
HAL Id: inria-00416208
https://hal.inria.fr/inria-00416208

Submitted on 13 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing a Tit-for-Tat Based Peer-to-Peer
Video-on-Demand System

Kévin Huguenin, Anne-Marie Kermarrec, Vivek Rai, Maarten van Steen

To cite this version:
Kévin Huguenin, Anne-Marie Kermarrec, Vivek Rai, Maarten van Steen. Designing a Tit-for-Tat
Based Peer-to-Peer Video-on-Demand System. [Research Report] RR-7034, INRIA. 2009, pp.20.
�inria-00416208�

https://hal.inria.fr/inria-00416208
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
70

34
--

FR
+E

N
G

Domaine 3

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Designing a Tit-for-Tat Based Peer-to-Peer
Video-on-Demand System

Kévin Huguenin — Anne-Marie Kermarrec — Vivek Rai — Maarten van Steen

N° 7034

Septembre 2009

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

http://hal.inria.fr/inria-00416208/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand
System

Kévin Huguenin , Anne-Marie Kermarrec , Vivek Rai∗, Maarten van Steen∗

Domaine : Réseaux, systèmes et services, calcul distribué
Équipe-Projet ASAP

Rapport de recherche n° 7034 — Septembre 2009 — 20 pages

Abstract: Video-on-demand (VoD) is a next-generation Internet application of increasing interest
allowing users to start watching a movie almost instantaneously by downloading the video on-the-fly.
Provided that all users contribute to the system, shifting to the P2P paradigm allows efficient broadcast
with a limited-bandwidth source. Until now, most P2P VoD systems rely on the willingness of peers to
collaborate and only few use incentive mechanisms. In VoD applications pieces are downloaded in order.
This prevents to directly apply a BitTorrent-like tit-for-tat incentive scheme. Although existing solutions
based on random exchanges have good performance, we advocate the use of structure in P2P VoD
applications to achieve high playback rates. In this paper we propose a decentralized piece dissemination
scheme built using loosely coupled structures. Peers are grouped into clusters depending on their playback
position. Swarming is performed inside the clusters while distributed feeding ensures that less advanced
clusters get missing pieces from more advanced ones. Our simulations demonstrate that structured
dissemination improves from 61% with the competitor to 77% of the achievable playback rate.

Key-words: Peer-to-peer systems, Video on Demand, Tit-for-Tat

∗ Vrije Universiteit, Amsterdam, The Netherlands

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Conception d’un système de vidéo à demande pair à pair basé
sur l’incitation

Résumé :

Mots-clés : Réseaux pair à pair, vidéo à la demande, méchanismes incitatifs

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 3

1 Introduction

Video-on-demand (VoD) is a next-generation Internet application of increasing interest allowing a user
to start watching a movie of his choice almost instantaneously. The media content is downloaded during
the playback in order to ensure that every piece of the media is available at the device when the playback
position reaches it. Therefore, at the price of a small time delay (i.e., compared to the naive solution
consisting in downloading the full movie before starting the playback), the movie can be played smoothly
without interruption. The high bitrates of the broadcasted content and the quality of service requirements
of VoD applications make centralized solutions costly. Due to the inherent sequential nature of VoD
transfers, building efficient decentralized VoD applications is more challenging than traditional client-
server solutions.

Over the last decade, the peer-to-peer (P2P) paradigm proved to be an efficient way to distribute
content in a decentralized fashion [4, 20]. A very popular P2P swarming protocol enabling file sharing
between peers is BitTorrent [7]. With only a limited number of peers injecting content in the system
(namely seeders) and proper forwarding techniques performed at the peers fetching content from the
system (namely leechers), P2P systems provide a fully decentralized distributed framework allowing
efficient content distribution at low cost. Therefore, they appear as a natural cheap solution for VoD
applications. However, applying the P2P paradigm to VoD systems is a difficult problem for two reasons:
(i) constraints on the piece download order and the low piece diversity in the system, decrease drastically
the performance of the system and (ii) considering the fact that the download speed relies on possibly
selfish peers it is impossible to guarantee any kind of quality of service to the users.

While the first problem can be fixed by designing proper piece dissemination schemes, the latter re-
quires a total rethinking of the P2P paradigm: incentives should be used to encourage peers to contribute
their fair share to the system. The tit-for-tat distributed incentives used in the popular file sharing sys-
tem BitTorrent have proved to ensure strictly that a peer contributes to the swarming process as much
as it exploits the system [8]. Tit-for-tat is implemented by limiting piece exchange to a bidirectional
transfer between peers having mutual interest. Although tit-for-tat solves the problem of selfish peers,
using them in a VoD application – where the peers only have the pieces before their playback position –
raises the question of how two peers at different playback positions could be useful for each other?

Motivated by the increasing interest of VoD and inspired by the most popular file-swarming ap-
plication deployed in the public domain (i.e., BitTorrent), we tackle the problem of designing a fully
decentralized tit-for-tat based peer-to-peer VoD system. More specifically, backed up by theoretical
arguments we prove that whereas the efficiency of random solutions is close to optimal in file-sharing
applications with offline use, it is strongly reduced by the specific nature of VoD applications. Even
if a random piece dissemination scheme can achieve good performance by means of several optimiza-
tions [3, 16, 18], we claim that the inherent sequential nature of VoD is not compatible with tit-for-tat
using a random piece exchange scheduling and communication graph.

In this paper we propose the design of a fully decentralized protocol for efficient tit-for-tat based peer-
to-peer VoD systems. This protocol trades the traditional random piece dissemination scheme against
a loosely structured dissemination scheme based on linked lists following the intuition below. Ordering
peers according to their playback position and linking them that way achieves an optimal throughput
as all peers contribute to the piece dissemination. This ensures a constant goodput over time, a useful
piece being disseminated at each exchange. The resulting protocol achieves this in a practical setting by
grouping peers in subsystems. This solution relies on two main components. First, a set of swarming
subsystems, referred to as clusters, enabling peers close with respect to playback time, to exchange
pieces of immediate interest as in traditional swarming systems. In the sequel, we call this vertical
dissemination. The second component is a distributed seeding/feeding protocol used to exchange pieces
between clusters. The intuition is that the most advanced clusters, in terms of playback position, feed
the less advanced ones, while the less advanced clusters push useful pieces to the most advanced ones.
Those useful pieces, from the standpoint of the most advanced clusters, are provided by the seed to the
less advanced clusters, in order to provide them with some useful piece to trade. This is called horizontal
dissemination as it builds a linked list between clusters along the playback timeline.

We evaluated this protocol through extensive simulations on top of the BitTorrent framework. This
protocol consistently outperforms the state of the art VoD system. Typically this protocol improves
the achievable playback rate from 61% to 77% and the throughput from 68% to 87%. Moreover, our
simulations show that, contrary to an unstructured piece dissemination protocol, our dissemination

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

4 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

protocol does not require the peers to store all the pieces they already played. This implies that the
protocol will also work with the ressource-constrained devices such as set-top boxes [12, 22]. Beyond a
given threshold (independent from the file size and very small compared to the number of pieces in the
file), our protocol achieves a playback rate of 77% whereas the unstructured protocol may fall to 18%.

Section 2 provides the relevant work in the design of peer-to-peer VoD systems. Section 3 gives an
overview of the BitTorrent framework on top of which we designed our algorithm. Section 4 gives our
design rationale. Section 5 provides a high-level description of our algorithm, followed by a detailed
description in Section 6. There, we also show how to provide a fully decentralized implementation.
Protocol analysis and simulation results are given in Section 7 and Section 8. The paper is concluded in
Section 9.

2 Related Work

Most of the large-scale peer-to-peer content dissemination schemes are designed using a tree-like struc-
ture. A tree provides a natural topology when content is pushed from a single source to multiple
destinations. However, an important drawback of a tree-based dissemination scheme is that the upload
bandwidth available at the leaf nodes is wasted. Therefore, solutions such as using multiple trees are
proposed in order to maximally utilize the bandwidth resources available at the peers. SplitStream [4]
solves this problem by striping the content across a forest of inter-node-disjoint trees. Other solutions
have also been proposed including [6, 9]. A general argument against the above discussed multi-tree
based approach is their relatively higher cost of maintenance in a dynamic environment [15]. In addi-
tion, since the transfer of content is not bidirectional, they are not compatible with tit-for-tat based
incentive models.

Several mesh based solutions such as BitTorrent [7] have also been proposed for content dissemina-
tion [14]. The advantage of such a solution is high scalability due to decentralization. Furthermore,
BitTorrent incorporates a tit-for-tat based incentive scheme to prevent free-riding and to encourage peer
contribution to the dissemination process. In BitTorrent-styled file dissemination, a file is divided into
multiple pieces such that each piece is independently downloaded. The incentive mechanism implies that
in order to download a piece, a peer must upload a piece in return.

Diversity of pieces available at the peers is critical for the success of these mesh-based P2P file
dissemination technique. However, in a VoD application, the restriction on the order in which pieces are
downloaded limits the piece diversity. Furthermore, allowing tit-for-tat based incentives may be difficult
to achieve as two peers at different playback position cannot be of mutual interest.

Several solutions have been proposed with focus on improving piece diversity in order to increase
the performance of the system. A trivial solution introduced in [17] consists in prefetching some pieces
randomly while the rest is downloaded in a sequential order. The motivation for downloading pieces in a
random order is to achieve high piece diversity and provide less advanced peers with pieces to trade with
more advanced ones. A piece downloaded in a random order can be exchanged with a more advanced
peer and in return a piece near the current playback position can be obtained. Random downloads help
in increasing the throughput of the swarming process, whereas downloading pieces in a sequential order
is critical for the performance of the VoD application. Finding a critical balance between random and
sequential downloads is an important design challenge.

Increase in piece diversity can also be achieved by slightly relaxing the sequentiality requirement
by using the segment model introduced in [2]. In this model, a file is divided into segments, where a
segment is a group of continuous pieces. Rather than downloading all the pieces in a sequential order,
peers download the file at the segment granularity. To guarantee uninterrupted playback, a peer has to
ensure that each segment is completely downloaded before the playback position reaches the beginning
of that segment. Note that, even though the segments are downloaded in a sequential order, there is no
restriction on the order in which pieces are downloaded within a segment. This provides a high piece
diversity within a segment. However, as segments are downloaded in sequential order, this results in
only a small increase in the piece diversity over the entire swarm.

Notice that none of these solutions are designed to work with decentralized incentives such as tit-for-
tat. These may work with tit-for-tat, however, with reduced performance.

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 5

3 Background

Peers participating in a BitTorrent swarm often are profit maximizing entities and their objective is to
optimize their download rate. BitTorrent provides an incentive mechanism that allows peers to inde-
pendently decide which other peers they want to exchange their content with. The incentive mechanism
ensures that in order to successfully exchange content, a peer must provide upload bandwidth comparable
to the download rate it receives.

The piece transfers in tit-for-tat based file-swarming systems are done over bidirectional connections.
Due to this bi-directionality restriction on piece exchange, the number of pieces that can be exchanged
over the entire swarm is reduced. Thus, to maximize throughput of the swarm, peers maintain piece di-
versity by downloading different parts of the file such that every peer has a high probability of exchanging
content with another.

Sufficient piece diversity can be obtained if peers download pieces in a random order. The random
order piece download serves the objective of the file-transfer application where the entire file is down-
loaded before it is viewed. However, for a VoD application, there is a restriction on the order in which
pieces are downloaded. For example, for a simple VoD application, where every peer plays the file from
start to finish, it is very difficult to maintain sufficient piece diversity to attain high throughput of piece
exchange. Thus, this lack of piece diversity due to sequentiality requirements of the VoD application can
severely limit the throughput of the system and hence can significantly reduce the performance of P2P
file-dissemination techniques.

To further maximize its chances of exchanging pieces, each peer maintains a list of other peers with
whom it can exchange content. This list of peers is also known as the peer set. A peer keeps an update on
the set of pieces downloaded by the members of its peer set. Using this piece set information, a peer can
locally determine potential candidates within its peer set with whom it can exchange pieces. Therefore,
several unnecessary requests to the peers that are not interested in piece exchange can be saved. The
choice of the members within a peer set is very crucial, especially for the design of VoD application. In
BitTorrent, members of the peer set are chosen randomly.

4 Design Rationale

In this section, we explore the design space of tit-for-tat based P2P VoD.

4.1 Design rationale

Consider a simple example of a VoD system with two participants denoted by n1 and n2. We assume
that n2 is at a more advanced position compared to n1 such that the piece set of n2 forms a superset
of that at n1. Thus, even though n2 can upload the piece needed by n1 it cannot receive anything in
return as n1 does not have the piece needed by n2, and hence piece exchange is not possible. In order
to make possible an exchange between two peers, a seed can upload the pieces needed by n2 to n1 such
that n1 can further exchange those pieces with n2. In addition, this enables the bandwidth of both peers
to be utilized for the dissemination process. Extending this idea for more than two participants, we now
consider k nodes such that nodes nk to n1 are arranged in decreasing order of their playback position as
depicted in Figure 1. Therefore, the piece set of an intermediate node ni (1 ≤ i ≤ k) is a superset of the
piece sets of all the nodes with lower playback position. Now, an optimal throughput can be obtained if
the seed uploads the piece required by nk to n1, and n1 forwards this piece via all the intermediate nodes
on a forward path that eventually reaches nk. Similarly a reverse path can be obtained where node ni

downloads pieces in sequential order from ni+1 in return for pieces transfered on the forward path.
From the above discussion we can conclude that a natural structure to support efficient utilization

of upload bandwidth is to arrange peers in a linked list. This linked list structure implies that half of
the upload bandwidth is utilized on the forward path for forwarding pieces from the seed to the most
advanced peer while the other half is dedicated to the reverse path for uploading pieces from a more
advanced peer to a less advanced peer in sequential order. Consider the example depicted in Figure 2.
There are five peers in the swarm with playback positions at 5, 13, 13, 22, and 34. Therefore, the most
advanced piece missing from the swarm is 35. The seed pushes piece number 35 to the least advanced
peer, i.e., the one at playback position 5. Piece number 35 is further uploaded on the forward path to

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

6 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

nk

n2

n1

seed

missing piece

downloaded piece

Figure 1: The seed forwards the most advanced piece to the least advanced peer. This piece is eventually
uploaded to the most advanced peer on a forward path. In return, in order pieces are downloaded on a
reverse path.

eventually reach the most advanced peer. In exchange for piece number 35, each peer downloads a piece
in sequential order. Note that the pieces transferred on the forward path are not for immediate use by
any intermediate peer, but they still contribute to the overall throughput of the swarm. However, the
pieces downloaded on the reverse path are in sequential order (i.e., they are the ones needed next by
the receiving peer) and therefore contribute to the goodput (i.e., the proportion of downloaded pieces
that are of immediate interest). Hence, a linked list structure can achieve theoretically optimal 100%
throughput. However, as only half of the pieces are transfered in the desired order, which implies that
the overall maximum achievable goodput is 50%. Downloading one out of every two pieces in the right
(sequential) order while attaining very high throughput is a significant improvement compared to file
swarming where there is no guarantee on the order in which pieces are downloaded. However, it is yet
to be established whether the linked list structure can be maintained in a practical setting.

0 10 20 30

seed

p35

5 13 22 34

p6

p35

p14p35

p14

p35

p23

p35

position in file

Figure 2: Piece exchange process under a fluid model

4.2 Practical considerations

In a practical file-swarming system such as BitTorrent, a piece can be forwarded only after it has been
completely and successfully received. There are several challenges that need to be considered. Consider
the example in Figure 2, where there are two peers at position 13. Under a full piece exchange require-
ment, two peers can exchange a piece only if both of them have at least one piece different from the other.
Therefore, two peers at the same position cannot exchange a piece until both of them are simultaneously
fed with two different pieces. Hence the linked list structure cannot be maintained without removing one
of these two peers from the list as depicted in Figure 3. Thus, under the full piece exchange requirement,
if there are multiple peers at the same playback position they cannot remain in the same linked list.

This results in the linked list structure getting separated into multiple lists, which implies that
the seeding capacity should now be divided to feed multiple lists and hence it results in an inefficient

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 7

seed

p35

0 10 20 305 13 22 34

b6

b35

b14

b35

b23

b35

position in file

Figure 3: Piece exchange process under a full piece upload model

utilization of the seeding capacity. In addition, due to the full piece exchange requirement, the delay
incurred by a piece to reach the most advanced peer is proportional to the length of the list. The tit-for-
tat incentive model used in BitTorrent implies that piece exchange has to be simultaneous. Therefore,
the contract between two peers is only guaranteed for one piece exchange. However, in order to ensure
the delivery of the most advanced piece on the forward path, we have to guarantee that the contracts
on all the intermediate peers are maintained for the duration proportional to the length of the list.
Ensuring long duration contracts between multiple peers in a decentralized setting is a difficult problem.
Therefore, the linked list constructed in a practical setting is not a viable solution. Consider the example
depicted in Figure 4(a) with multiple peers at position 34. All these peers at position 34 are split into
different linked lists. Note that the peer at position 22 contains piece 35 and that it can forward that
piece to only one of the peers. Thus, the peer at position 22 is a bottleneck. Similarly consider the
example depicted in Figure 4(b), where there are multiple peers at position 22. However, only one of
them contains piece 35. Therefore, it will take several rounds after which piece 35 can be forwarded to
the peer at position 34. The above problems appear only due to the lack of piece exchange between the
peers at the same position. This justifies the need for vertical piece exchanges.

22 3430

⋆

position in file

(a)

22 3430

⋆

position in file

(b)

Figure 4: Independent linked list

5 Structured Piece Dissemination

In the previous section, we identified that a linked list structure is a natural solution for providing tit-
for-tat based VoD, which can achieve maximum throughput. However, due to several practical reasons
such as full download requirement, multiple peers at the same playback position, etc., we conclude that
a solution based on a single peer-level linked list is not viable. A natural extension is to maintain several
linked lists, which are seeded separately as illustrated in Figure 5. The seeding capacity can be equally
divided between all the linked lists. However, this solution is also not scalable because the number of
linked list grows with the size of the system, and it also suffers from poor performance due to lack of
piece exchange between peers at the same playback position.

Remember that the solution proposed in [2] relaxes the sequentiality requirement by splitting the file
into segments, which are downloaded sequentially. However, the pieces within a segment are downloaded
in a random order. The set of peers downloading the same segment can now be considered as an
independent swarm (referred to as a cluster) such that each of these clusters can be seeded separately. In

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

8 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

...
...

...
...

feeding

position in file

seed

Figure 5: Distributed feeding using multiple linked lists at the peer level (horizontal piece exchanges)

this way, only the vertical exchanges are performed such that pieces are exchanged between peers within
the same segment. If sufficient seeding capacity could be provided to all these clusters then a very high
throughput can be attained. A simple way to provide seeding is to equally divide the seeding capacity
between clusters as demonstrated in Figure 6. However, if the number of clusters is very high, then the
available seeding capacity may not be sufficient.

seed

swarming

position in file

Figure 6: Independent swarming with centralized seeding (vertical piece exchanges)

Notice that the distributed feeding technique as depicted in Figure 5, which is based on horizontal
piece exchanges is complementary to the independent swarming technique shown in Figure 6 that is based
on vertical transfers. However, neither of these two techniques is sufficient enough by itself. Therefore,
we design a hybrid scheme where the vertical piece transfers are utilized for swarming and horizontal
piece transfers are used for distributed feeding (see Figure 7). In order to achieve that, we allow the peers
within the same segment to be grouped together into clusters. These clusters are then fed with pieces
in a distributed manner using a linked list structure. This hybrid scheme solves all those problems that
we encountered in a similar linked list styled piece dissemination structure at the peer level.

There are several advantages to this hybrid scheme, for example, the length of the list is now limited
by the number of segments which is a constant and does not vary with the size of the swarm meaning
that the delay remains constant. Further, facilitating piece transfers within a segment allows for vertical
transfers between peers in the same segment and hence eliminate the bottlenecks described before. Note
that even in this model, the horizontal piece exchanges are done over a linked list. However, these linked
lists are not independent such that they can be fed through each other. In a linked list at the peer level,
every piece has to feed at least one piece on its forward path in order to download one piece on a return
path in a sequential order. Therefore, a linked list at the peer level can achieve a maximum goodput of
only 50%. However, in the cluster model, all peers within a cluster are responsible for feeding pieces.
Therefore, the fraction of bandwidth utilized per peer in feeding pieces is significantly reduced and hence
a much higher goodput can be expected.

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 9

...
...

...
...

feeding

swarming

position in file

seed

Figure 7: Hybrid solution at a cluster level

6 Algorithm in details

In this section we develop algorithms to implement structured piece dissemination, as described in
the previous section, using the BitTorrent framework. Structured piece dissemination is essentially
distributed feeding using multiple linked lists at the cluster-level together with swarming within a cluster
over a random graph. As we mentioned earlier, in order to make distributed feeding more effective, the
forward path should be as long as possible such that more clusters can be fed along the reverse path. To
achieve these goals, we design our algorithm to (i) facilitate piece exchanges between peers within the
same cluster, (ii) maximize the distance between the source cluster (to which the advanced pieces are
seeded) and the target cluster (for which these pieces are of immediate interest) in terms of the playback
positions; and (iii) maximize the number of intermediary clusters participating to the forward/reverse
path.

To this end, we need to make three important modifications to the traditionally used algo-
rithms/policies used in BitTorrent. First, we introduce an alternate seeding policy. In BitTorrent,
the objective of the seed is to provide rare pieces to the system. However, our objective here is to enable
piece exchanges between peers in different clusters thus establishing as long as possible bi-directional
linked list structures for piece exchange, i.e., distributed feeding. Second, we introduce peer set man-
agement to allow efficient swarming inside clusters and maximize the number of intermediary clusters
involved in linked lists. This should be performed dynamically since the peer set must evolve with the
download progress. Finally, we change the piece exchange policy. In BitTorrent, peers exchange a locally
rare piece in order to maintain high piece diversity in the swarm. However, in VoD the objective is
to establish a balance between swarming and feeding, therefore, an alternate piece exchange policy is
needed.

Seeding Policy An important component required for the construction of a linked list at the cluster
level is to identify the pieces required by the most advanced cluster. Since the pieces required by the
most advanced cluster are not available in the swarm those pieces are provided by the seed. However,
instead of directly uploading to the most advanced cluster, the seed provides those pieces to the least
advanced cluster. This allows the least advanced cluster to have a good bargaining power in the system.
The exchange policy has to be designed accordingly so that these pieces are further fed on the forward
path such that every intermediate cluster downloads it and forwards it to the next cluster and eventually
these pieces reach the most advanced cluster. Note that the seed can easily obtain a list of peers in the
least advanced segment from the tracker. The most advanced segment can be obtained by the seed in a
distributed fashion by polling peers through the linked list. Therefore, the seeding policy has negligible
overhead.

Peer Set Management Remember that at any given time each peer is a participant of exactly one
cluster based on its current playback position. The constituents of each cluster can exchange pieces
among themselves and they can participate in a linked list style feeding process. Therefore, we ensure
that the peer set of every node is limited to the peers either from the same cluster or from the neighboring
clusters as depicted in Figure 8. When a new peer joins the swarm it connects with some peers within
the first group. The remainder of the peer set is constructed by connecting with neighbor of neighbors.

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

10 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

Algorithm 1 Seeding policy
Input Seeding

s: seeding capacity
S+: most advanced segment
S−: least advanced segment
for i from 1 to s

n← random peer in S−

p← random piece in S+

push p to n
end for

During the course of download, it is important to maintain the linked list structure. The peer set is
updated periodically. If the peer remains within the same cluster it asks its neighbors to return a subset
of the peers from their respective clusters. When a peer moves out of a cluster, it should update its
neighborhood such that it is now connected to the peers within its new cluster and also to some peers
in the clusters neighboring to this new cluster. This can again be done by polling through neighbor of
neighbors. This way we can easily maintain the structure in a decentralized way.

feeding feeding

swarming

Figure 8: Peer set of a peer

Exchange policy The exchange policy determines whether two peers n1 and n2 should exchange pieces
or not upon an encounter and which specific pieces p1 and p2 should be exchanged if any. If the peers
are in the same group (i.e., their positions in the file lie in the same segment S1 = S2) then traditional
swarming should be performed. Both peers look in a random order for a piece in their common current
segment S = S1 = S2 that they could upload to each other. More specifically, they look for a piece in
their piece sets that does not belong to the other peer’s piece set. To ensure piece diversity inside each
segment, and thus efficient intra-group swarming, such pieces are looked for by exploring the segment in
a random order. Due to the peer set structure described in the previous paragraph advanced pieces can
only be pushed from a cluster to the immediate next one when a peer connects to a member of the next
cluster. In that situation the less advanced peer – say n1 – downloads a randomly chosen useful piece for
its current segment in exchange for a piece in the future. Priority is given to the most advanced pieces
in segments after n2’s segment (denoted p2 > S2). If no such piece can be exchanged, then n1 tries to
upload a random piece in S2. As explained in the previous sections, the motivation for uploading most
advanced pieces with highest priority is two-fold: (i) ensure fast feeding of the most advanced segment
and (ii) build an as long as possible forward path and thus a long reverse path which actually establishes
intercluster feeding. If no mutual interesting pieces can be found using this exchange policy, the contract
between the two nodes is simply broken. A pseudo-code version of the piece selection algorithm is given
by Algorithm 2.

Note that using the transfer strategy presented in the previous paragraph, a peer uploads pieces in a
previous segment only to peers in the previous groups whose playback positions lie in that given segment.
In addition, due to the peer set management policy, a peer exchanges pieces only with the peers in the
neighboring clusters (i.e., the cluster it belongs to, the previous and the next ones). Therefore, a peer
can drop pieces before the playback position of the peers in the previous group without reducing its
feeding ability. This specificity highlights the fact that structured protocols optimize resource utilization
in terms of storage and bandwidth by making only the most appropriate peers uploading (and thus
storing) only pieces needed by the peers they are in charge of. Therefore both storage and bandwidth
load required by the application are distributed and balanced amongst the clusters: the most advanced

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 11

Algorithm 2 Piece exchange policy
Input Upon encounter of peers n1 and n2 (assume n1 ≤ n2)

P1 (resp P2): piece set of n1 (resp. n2)
S1: n1’s current segment
if n1 and n2 are in the same segment S = S1 = S2 then

if ∃p1, p2 ∈ S such that p1 ∈ (P1 ∩ P 2) and p2 ∈ (P2 ∩ P 1) (p1, p2: random order search) then
exchange p1, p2

else
no exchange

end if
else {n1 < n2}

if ∃p1 ∈ S1, p2 > S2 such that p1 ∈ (P1 ∩ P 2) and p2 ∈ (P2 ∩ P 1) (p1: random order search, p2: decreasing
order starting from the end of the media) then

exchange p1, p2

else if ∃p1 ∈ S1, p2 ∈ S2 such that p1 ∈ (P1 ∩ P 2) and p2 ∈ (P2 ∩ P 1) (p1, p2: random order search) then
exchange p1, p2

else
no exchange

end if
end if

peers do not use more bandwidth or more storage. The limited memory requirement of a structured
piece dissemination (i.e., a small and constant number of segments) extends the application field of P2P
VoD applications to the increasingly popular set-top box which operates with limited capabilities.

7 Discussion

In this section, we analyze several traditional protocol design issues in peer-to-peer.

7.1 Protocol Stability

First we consider the stability of the protocol. By protocol stability we mean whether the system will
continue to function at its optimal level over time. The protocol specifies that the seed pushes pieces
from the most advanced segment to the peers in the least advanced segment. When peers arrive at a
regular rate, the last segment is most likely to be the most advanced segment.

One might argue that since the pieces are forwarded using intermediate clusters, the pieces of the
last segment become highly replicated in the system gradually loosing their bargaining power. This may
eventually lead to a situation in which the system gets stuck, since the peers in the least advanced clusters
cannot get useful pieces in exchange of pieces in the last segment. In fact this never happens since the
seed will automatically start pushing pieces from the next-to-last segment. Indeed, the pieces from the
last segment are downloaded by the peers before they reach the last segment. Thus the last segment is
no longer the most advanced segment as peers leave the system before they reach the last segment. The
next-to-last segment will therefore become the most advanced segment until all those peers which have
downloaded the last segment have departed from the system. When that happens the most advanced
segment shifts back to the last segment. Thus, the most advanced segment will oscillate between the
last and next-to-last segment. Hence the protocol is self-stabilizing.

Figure 9 plots the index of the most advanced segment (the file has been divided into 10 fixed-size
segments) as a function of time, over a sample run of 1000 rounds. Peers join the system at a fixed
rate (Poisson process of intensity 5 peers/round). During the transient state the most advanced segment
progressively moves to the last one (i.e., index 9). Then, in steady state, the index of the most advanced
segment oscillates between 9, 8 and 7 as foreseen in the previous paragraph.

7.2 Bottlenecks

We previously noted that there may be several bottleneck scenarios in the peer-level linked list. We now
determine that bottlenecks can be easily prevented for the distributed feeding process in the cluster-level

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

12 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

0

2

4

6

8

10

0 200 400 600 800 1000

se
gm

en
t

in
d
ex

time

Most advanced segment

Figure 9: Evolution of the most advanced segment.

linked list. A bottleneck can occur if the size of a cluster falls below a certain critical value such that
the cluster is not able to feed the next cluster, which subsequently results in all the subsequent clusters
getting starved. Therefore, if a cluster is able to feed an entire segment in one round, then that will
ensure that there is no starvation. To illustrate this point, consider the case where a segment size is
20 and the fraction of bandwidth employed for the feeding process is 50%. The bandwidth required to
download a segment is 20 pieces per round. Assume that on average a peer can upload 4 pieces per
round. Then, there should be at least 10 peers in the cluster in order to prevent the occurrence of a
bottleneck.

Notice that the bottlenecks may not be an issue in large-scale dissemination, that is, where the cluster
size is sufficiently big. On the other hand, with limited-scale dissemination, we may be able to determine
or accurately estimate the system size in advance. In that case, the number of clusters can be controlled
such that it is highly unlikely that the size of the cluster drops below the critical value. Otherwise, if
the system size is not known in advance, we can dynamically adjust the size of the clusters by merging
two consecutive clusters, whenever the size of one of the two clusters drops below the critical value.

Figure 10 represents the minimum, average and maximum sizes of the groups (the swarm has been
divided into 10 groups, matching the 10 segments, according to the playback position of the peers) in
steady state (i.e., after 500 rounds) over sample runs. All the intermediate groups (i.e., 2-6) are of
similar sizes (i.e., 45 on average). The first group is smaller because peers join with one piece in that
segment. Therefore they spend less time in that group and its size is thus reduced (according to Little’s
law [11]). The last groups have much smaller size because the pieces from the corresponding segment are
downloaded by the peers before their playback positions reach these segments (due to the distributed
feeding process through the link list). One can observe that the size of the first seven groups (responsible
for the feeding process, the last three being in turn the most advanced segments) never drops bellow 20
peers which is sufficient for the feeding process on the direct path. This demonstrates that moving from
a linked list at the peer level to a loosely coupled structure at the group level prevents bottlenecks in the
feeding process.

7.3 Heterogeneity

In order to ensure tit-for-tat in an heterogeneous environment, the system may compromise on the
performance due to the limited peer-set size. For example, if the upload bandwidth of a certain peer
is greater than the total bandwidth available at all the peers within its peer set, the available capacity
at the faster peer may not be fully utilized. To address this issue, the size of the peer set should be
adjusted taking into consideration the heterogeneity in the upload bandwidth of the participating peers.

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 13

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

n
u
m

b
er

of
p
ee

rs

cluster index

Figure 10: Distribution of the cluster size.

More specifically, the size of the peer set should be greater than the ratio of highest bandwidth and the
lowest bandwidth.

Notice that the distributed feeding process is shared by all the peers within a cluster. Since the peers
within every bandwidth class arrive in the system independently, we expect that the playback position
of a peer is independent of its upload bandwidth. Hence, the average upload capacity of every cluster is
equally likely. Therefore, heterogeneity does not cause any additional bottlenecks in the system.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 200 400 600 800 1000

fr
ac

ti
on

of
p
ee

rs

achievable playback rate

1000 kbps

(a) Homogeneous

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 200 400 600 800 1000

fr
ac

ti
on

of
p
ee

rs

achievable playback rate

1000 kbps
750 kbps

(b) Heterogeneous

Figure 11: Distribution of the achievable playback rate with heterogeneous upload capacity.

Figure 11 depicts the empirical pdf of the achievable playback rate1 among regular peers (1000kbps,
80% of the peers) and low capacity peers (750kbps, 20% of the peers) in an heterogeneous setting. This
shows that the performance of regular peers is not affected by the presence of low capacity peers: both
the shape of the experimental pdf and the average of the achievable playback rate stay the same.

1Roughly speaking, the achievable playback rate is the maximum bitrate for the video file being downloaded
so that it can be played without experiencing disruption. More details about evaluation metrics are given in
Section 8.

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

14 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

7.4 Churn

Churn is normally characterized by the dynamic behavior of the peers. For example, a peer may join or
leave in the middle of the video. Also, a peer may want to skip forward and backward in the video. Our
objective here is to analyze the cost of allowing such operations and determining that our protocol can
sustain such a behavior at a very high rate.

In order to join the system in the middle of the download a peer needs to download at least one piece
in the most advanced segment, which is essentially the same as joining from the beginning. Further, a
peer needs to construct a peer set such that it maintains the loosely coupled structure. This can easily
be achieved in a distributed fashion if a peer connects to a peer within its current segment and then
does a neighbor-of-neighbor search to construct its new peer set. Similarly, when a peer leaves in the
middle of the download, all the links connecting to it are broken. However, these broken links will be
quickly re-built since the peers periodically reconstruct their neighbor set. Finally, the procedure for
skipping through the video is essentially similar to re-joining the video. We just argued that this is not
an expensive process and can be achieved with negligible help from the tracker.

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ac
h
ie

va
b
le

p
la

y
b
ac

k
ra

te

churn

Figure 12: Average achievable playback rate in the presence of churn.

We evaluate here the performance of our hybrid solution in the presence of churn. Figure 12 plots the
average achievable playback rate (as a fraction of the available upload bandwidth) when peers leave the
system before the end of the download. At each round, a peer leaves with probability p0. We characterize
churn by the proportion of peers that leave the swarm during the progress of the download. Therefore,
churn is quantified by 1− (1− p0)T̄ , where T̄ is the average number of rounds needed to download the
whole movie. Figure 12 shows that the performance of our hybrid solution remains very good even for
high values of churn. For instance, the average achievable playback rate decreases only by 9 points (from
77% to 68%) when 90% of the peers leave before the end of the download.

7.5 Free Riding

The tit-for-tat mechanism ensures that a peer can obtain new pieces only if it uploads pieces in return,
making the protocol resilient to free riding. However, in order to bootstrap the protocol, when a new peer
joins the system, BitTorrent uses an opportunistic unchoking mechanism allowing peers with low capacity
to get pieces without uploading pieces in exchange. Although it increases the overall performance of the
protocol, it also opens the door for free riders to download a file without uploading any content [13,19,21].
On the other hand, in our protocol no peer except the seed uploads pieces for free. Moreover, the seed
only uploads pieces in the first and the last segment. In other words, peers cannot download the entire
file only from the seed: they need help from other peers.

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 15

One may argue that a freerider may deviate from the protocol by downloading only pieces in its current
segment to increase its immediate benefit, thus breaking the feeding process. First, such a behavior is
not guaranteed to increase long term performance as the peer will quickly loose its bargaining power due
to the lack of pieces in the future. Second, very efficient techniques using coding-based challenges have
been proposed to force peers to download out-of-order pieces [5].

8 Evaluation

This section presents the results of extensive computer simulations. We compare the results obtained by
our protocol with the previously known best results described in [2]. Section 8.1 describes the simulator
and the set of parameters used for the simulations. Section 8.2 describes the performance metrics for
which the algorithms are evaluated and Section 8.3 presents and analyzes the simulation results.

8.1 Experimental setup

We compare our algorithm with the unstructured algorithm presented in [2]. In order to establish
connections, this algorithm uses random encounters where peers randomly poll the members of their
peer set in order to establish a piece exchange. If both peers belong to the same segment, they try
to exchange content within that segment. Otherwise, if they are in different segments then the less
advanced peer can still download a piece in its current segment. However, the more advanced peer first
tries to download a piece in its current segment, and if that fails, it tries to download any random piece
available in the future.

We developed a discrete-time simulator similar to PeerSim [10], where time evolves in rounds. A
peer is allowed to upload only a certain maximum number of pieces within a round. We also limit the
number of pieces that can be downloaded within a round. However, the download limit is typically much
higher than the upload limit. The tit-for-tat incentives are implemented at the round level, implying
that a peer can download a piece from a neighbor only if it uploads a piece to that neighbor during the
same round. Doing so ensures that peers contribute to the system as much as they get from it. Piece
scheduling is performed by randomly picking two peers and initiating a bi-directional transfer between
them. This stage is repeated until no pair of neighbors can exchange pieces. Note that two peers may
exchange more than one piece with each other during one round. The neighborhood is built at every
round in a random manner, matching the structures presented in previous sections.

The simulation results presented in the next sections have been obtained by running both algorithms
in a network of peers joining the system at a rate of 5 peers per round (Poisson law). The neighborhood
maximum size is set to 10 and the upload and download rates are set to 4 and 14 pieces per round,
respectively. The structured algorithm splits the neighborhood of the peers in three sets: a set of peers
in the same cluster (for swarming), a set of peers in the previous cluster and a set of peers in the next
cluster. The size of the first set is limited to 6 and the sizes of the last two are each limited to 2. The
system is seeded by a single seed with an upload bandwidth of 10. Note that due to the tit-for-tat
incentives and the seeding capacity, a peer will always have enough download bandwidth capacity.

8.2 Evaluation metrics

We use three metrics to evaluate structured piece dissemination techniques compared to a purely random
algorithm: (1) the fraction of upload bandwidth utilized for exchanging pieces (i.e., throughput), (2) the
maximum rate at which the video can be played (referred to as achievable playback rate) and (3) the
fraction of pieces downloaded in the current segment.

More specifically, the throughput is the number of pieces downloaded within a round divided by the
maximum number that can be downloaded.

The achievable playback rate is the maximum rate at which the video can be played such that for
every piece we have that it is available at the peer when its playback reaches the point where that piece
is needed. Since a peer needs a setup time for buffering the first pieces of the video we allow a delay δ
before starting playback. The achievable playback rate is given by the maximum rate r so that at any
time t, all pieces up to r · (t− δ) are available at the peer after t units of time as illustrated in Figure 13.
For our simulations, the delay is set to the minimum required time to download two segments. Since

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

16 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

p
os

it
io

n

time

δ r

Download position
Playback position

Figure 13: Evolution of playback position.

structured and random piece dissemination algorithms are equivalent in a flash crowd where almost all
peers are in the same segment, we compare simulation results in steady state using a fixed rate Poisson
peers arrivals scheme. Both throughput and playback rate are expressed as a fraction of the available
upload bandwidth.

The fraction of sequential downloads refers to the fraction of pieces downloaded in the network that
belong to the current segment of the downloading peer. This metric reflects the overall performance of
the piece transfer algorithm and network topology in a VoD context.

To compare the performance of both piece dissemination algorithms in the context of a limited-
memory device such as a set-top box, we run simulations of both algorithms with limited buffer size by
making the peers drop pieces more than k segments in the past relative to the current playback position.

8.3 Experimental results

Next, we present results obtained by running 25 independent simulation instances each run over 2, 000
rounds. On average the achievable playback rate attained by structured dissemination is 77% of the
upload bandwidth, whereas for the same set of parameters the playback rate attained by random dis-
semination as proposed in [2] is only 61%. Therefore, on average, structured dissemination is 16 points
better than random dissemination. Figures 14(a) and 14(b) depict the empirical cumulative distribu-
tion function (cdf) and the empirical probability density function (pdf) for playback rate in steady state,
respectively. It can be seen from Figure 14(a) that the playback rate of a peer under structured dissemi-
nation is stochastically larger than that under random dissemination. For example, the fraction of peers
achieving a playback rate more than 0.68 under structured piece dissemination is over 93% whereas in
random piece dissemination it is only 21%. In random dissemination, approximately 1% of the peers
have a playback rate equal to zero, which implies that they are not able to even start the playback. An
interesting observation is that the pdf of structured dissemination is narrower compared to that with
random dissemination. This implies that there is more variance in the achievable playback rate under
random dissemination.

There are two reasons that lead to the increase in the average achievable playback rate. First, the
overall throughput in the system is increased due to better utilization of the piece diversity present in the
swarm. Second, the goodput or the sequential throughput is also increased because the pieces are now
disseminated along the linked list structure to maximize in order piece delivery. The average throughput
achieved by random dissemination is 68%, whereas for structured dissemination it increases to 87%.
Similarly, the average sequential throughput of the swarm under random dissemination is 66%, whereas
for structured dissemination it is 75%.

Figure 15(a) and 15(b) depict the empirical cdf and the pdf, respectively, of the download rate.
Notice that the peers using structured dissemination have a higher download rate. Also, the variance

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 17

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

fr
ac

ti
on

of
p
ee

rs

achievable playback rate

Random
Structured

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

fr
ac

ti
on

of
p
ee

rs

achievable playback rate

Random
Structured

(b)

Figure 14: Experimental (a) cdf and (b) pdf of the achievable playback rate.

under structured dissemination is less, which implies a certain fairness in piece dissemination. This
fairness can be attributed to the fact that piece delivery in a structured system is done over a linked list
structure. Therefore, if there are adverse conditions in the swarm that result in reduced piece exchange,
then all the peers are equally affected.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

fr
ac

ti
on

of
p
ee

rs

throughput

Random
Structured

(a)

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

fr
ac

ti
on

of
p
ee

rs

throughput

Random
Structured

(b)

Figure 15: (a) cdf and (b) pdf of the download rate.

Figure 16 depicts the evolution of the number of peers in the system over the same set of parameters
for both structured dissemination and random dissemination. According to Little’s law from standard
queuing theory, the reduction of service capacity of the system results in an increase in the number of
customers queued in the system. Therefore, we expect the number of peers present in the swarm during
structured dissemination to always be less than that during random dissemination. However, as seen in
Figure 16, during the transient phase, towards the beginning of the process there are less peers departing
from the swarm in structured dissemination compared to that in random dissemination. The reason is
not necessarily the reduced throughput but the delay required in feeding the most advanced segment
to the most advanced peers. However, in random dissemination there is no order in which pieces are
seeded in the system. Therefore, when the first few peers are toward the end of their download, the
most advanced pieces are missing in the system and they need to be uploaded by the seed. It takes a
delay proportional to the length of the list before the pieces uploaded by the seed reach these departing
peers. However, in case of random dissemination these pieces can be immediately pulled in by the most
advanced peers. This slight blip in the performance should not be seen as drawback of the protocol but
rather it shows that the most advanced peers are made to help the system by staying slightly longer to
fulfill there commitment in the distributed feeding process.

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

18 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

n
u
m

b
er

of
p
ee

rs
in

th
e

sy
st

em

time

Random dissemination
Structured dissemination

Figure 16: System size as a function of time.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

av
er

ag
e

ac
h
ie

va
b
le

p
la

y
b
ac

k
ra

te

memory (segments)

Random dissemination
Structured dissemination

Figure 17: Structured dissemination vs. random dissemination with limited memory.

In Figure 17, we run the simulations for an application where memory size is constrained. Therefore,
unlike before, a peer cannot store an infinite number of pieces but instead it keeps dropping the pieces
which it has already viewed. Notice that random dissemination performs much worse compared to struc-
tured dissemination. The reasons for this performance improvement are intuitively clear as in structured
piece dissemination a peer is allowed to communicate only within its cluster and the neighboring clusters.
Therefore, there is no need to store more than one old segment.

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Designing a Tit-for-Tat Based Peer-to-Peer Video-on-Demand System 19

9 Conclusions

Traditional file-swarming protocols are built using random graph structures. We demonstrate that an
incentive-based VoD application built over a random structure cannot achieve optimal performance.
Therefore, we propose disseminating content over a structured graph. Our solution is simple to deploy
and is built in a decentralized fashion. We further demonstrate that the linked list is the most suitable
structure for the VoD application. However, maintaining a linked list at the level of peers is a non-trivial
task. Therefore, we introduce the concept of a cluster-level linked list, which allows us to obtain higher
throughput within clusters of peers and at the same time a distributed feeding mechanism between two
neighboring clusters. Using extensive simulations we show that the our proposal produces a significant
improvement compared to the previously known best solution.

The authors in [1] have used network coding within segments to disseminate pieces. Notice that
the network coding based optimizations can also be used in our algorithm. However, our goal in this
paper is not to design an optimal solution, but instead we want to demonstrate that structured piece
dissemination can achieve higher performance.

References

[1] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. Rodriguez. Exploring VoD in
P2P Swarming Systems. In INFOCOM, pages 2571–2575, 2007.

[2] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. Rodriguez. Is High-Quality VoD
Feasible Using P2P Swarming? In WWW, pages 903–912, 2007.

[3] N. Carlsson, D. L. Eager, and A. Mahanti. Peer-assisted On-demand Video Streaming with Selfish
Peers. In IFIP, 2009.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. SplitStream:
High-bandwidth Multicast in Cooperative Environments. In SOSP, pages 298–313, 2003.

[5] M.-L. Champel, A.-M. Kermarrec, and N. Le Scouarnec. Phosphite: Guaranteeing Out-of-Order
Download in P2P Video on Demand. In P2P, 2009.

[6] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast. In SIGMETRICS, pages
1–12, 2000.

[7] B. Cohen. Bittorrent. http://www.bittorrent.com.

[8] B. Cohen. Incentives Build Robustness in BitTorrent. In Workshop on Economics of Peer-to-Peer
Systems, 2003.

[9] Y. Guo, K. Suh, J. Kurose, and D. Towsley. P2Cast: Peer-to-peer Patching Scheme for VoD Service.
In WWW, pages 301–309, 2003.

[10] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris. The Peersim simulator.
http://peersim.sf.net.

[11] L. Kleinrock. Queueing Systems. Volume 1: Theory. Wiley-Interscience, 1975.

[12] N. Laoutaris, P. Rodriguez, and L. Massoulie. ECHOS: Edge Capacity Hosting Overlays of Nano
Data Centers. SIGCOMM Computer Communication Review, 38(1):51–54, 2008.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in BitTorrent is Cheap. In HotNets,
2006.

[14] N. Magharei and R. Rejaie. PRIME: Peer-to-Peer Receiver-driven MEsh-Based Streaming. In
INFOCOM, pages 1415–1423, 2007.

[15] N. Magharei, R. Rejaie, and Y. Guo. Mesh or Multiple-Tree: A Comparative Study of Live P2P
Streaming Approaches. In INFOCOM, pages 1424–1432, 2007.

RR n° 7034

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

20 K. Huguenin, A.-M. Kermarrec, V. Rai & M. van Steen

[16] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sips. Give-to-Get: Free-riding-resilient
Video-on-Demand in P2P Systems. In MMCN, 2008.

[17] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson. Analysis of BitTorrent-like Protocols for
On-Demand Stored Media Streaming. SIGMETRICS, 36(1):301–312, 2008.

[18] F. Pianese, D. Perino, J. Keller, and E. Biersack. PULSE: An Adaptive, Incentive-Based, Un-
structured P2P Live Streaming System. IEEE Transactions on Multimedia, 9(8):1645–1660, Dec.
2007.

[19] M. Piatek, T. Isdal, T. E. Anderson, A. Krishnamurthy, and A. Venkataramani. Do Incentives Build
Robustness in BitTorrent? In NSDI, 2007.

[20] F. Picconi and L. Massoulié. Is there a future for mesh-based live video streaming? In P2P, pages
289–298, 2008.

[21] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding in BitTorrent with the Large View
Exploit. In IPTPS, 2007.

[22] V. Valancius, N. Laoutaris, L. Massoulie, C. Diot, and P. Rodriguez. Greening the Internet with
Nano Data Centers. In CoNEXT, 2009.

INRIA

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
04

16
20

8,
 v

er
si

on
 1

 -
13

 S
ep

 2
00

9

