-q by q = q(k=o, to eq. (18) when Cc is weak, i.e. for weak 
Z=o), whenever the latter limiting value e- .coupling and indeed computing eq.(19) with 

xists which will be the case below. In this the BGL expression of Lc(o,o) yields (in 
way we obtain an exact expression for the the first Sonine polynomial approximation) 
shear in terms the exact cO1- back the well known Spitzer-type formula of 
lision operator Cc : eq. (6). When Cc is not weak, the first term 

rl = n m lim < I I iCc (k,Z=o) 11 > (18) in the r.h.s. of eq. (18) will however rise 

k+o k with the coupling and hence the approxima- 

+ + rca ,o, Q(iQrc (o,o)Q,-l + tion Zc = Cc (k=o) cannot be maintained for 

strong coupling. To proceed with the trans- 

zc (k,~) ) 1. > \ * port theory of dense plasmas we have thus 

to compute for ex. eq. (18) with the aid of 
This expression can be shown to be identical our nonlocal collision operator. 

to the full Kubo formula for q. It results 

from a complete reorganization of the latter 3.5. Numerical results.- For the explicit ----------------- 
formula and has the advantage to be expres- evaluation of the transport coefficients we - 
sed directly in terms of the collision ope- propose to use the approximate collision 
rator instead of the Liouville operator. It perator of eq. (14) evaluated with the col- 
is instructive to inspect this general ex- lisionless approximation for , This is a - - 
pression In eq* (I8) ? the ma- nonlocal of the BGL theory 
trix element 1 _ d ~  d ~ '  5 . 2  including moreover the exact statics. As 

52' (E?B' ) (2' ) Co denotes the free- such our proposal is similar to the Enskog 
flow term of eq* (9) i*e- Co (kZ;pp') = k*v theory which also uses the collision pro- 
~(E-I'). The operator Q which appears in eq* cess of ~ ~ l t ~ ~ ~ ~ ~ ' ~  dilute gas theory, de- 
(18) projects onto the non-hydrodynamic mo- localizes this collision Drocess and takes - - 

mentum states. Its effect is identical to . the equilibrium correlations into.account. 
the well-known subsidiary conditions of the We also know that Enskogls theory yields 
Chapman-Enskog method. It is. seen that the good results for the transport coefficients 
non-Markovian character, i.e. the z-depen- of dense systems of neutral particles if 
dence, Cc(kZ) plays here* This is the hard-sphere diameter is suitably adjus- 
easely understood since we are concerned ted, Notice that here we have some kind of 
with a vanishingly low hydrodynamic frequen- Enskog theory for plasmas which is free of 
cy* Things are however different as far as undetermined parameters, To test this theo- 
the nonlocal character, ioe. the K-dependen- ry we will its results with those 



of the molecular dynamics simulations of a 

classical one-component plasma C3J. AS far 

as we know only two coefficients, the shear 

viscosity and the self-diffusion, have been 

evaluated theoretically for dense plasmas 

Ll01. Both calculations use a one-Sonine po- 

lynomial approximation in order to evaluate 

inverse collision operators such as the one 

appearing in eq. (19). This is generally 

(except for the electrical conductivity) a 

good approximation for dilute systems. In 

the dense plasma case the convergence of 

this expansion has not been tested yet. Ano- 

ther technical point is that for the shear 

viscosity the Landau approximation (&(kZ) = 

1) is a good approximation while this is not 

so in the case of the self-diffusion coeffi- 

cient. Let us start thus with the simpler 

case of the shear viscosity. 

3.5.1 Shear viscosity.- Consider the reduced 

viscosity qx= q/n n wp a2 which is a fonc- 

tion of the coupling parameter r = 6e2/a. 

For small F (<< 1) the results for n cannot 
be distinguished from thosd of the weak-cou- 

pling theories, i.e. the BGL theory and Lan- 

dau's theory (BGL with c0 (kZ) = 1 ) . This is 
interesting since the latter theories requi- 

re cut-offs in eq. (3). At r = 0.1 things 

begin to change slightly (see Figure) but 

our result (n * =  86) still lies between the 
BGL value ( qtGL = 83) and the Landau value 

($ = 93). Beyond 7 = 0.1 the weak-coupling 

~ig.q* as a function of r from : (1) the Landau the- - 
ory [81, (2) the BGL theory[8], (3) the kine- 
tic theory of Wallenborn and Baus [10], (4) 
the phenomenological theory of Vieillefosse 
and Hansen 1 3 1 .  Also shown are the molecular 
dynamics results (dots) of Bernu and Vieille- 
fosse [ 3 1  and an independent estimate (cross) 
by Hansen et a1 [3]. 

respectively r = 1.0, 10.4 and 100.4. The 

following empirical expression : 

where the different terms correspond to 

those of eq. (la), fits the theoretical 

strong coupling data (2 < r < 160) to wi- 

thin a few percent. 

2 2  

theories become invalid. Here n * decreases 
3.5.2. Self-diffusion.- In the case of the 

rapidly and reaches a minimum of n* =  0.07 self-diffusion coefficient D an additional 
around r = 8 after which it rises again up difficulty arises due to the fact that the 
to n * =  0.3 at freezing r = 160. On the fi- 

values of D* = D/wp a2 are obtained theo- 
gure we have also indicated the results of a 

retically from a time integral of a rapi- 
phenomenological theory [ 31 based on a gaus- 

dly oscillating function. In the case of 
sian fit of the memory function of n** This the shear viscositv similar oscillations 
theory does not posses the correct weak cou- 

did appear but they did not occur around 
pling Limit and is invalid for R 2 .  From the zero and are easier to treat. This explains 
molecular dynamics computation of n * say why the Landau approximation ( &  = hence t nMDI we find that the error slightly increa- no oscillations 

) for is not as good as 
ses with r.  More we find ' /k for nq. In the Table below we compare the 
0.97, 0.86 and 1.22 for ' 

molecular dynamics values (DpXID) and the 

theoretical ones, with (D:) and without * 
(D2) 

stat 

earl 

I .  

Landau approximation. Using improved 
% 

.its (D2) is seen to improve upon the 

ier theoretical values (D,?&). Finally, 

using an improved short-time behavior (D:) 

as required by the above mentioned oscil- 

6 
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lation-problem is also seen to improve the 

situation although further investigation is 

required here. In any case D is seen, both 

from theory and experiment, to be a rapidly 

decreasing functions of r .  

t Tab1e.D as a function of r from : the molecular dy- 
namics (Dm) of Hansen et a1 [3], the kine- 

tic theory of Gould and Mazenko (D ) [lo]. 
GM 

Also shown are the results of [15] based on 
the theory of Gould and Mazenko (101 but 
with improved statics and with (D ) and wi- 1 
thout (D ) the Landau approximation and 2 
with improved short time behavior (D3). 

4.' Conclusions.- 

It appears to us that kinetic theories like 

those described above give a reasonable des- 

criptiop of the transport coefficients of a 

claksica~ one-component plasma both in the 

dilute gas and in the dense liquid-like si- 

tuations. Hence, although the amount of work 

involved will be rather formidable, it 

should be interesting to extend these re- 

sults to more realistic situations than tho- 

se covered by the one-component plasma mo- 

del. 
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