
On the huge benefit of quasi-random mutations for

multimodal optimization with application to grid-based

tuning of neurocontrollers

Guillaume Chaslot, Jean-Baptiste Hoock, Fabien Teytaud, Olivier Teytaud

To cite this version:

Guillaume Chaslot, Jean-Baptiste Hoock, Fabien Teytaud, Olivier Teytaud. On the huge ben-
efit of quasi-random mutations for multimodal optimization with application to grid-based
tuning of neurocontrollers. ESANN, Apr 2009, Bruges, Belgium. 2009. <inria-00380125>

HAL Id: inria-00380125

https://hal.inria.fr/inria-00380125

Submitted on 30 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00380125


On the huge benefit of quasi-random mutations

for multimodal optimization with application to

grid-based tuning of neurocontrollers

G. Chaslot1 and J.-B. Hoock 2 and F. Teytaud2 and O. Teytaud2

1- University of Maastricht

2- Tao, Inria, UMR Cnrs 8623, Lri, Bât. 490,
Université Paris-Sud, Orsay F-91405

Abstract.

In this paper, we study the optimization of a neural network used for con-
trolling a Monte-Carlo Tree Search (MCTS/UCT) algorithm. The main
results are: (i) the specification of a new multimodal benchmark function;
this function has been defined in particular in agreement with [1] which
has pointed out that most multimodal functions are not satisfactory for
some real-world multimodal scenarios (section 2); (ii) experimentation of
Evolution Strategies on this new multimodal benchmark function, showing
the great efficiency of quasi-random mutations in this framework (section
3); (iii) the proof-of-concept of the application of ES for grid-based tuning
Neural Networks for controlling MCTS/UCT (see section 3).

1 Introduction

We introduce in this section (i) neural nets (ii) evolution strategies in the parallel
multimodal case (iii) quasi-random mutations (iv) Monte-Carlo Tree Search.

Neural Networks (NN). NN naturally lead to multimodal functions; even
when they are used as a regression tool, they are highly multimodal, containing
provably both plateaus and local minima [2, 3]. In the case of NN used as
controllers of a dynamical system, the situation is worse: local minima can
appear even with very simple NN due to the dynamics of the plant.

Evolution strategies (ES) and large population size for multimodal
problems. ES [4, 5] are a well known framework for difficult optimization; in
particular, multimodal and parallel optimization. In the related framework of
Particle Swarm Optimization, [6] uses population-based optimization in order
to train NN; a large value of the population size λ reduces the risk of local
minima. This idea of λ large for reducing the risk of local minima is also classical
in population-based optimization, far from NN [7, 8]. Unfortunately, it has
been shown in [9] that some classical ES are not very efficient when λ is large.
However, [9] also shew that the self-adaptive approach SA is quite stable and
fast in that case, with a good speed-up as a function of λ. We therefore use the
SA approach here.

There are not so many multimodal functions in classical benchmarks. If
we consider e.g. Rastrigin’s function, it is multimodal but an initialization large
around the optimum leads to a far less ”multimodal” run: quickly, the population



is in the right basin of attraction and the multimodality has no impact. [1]
provides an interesting fitness function, which is designed in order to have a
clear compromise between the size of basins of attraction - they show that most
algorithms will focus on the largest basin which is not necessarily the best one
(see also [10], emphasizing that in some robust optimization scenarios choosing
the largest basin might be a good idea whenever the other basin leads to better
fitness values). We define a highly multimodal fitness function in section 2.

Quasi-random (QR) mutations. After astonishing results in numerical
integration [11], QR points have been used in several works around evolution
strategies, in the initialization or in the mutations [12, 13]. [14] in particular
pointed out that ”modern” QR points [15], using e.g. scrambling, are far more
efficient for mutations than old-fashioned QR points. [16] has presented positive
results for QR mutations; in particular, [16] concludes to the efficiency of QR
mutations in several settings. However, their observed improvement is moderate.
We here show that QR mutations are much more efficient than that, in highly
multimodal cases. The trick for generating a quasi-random Gaussian mutation
is here as follows (similar to [14, 16]): there is only one quasi-random sequence
(here Sobol’s sequence [17]) in dimension N for an optimization problem in di-
mension N , and a Gaussian mutation is generated by applying the reverse of the
cumulative normal distribution to the quasi-random vector (see [14], available
freely on http://hal.inria.fr, for details; due to length constraints we can
not give full details here).

An application: Monte-Carlo Tree Search (MCTS). MCTS [18, 19,
20, 21], including UCT[22], is a family of algorithms for taking decisions under
uncertainty. It is known as particularly efficient for the game of Go, a very
old Asian game in which computers are still far from the level of strong hu-
man players (whereas in chess, computers can win against humans whilst given
them advantages). In particular, our program MoGo, based on MCTS, realized
(i) the first ever win against a professional player in 9x9 Go (ii) the first ever
win against a professional player in non-blitz 9x9 Go (Paris, 2008) (iii) the first
ever win against a top level professional player in 19x19 Go (with handicap 9
however!). These results are based on increasingly complicated formula for the
so-called ”bandit” algorithm; the exact specification is the result of many com-
plicated improvements, leading to the idea of using a NN instead of handcrafted
formula. The schema is roughly as explained below. The principle of the algo-
rithm consists in simulating thousands (or even millions in the parallel versions)
of games starting at the current situation. The main point is that simulations
are adaptive: based on previous simulations, simulations become more and more
realistic and efficient. The algorithm follows:

while Time left > 0 do
Initialize s to the current state of the goban.
while s is not terminal do

Compute the score of each legal move (see text) in s based on the situa-
tions/statistics stored in memory.
Simulate the move with highest score; let s be the new state.



end while
Store the result of the game and the visited situations in a hashmap.

end while
Choose the most simulated move from the current situation.

The difficult part is the score (however, other parts above have been sim-
plified for the sake of clarity; see papers cited above for more details). In a

given situation, the score combines p̂(d) (online score, as in [22]), ̂̂p(move) (the
transient score, see [21]), H(d) some heuristic value based on patterns(as in [19]).

Score(d) = α p̂(d)︸︷︷︸
Onlinevalue

+β ̂̂p(move)︸ ︷︷ ︸
Transientvalue

+γ H(d)︸ ︷︷ ︸
Offlinevalue

+δP (d, n) (1)

where the coefficients α, β, γ and δ are empirically tuned coefficients depending
on n(d) (number of simulations of the decision d) and n (number of simulations
of the current board) with the following constraints: (1) α + β + γ ≃ 1 (not
exactly equality, as seemingly a number > 1 is somewhat better for small values
of n(d)); (2) α ≃ 0 and β ≃ 0, i.e. γ ≃ 1, for n(d) = 0; (3) β >> α for n(d)
small; (4) α ≃ 1 for n(d) → ∞; (5) δ only depends on n and decreases to 0 as
n → ∞; (6) d 7→ P (d, n) converges to the constant function as n → ∞; δP (d, n)
is analogous to the progressive unpruning term[19]. These rules imply that:
(i) initially, the most important part is the offline learning; (ii) later, the most
important part is the transient learning (RAVE values [21]); (iii) eventually, only
the “real” statistics (online values) matter. In our experiments, we add a NN,
which acts as a multiplicative term specifying α, β and γ (two coefficients are
chosen by the NN, and these two terms are used as multiplicative factors in the
formulas specifying these three variables).

Notations and methodological choices. Our real-world implementations
are based on grids. This implies tricks for fault-tolerance and we therefore pre-
fer very simple approaches in which we can easily catch errors and relaunch
the algorithm when some jobs are lost. In particular we do not discuss niching
[23, 24]; such approaches are interesting in the multimodal case and could be
considered also, but we preferred the most simple tools. The improvements pre-
sented in this paper, based on QR mutations, are anyway somewhat orthogonal
to niching mechanisms and niching-based algorithms could benefit from these
improvements as well. In all the paper [[a, b]] stands for {a, a + 1, a + 2, . . . , b}.

2 A multimodal benchmark

[1] pointed out that there are some weaknesses in usual multimodal fitness func-
tions. They propose a multimodal fitness function in which the number of basins
can stay bounded independently of the dimension, and the size of the basins is
controlled. We propose a highly multimodal function: at all scales, the fitness
function is multimodal. One can consider that this fitness function is far too
difficult for real-world applications; we agree that most real fitness functions are
not so difficult. However, our goal is that, even if, involuntarily, you get rid of



dangerous local minima by tuning your algorithm in repeated experiments, you
will get stuck in the next local minimum unless your algorithm is really strong
for avoiding local minima. Interestingly, the positive results of [16] about QR
mutations become much stronger in this setting.

The MM function, mapping x ∈ R to MMK(x) = step(x) +
mod(step(x), K), for some parameter K ∈ {1, 2, 3, . . .}, where step(x) =
round(log(x)) where round(x) = ⌈x+0.5⌉ and mod(a, b) = r if b|(a−r) and r ∈
[[0, b − 1]]. In dimension N > 1, MMK(x) =

∑N

i=1
MMk(xi). This MM

function is monomodal for K = 1, but with many plateaus; with K > 1
the function becomes more and more difficult, with local minima at all scales
(http://www.lri.fr/~teytaud/qrlllong.pdf for Figures).

3 Experimental results

Below, we compare QR and random mutations on artificial benchmarks. We con-
clude to the very high efficiency of QR mutations for highly multimodal fitness
functions. Then, we will apply QR mutation on a real world application involv-
ing NN and MCTS. In all this section, we use the SA algorithm, as in [9], due to
its success in the parallel setting, parameterized as follows: (i) isotropic mutation
(i.e. mutations are of the form σ ×N with N a standard multivariate Gaussian
random variable) (ii) τ ≃ 1/

√
N (exact formula depending on the run, see de-

tails below) where N is the dimension (iii) initial parent (1/
√

N, . . . , 1/
√

N) for
artificial experiments (not centered on the optimum) (iv) initial σ = 1.

Artificial experiments. We present in Fig. 1 normalized convergence rates
for various values of λ, in (i) the classical random case and (ii) the QR case. The
normalized convergence rate is evaluated when the fitness −100N is reached.

Results with higher dimensionality or other values of τ are presented in
http://www.lri.fr/~teytaud/qrlllong.pdf; we can essentially see that the
efficiency of QR (compared to standard random numbers) holds on a bigger
range of values of λ.

Real world experiments. The elements to be controlled are specified in
section 1. The form of the controller is simply two neurons, with respectively
3 inputs and 1 bias / 2 inputs and 1 bias, leading to 7 parameters (there are
also coefficients chosen by the human expert involved). The NN chooses some
coefficients involved in the computation of α, β,γ and δ as a function of more
statistics than in usual MCTS (see 1); more details can be provided by email on
request. The objective function is the success rate in games against a baseline,
as estimated over 200 games. There were 4 generations of 92 individuals; the
small number of generations is due to the huge computational cost: each indi-
vidual (evaluated in parallel) is evaluated in 5 or 6 hours. The average score for
these generations were respectively 83.32, 84.10, 85.48, 90.68 (standard deviation
0.74%). The score of the mean individual of the last generation was 101.73 ±
0.74%. As the score of the handcrafted version is 100.0, we have a moderate im-
provement; yet, there is a significant advantage in front of the initial distribution
given to the ES, equivalent to a hand-tuning.



0 50 100 150 200 250 300 350 400 450 500
−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Comparison of the speed−up, N=10, (mu/mu,lambda), SA

λ

lo
g(

x)
*N

/#
ite

ra
tio

ns

Random
Quasi−Random

0 100 200 300 400 500 600 700 800 900 1000
−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

−0.0

Comparison of the speed−up, N=10, (mu/mu,lambda), SA

λ

lo
g(

x)
*N

/#
ite

ra
tio

ns

Random
Quasi−Random

Fig. 1: We here present results in dimension 10 with τ = 1/
√

N : left, K = 1;
right, K = 2. Abscissa: λ, i.e. population size. Ordinate: the log of the distance
to the optimum, multiplied by the dimension and divided by the number of
iterations. The QR points have a huge improvement over the random points for
a large range of values of λ; with K = 1, the QR version is 2.5 times faster for
small values of λ, almost 4 times faster for λ = 170, and remains higher than
1.5 times faster for λ = 350. With K = 2, the QR version is 4.5 times faster for
λ = 230, and remains at least 1.5 faster for λ ≤ 500.

4 Discussion

On the methodological side, the results of this paper are twofolds: we propose
a new highly multimodal function, and show the huge benefit of QR mutations
on this benchmark. The results are in particular highly relevant for λ large,
as for parallel optimization (as in our application). On the application side,
we show how a NN tuned by a simple but well-chosen algorithm can lead to
significant improvements in the difficult case of MCTS. In many MCTS, the
heart of the system is unreadable; therefore, plugging and optimizing a NN is
reasonable; automatic tuning as in this paper, with self-adaptive parallel ES,
leads to results equivalent to tedious handcrafting, and the resulting code is not
more unreadable.

References

[1] Monte Lunacek, Darrell Whitley, and Andrew Sutton. The impact of global structure
on search. In Günter Rudolph, Thomas Jansen, Simon M. Lucas, Carlo Poloni, and
Nicola Beume, editors, PPSN, volume 5199 of Lecture Notes in Computer Science, pages
498–507. Springer, 2008.

[2] K. Fukumizu and S. Amari. Local minima and plateaus in hierarchical structures of
multilayer perceptrons. Neural Networks, 13(3):317–327, 2000.

[3] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, November 1995.

[4] I. Rechenberg. Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien
des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.

[5] H.-G. Beyer. The Theory of Evolutions Strategies. Springer, Heidelberg, 2001.



[6] F. van den Bergh and A. Engelbrecht. Cooperative learning in neural networks using
particle swarm optimizers, 2000.

[7] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal test
functions. In X. Yao et al., editors, Parallel Problem Solving from Nature PPSN VIII,
volume 3242 of LNCS, pages 282–291. Springer, 2004.

[8] A. Auger and N. Hansen. A restart cma evolution strategy with increasing population
size. In proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005,
pages 1769–1776, 2005.

[9] Hans-Georg Beyer and Bernhard Sendhoff. Covariance matrix adaptation revisited - the
CMSA evolution strategy. In Günter Rudolph, Thomas Jansen, Simon M. Lucas, Carlo
Poloni, and Nicola Beume, editors, Proceedings of PPSN, pages 123–132, 2008.

[10] Kenneth A. De Jong. Genetic algorithms are not function optimizers. In L. Darrell
Whitley, editor, FOGA, pages 5–17. Morgan Kaufmann, 1992.

[11] A. B. Owen. Quasi-Monte Carlo sampling. In H. W. Jensen, editor, Monte Carlo Ray
Tracing: Siggraph 2003 Course 44, pages 69–88. SIGGRAPH, 2003.

[12] Shuhei Kimura and Koki Matsumura. Genetic algorithms using low-discrepancy se-
quences. In GECCO, pages 1341–1346, 2005.

[13] A. Auger, M. Jebalia, and O. Teytaud. Xse: quasi-random mutations for evolution
strategies. In Proceedings of Evolutionary Algorithms, 12 pages, 2005.

[14] Olivier Teytaud and Sylvain Gelly. Dcma: yet another derandomization in covariance-
matrix-adaptation. In GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 955–963, New York, NY, USA, 2007. ACM.

[15] P. L’Ecuyer and C. Lemieux. Recent Advances in Randomized Quasi-Monte Carlo Meth-
ods, pages 419 – 474. Kluwer Academic, 2002.

[16] Olivier Teytaud. When does quasi-random work?. In Günter Rudolph, Thomas Jansen,
Simon M. Lucas, Carlo Poloni, and Nicola Beume, editors, PPSN, volume 5199 of Lecture
Notes in Computer Science, pages 325–336. Springer, 2008.

[17] I. M. Sobol. On the systematic search in a hypercube. Siam journal on Numerical
Analysis, 16(5):790–793, October 1979.

[18] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
P. Ciancarini and H. J. van den Herik, editors, Proceedings of the 5th International
Conference on Computers and Games, Turin, Italy, 2006.

[19] G. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H. van den Herik, and B. Bouzy.
Progressive strategies for monte-carlo tree search. In P. Wang et al., editors, Proceedings
of the 10th Joint Conference on Information Sciences (JCIS 2007), pages 655–661. World
Scientific Publishing Co. Pte. Ltd., 2007.

[20] Yizao Wang and Sylvain Gelly. Modifications of UCT and sequence-like simulations
for Monte-Carlo Go. In IEEE Symposium on Computational Intelligence and Games,
Honolulu, Hawaii, pages 175–182, 2007.

[21] Sylvain Gelly and David Silver. Combining online and offline knowledge in uct. In ICML
’07: Proceedings of the 24th international conference on Machine learning, pages 273–
280, New York, NY, USA, 2007. ACM Press.

[22] L. Kocsis and C. Szepesvari. Bandit-based monte-carlo planning. In ECML’06, pages
282–293, 2006.

[23] Ofer M. Shir and Thomas Bäck. Performance analysis of niching algorithms based on
derandomized-es variants. In GECCO ’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 705–712, New York, NY, USA, 2007. ACM.

[24] Stefan Bird and Xiaodong Li. Adaptively choosing niching parameters in a pso. In
GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 3–10, New York, NY, USA, 2006. ACM.


