
HAL Id: inria-00456167
https://hal.inria.fr/inria-00456167v2

Submitted on 13 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Evolutionary Metaheuristic for Domain-Independent
Satisficing Planning

Jacques Bibai, Pierre Savéant, Marc Schoenauer, Vidal Vincent

To cite this version:
Jacques Bibai, Pierre Savéant, Marc Schoenauer, Vidal Vincent. An Evolutionary Metaheuristic for
Domain-Independent Satisficing Planning. 20th International Conference on Automated Planning and
Scheduling-ICAPS2010, May 2010, Toronto, Canada. pp.15-25. �inria-00456167v2�

https://hal.inria.fr/inria-00456167v2
https://hal.archives-ouvertes.fr

D
R

A
FT

An Evolutionary Metaheuristic Based on State Decomposition for
Domain-Independent Satisficing Planning

Jacques Bibäı1,2

1Thales Research & Technology
Palaiseau, France

first.last@thalesgroup.com

Pierre Sav́eant1 Marc Schoenauer2
2Projet TAO, INRIA Saclay & LRI
Universit́e Paris Sud, Orsay, France

first.last@inria.fr

Vincent Vidal 3
ONERA – DCSD
Toulouse, France

Vincent.Vidal@onera.fr

Abstract

DAEX is a metaheuristic designed to improve the plan qual-
ity and the scalability of an encapsulated planning system.
DAEX is based on a state decomposition strategy, driven by
an evolutionary algorithm, which benefits from the use of a
classical planning heuristic to maintain an ordering of atoms
within the individuals. The proof of concept is achieved by
embedding the domain-independent satisficing YAHSP plan-
ner and using the critical pathh1 heuristic. Experiments
with the resulting algorithm are performed on a selection of
IPC benchmarks from classical, cost-based and temporal do-
mains. Under the experimental conditions of the IPC, and in
particular with a universal parameter setting common to all
domains, DAEYAHSP is compared to the best planner for each
type of domain. Results show that DAEYAHSP performs very
well both on coverage and quality metrics. It is particularly
noticeable that DAEX improves a lot on plan quality when
compared to YAHSP, which is known to provide largely sub-
optimal solutions, making it competitive with state-of-the-art
planners. This article gives a full account of the algorithm,
reports on the experiments and provides some insights on the
algorithm behavior.

Introduction
Recent advances in the design of PDDL planners have fo-
cused on plan quality rather than on speed needed to obtain
a single solution of eventually poor quality, as witnessed by
the 6th International Planning Competition. Planners were
given a fixed amount of running time, and their scores were
based, for each benchmark domain, on their coverage (num-
ber of solved problems) and on the quality of their solutions
with respect to various plan metrics. We think that this is an
important step towards the design of planning systems able
to tackle real-world problems, for which plan quality is gen-
erally a fundamental requirement. Another way to ensure
solution quality is of course the use of optimal planners, but
the size of the problems they can handle is by far lower than
that solved by satisficing planners.

In that perspective, we propose DAEX , a metaheuristic
aimed at (i) guiding an encapsulated planner towards a so-
lution of good quality, and (ii) increasing the scalabilityof
that planner when facing difficult planning problems. The

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

key components of DAEX are:
1- A decomposition principleused to divide a complex

planning task into (hopefully) easier subtasks. We chose
a state-based decomposition strategy: A planning task is
sliced into a sequence of intermediate states that must be
reached in turn before satisfying the goal. For reasons dis-
cussed later, these intermediate states are partial statesonly
that are considered as subgoals during search. This decom-
position principle relies on classical reachability planning
heuristics. The idea of decomposing a search space in this
way is not new (Korf 1987; Sebastia, Onaindia, and Marza
2006), but as we have very minimalistic informations to
compute such a decomposition, we consider this problem as
an optimization problem and use a specialized optimization
algorithm to try to discover the best decompositions.

2- An encapsulated satisficing plannerused to solve each
subtask. In principle any PDDL planner could suit, provided
that it has a predictable behavior when applied to identi-
cal subtasks in order to ensure the convergence of the op-
timization process; Even a stochastic planner such as LPG
(Gerevini, Saetti, and Serina 2003b) could be used, by con-
trolling its randomization seed. We chose for this purpose
the YAHSP planner (Vidal 2004), which is extremely fast
on many benchmark domains but suffers from poor solution
quality and scalability problems in some domains. We con-
sider particularly challenging the use of such a planner: Will
the proposed metaheuristic be able to improve both its scal-
ability and plan quality?

3- An optimization algorithmused to drive the underlying
planner towards a solution of good quality, by controlling it
through the state-based decomposition process. We chose an
evolutionary algorithm to conduct the optimization process,
as these algorithms are known to have been very success-
ful for many optimization problems, and to ensure a high
diversification in the exploration of the search space. In-
deed, a planner such as YAHSP often sinks into unpromis-
ing subtrees, either leading to dead-ends or bad solutions,
without being able to visit better parts of the search space.
The net effect of the optimization algorithm will be to force
the planner to diversify the way it travels through the search
space, and concentrate it simultaneously to several different
promising parts.

DAEX builds on previous ideas implemented in DAE1
(Schoenauer, Savéant, and Vidal 2006; 2007) and DAE2

D
R

A
FT

(Bibai et al. 2008), but differs from these works in several
fundamental ways. Firstly, the decomposition principle of
DAE1 was based on manipulations at the planning objects
level, building intermediate states by combining predicate
and constant symbols in a completely blind way. DAE2 in-
troduced intermediate state computation at the atom level,
but still in a blind way. DAEX benefits from a time-based
atom choice method relying on standard planning reachabil-
ity heuristics (Haslum and Geffner 2000) and pairwise mu-
tual exclusions between atoms. Secondly, DAE1 and DAE2
were based on the assumption that the best results should be
obtained with an optimal planner such as CPT (Vidal and
Geffner 2006). The resulting planners were effectively able
to find very good solutions, but the cost of running YAHSP
instead of CPT for each subtask is so much lower that DAEX
clearly explores vast parts of the search space that were out
of reach for DAE1 and DAE2, making it able to outperform
them both in scalability and quality. While DAE2 exhib-
ited poor performance at IPC6 –although the plan quality
for the problems it could solve was often very good, if not
the best (Bibai, Schoenauer, and Savéant 2009)– DAEX is
competitive with state-of-the-art planners in both coverage
and quality, as demonstrated in the experimental section.

Divide-and-Evolve
This section presents the details of the basic implementa-
tion of DAEX . As advocated in (Sebastia, Onaindia, and
Marza 2006), the first ingredient for state decomposition
is a decomposition principle. Previous works have tack-
led this issue by relying on First Principles, e.g., parti-
tioning planning problems into subproblems by parallel de-
composition (Chen, Hsu, and Wah 2006). On the oppo-
site, DAEX addresses the problem of finding a decompo-
sition of a planning taskP = 〈A,O, I,G〉 by turning it
into an optimization problem: Search for a sequenceS =
(si)i∈[0,n+1] such that the planσ obtained by compressing
subplansσi found by an embedded planner as solutions of
Pi = 〈A,O, si, si+1〉i∈[0,n] has optimal quality. Several
crucial issues need to be addressed from the optimization
point of view: Identify the search space, define an objective
function, and choose an optimization algorithm. The three
issues are of course related: Choosing a powerful method
with proved convergence usually implies heavy restrictions
on the search space and the objective function, and the prac-
titioner then has to twist the problem at hand to make the
chosen method applicable. The opposite route was chosen in
DAEX : Avoid unnecessary restrictions on the search space
or the objective function, and use an optimization algorithm
that is both flexible and powerful enough to be able to tackle
the resulting optimization problem.

Evolutionary Algorithms
Evolutionary Algorithms (EAs) are general purpose op-
timization algorithms that have been demonstrated to be
highly flexible, but nevertheless robust, in handling such
challenging optimization problems. In particular, several
EA successes have been obtained in contexts of unstruc-
tured search spaces, e.g. parse trees in the case of Ge-
netic Programming for Analog Circuit Design (Koza and al.

1999), or Voronoi Diagrams for Structural Design Applica-
tions (Morel, Hamda, and Schoenauer 2005).

EAs are metaheuristics based on a metaphor of the Dar-
winian evolution of biological populations (Eiben and Smith
2003): The interaction ofnatural selection(fitter individu-
als, with respect to the environment, survive and reproduce
more than others) andblind variations (the genetic mate-
rial is randomly modified when passed on from the parents
to their offspring during reproduction) results in theemer-
genceof individuals that are adapted to their environment.
In the Artificial Evolution framework, individuals are candi-
date solutions of the optimization problem at hand, the envi-
ronment is given by the value of the objective function, also
called herefitness, selection amounts to choosing individu-
als with a bias towards good values of the fitness, whereas
variation operators are stochastic moves in the search space
that have to balance betweenexploitationof the previous
good individuals, locally searching around them, andexplo-
ration of the search space, by creating new individuals far
from already explored regions of the search space.

Note that selection procedures are problem-independent.
Hence, implementing an evolutionary algorithm for a new
problem only requires to define the search space (or, equiva-
lently, therepresentationof candidate solutions), the fitness
function, and the variation operators, that are usually catego-
rized intomutation operators, that modify a singleparentto
generate oneoffspring, andcrossover operators, involving 2
or more parents to generate one or more offspring.

Representation for State Decomposition
In DAEX , an individual is a state decomposition for the plan-
ning task at hand, i.e., a variable length list of states. How-
ever, searching the space of complete states would rapidly
result in a combinatorial explosion of the size of the search
space. Moreover, goals of a planning task are generally de-
fined as partial states. It thus seems more practical to search
only ordered sequences of partial states, and to limit the
choice of possible atoms used to describe such partial states.
However, this raises the issue of thechoice of the atomsto
be used to represent individuals, among all possible atoms.

Some results of previous experiments on different do-
mains of temporal planning tasks from the IPC benchmark
series (Bibai, Schoenauer, and Savéant 2009) have demon-
strated the need for a very careful choice of the atoms that
are used to build the partial states. This lead us to propose a
new method to build the partial states, based on the earliest
time from which an atom can appear. Such time can be es-
timated by any admissible heuristic function, e.g.,h1, h2...
(Haslum and Geffner 2000). The start times given by the
chosen heuristic are used to restrict the candidate atoms for
each partial state when building a sequence of partial states:
A partial state is built at randomly chosen timestamps by
randomly choosing among several atoms that can possibly
appear at this time (this will be detailed more formally later).
The sequence of states is hence built by preserving the esti-
mated chronology between atoms (time consistency). The
heuristic functionh1 has been used for all experiments pre-
sented here.

Nevertheless, even when restricted to specific choices of

D
R

A
FT

atoms, the random sampling can lead to inconsistent partial
states, because some sets of atoms can bemutually exclu-
sive1 (mutex in short). Whereas it could be possible to al-
low mutex atoms in the partial states generated by DAEX ,
and to let evolution discard them, it is more efficient to a
priori forbid them as much as possible. In practice, it is dif-
ficult to decide if several atoms aremutex. Nevertheless,
binarymutexes can be approximated (i.e. not all pairs of
mutually exclusive atoms can be discovered) with a varia-
tion of theh2 heuristic function (Haslum and Geffner 2000)
in order to build quasi pairwise-mutex-free states (i.e., states
where no pair of atoms aremutex).

Last, but not least, the useful decompositions are those
for which all resulting subproblems are easier to solve than
the initial problem for the planner at hand. We use a purely
syntactic (asymmetric) metricdist to evaluate the remaining
difficulty of solving the current planning task: For any com-
plete statecs and partial stateg, dist(cs, g) is the number of
atoms ing that are not incs. Other metrics could be envis-
aged, such as information given by a reachability heuristic,
but the metric we used proved to be informative enough.

An individual DAEX is thus represented as a variable
length list of time-ordered partial states, where each state is
a variable length list of atoms that are not known to be pair-
wisemutex. In the following,T (a) denotes the estimated
earliest starting time of a given atoma, T = {T (a) 6= 0|a ∈
A} the set of all such starting times,∆(s) = maxa∈sT (a)
the estimated earliest starting time of a given states. For any
atoma, M(a) denotes the set of atoms which aremutex
with a, according to the approximation based on theh2

heuristic function.

Fitness Computation
When addressing the planning taskP = 〈A,O, I,G〉, the
fitness of a state decompositionS = (si)i∈[0,n+1] (with
s0 = I and sn+1 = G) is computed by calling an em-
bedded planner to successively solve planning tasksP =
〈A,O, si, si+1〉. But two different situations should be dis-
tinguished here, depending on whether the embedded plan-
ner fails on one of the subproblems (the decomposition is
then termedunfeasible), or not. A first design decision has
been that any unfeasible individual will get a worse fitness
than any feasible one. Secondly, there must be some fitness
gradient, towards feasibility for unfeasible individuals, and
towards optimal plan quality for feasible ones.

The pseudo-code for the computation of the fitness is
given in Algorithm 1. The main loop (lines 3-12) processes
the intermediate states sequentially by calling the embedded
planner on the corresponding planning subproblems (line 5).
The initial state is the current statecs, computed by actually
running the solution plan of the previous subproblem (line
11); indeed, remember thats is only a partial state, whereas
an initial state has to be complete. The goal is the currently
processed partial states. The last argumentbmax is a bound-
ary that is planner-dependent: Its aim is to restrict the explo-

1Several atoms are mutually exclusive when there does not ex-
ist any plan that, when applied to the initial state, yields a state
containing them all.

Algorithm 1 Evaluate(Ind, planner) // Fitness computation
Require: I, G, bmax, lmax

1: k ← 0 ; u← 0 ; B ← 0
2: cs← I ; s← {}
3: while s 6= G do
4: s← nextGoal(Ind)
5: (solk, bdone)← planner.Solve(cs, s, bmax)
6: if solk = ⊥ then
7: return (⊥, 10 · k · dist(cs, G) + length(Ind)− u)
8: else if length(solk) > 0 then // avoid empty plan
9: u← u + 1 // u: number of useful states

10: B ← B + bdone // total search steps
11: cs← ExecPlan(cs, solk) // next initial state
12: k ← k + 1 // next intermediate goal
13: (Sol, Q)← Compress((solj)0≤j≤k)

14: return (Sol, Q + length(Ind)−u+1
Q

+ B
lmax· bmax

)

ration, in order to discard subproblems that are too difficult
(ideally, that are more difficult than the original global prob-
lem). Indeed, because there can be no guarantee on the dif-
ficulty of the subproblems, it is mandatory to restrain the
embedded planner (it could also be a time boundary).

In the current implementation, the embedded planner
YAHSP is constrained with amaximal number of nodes
that it is allowed to expand for solving any of the subprob-
lems. The actual boundary has been determined by a two-
steps process: First, while evaluating the initial population,
a very large number of nodes is allowed (e.g. 100000); The
boundary is then chosen as the median of the actual number
of nodes that have been used whenever a solution has been
found during these evaluations of the initial population.

The embedded planner returnssolk, the solution of the
current subproblem, and the number of search steps (nodes,
in the case of YAHSP)bdone that was needed to find it –
unless it fails within the boundarybmax and returns a failure.

In the latter case, the fitness is set according to line 7:
It aims at minimizing the syntactic distancedist(cs,G) be-
tween the current initial statecs and the final goal, that is
also the last current complete state that has been reached.
However, because the syntactic distance is by no way an ac-
curate indicator of the actual remaining difficulty, the fitness
also takes into account the numberu of usefulintermediate
states, i.e. those intermediate states that require a non empty
plan to be reached (line 8).

When the individual is feasible (all subproblems are
solved by the embedded planner), a compression routine
is used to compress all subplans (line 13), and the fitness
is basically the total qualityQ of the resulting global plan.
This compression is made with a standard polynomial post-
parallelization algorithm for temporal planning, or a simple
plan concatenation for sequential planning. However, as in
the unfeasible case, it was necessary to penalize the indi-
vidual by the amount ofuselessintermediate states, in or-
der to avoid unnecessary bloat. Furthermore, a second ad-
ditional term favors “easy” subproblems by penalizing all
problems with the cumulated number of search stepsB ac-
tually used by the embedded planner, divided by the prod-
uct of the longest sequence of states allowedlmax and the

D
R

A
FT

Algorithm 2 crossover(Ind1,Ind2) // recombination operator

1: sa← IU(Ind1) // Ind1 = (si)1≤i≤n

2: tb← IU(Ind2) // Ind2 = (ti)1≤i≤m

3: if ∆(tb) > ∆(sa) then return (s1, . . . , sa, tb, . . . , tm)
4: else return (t1, . . . , tb, sa, . . . , sn)

boundarybmax, leading to the formula of line 14.
The comparison between any 2 individuals assumes that a

feasible individual should always be preferred to an infeasi-
ble one. Two feasible individuals are compared according to
the value returned line 14 while two unfeasible individuals
are compared according to the value returned on line 7.

Variation Operators
Variation operators modify the individuals in order to ex-
plore the search space. On the one hand, these operators
should ensure theergodicity of the search: Any point of
the search space must be reachable with non-zero probabil-
ity from any other point using a finite number of applications
of variation operators. On the other hand, small modifica-
tions should be favored otherwise the evolutionary process
is close to a random walk.

The crossoveroperator, as described in Algorithm 2, is
the basic 1-point crossover for variable length representa-
tions: In order to recombine(si)1≤i≤n and (ti)1≤i≤m, it
uniformly chooses some statessa andtb (line 2), and crosses
the parts of both lists that maintain the chronology between
atoms in a sequence of states, obtaining one offspring.

Four differentmutation operators have been used. As-
sume parent is(s1, . . . , slastReached, . . . , sn), whereslastReached
is the last state reached by the embedded planner
(slastReached = sn+1 = G if the individual is feasible,
i.e. if all sub-problems have been solved). At the indi-
vidual level, mutationaddGoal randomly adds a state af-
ter statej ≤ min(n, lastReached) as described in Algo-
rithm 3: This new intermediate state may contain several
atoms ofAt and several atoms of its neighborhood of ra-
dius r, wheret is a time between∆(sj) and∆(sj+1), and
neighborhood of radiusr the set of2 ∗ r + 1 immediate
times before and aftert including t. Reciprocally, muta-
tion delGoal removes statesi, with i uniformly chosen in
[1, min(n, lastReached+ 1)]. At the state level, mutation
addAtom changes or adds (or both) one random atom in
each statesi (i ∈ [1, min(n, lastReached+ 1)]) as described
in Algorithm 4, and mutationdelAtom removes one uni-
formly chosen atom from statesi, with i uniformly chosen
in [1, min(n, lastReached+ 1)].

Initialization of the Population
The pseudo-code for the initialization is given in Algorithm
5: First, the number of states is uniformly drawn between
1 and the number of estimated earliest possible start times
(algorithm 6 line 6); For every chosen time, the number
of atoms per state is uniformly chosen between 1 and the
number of atoms of the corresponding restriction (line 11).
Atoms are then chosen one by one, uniformly in the allowed

Algorithm 3 addGoal(Ind) // mutation operator
Require: r // neighborhood radius
1: j ← IU([1, min(length(Ind),lastReached(Ind))])
2: s← {} // inserts betweensj andsj+1

3: t← IU({t ∈ T | ∆(sj) < t ≤ ∆(sj+1)})
4: At ← {a ∈ A | T (a) ∈ neighbourhood(t, r)}
5: Am ← {} // set of non pairwise mutex atoms
6: while At 6= {} do
7: a← IU(At)
8: Am ← Am ∪ {a}
9: At ← At \ ({a} ∪M(a))

10: N ← IU([1, #Am]) // goal length
11: repeat
12: a← IU(Am) // uniform choice inAm

13: s← s ∪ {a} // add tos
14: Am ← Am \ {a} // remove fromAm

15: until #s = N
16: insert(Ind,s, j) // inserts after goal j
17: return Ind

Algorithm 4 addAtom(Ind) // mutation operator
Require: pc, pa // relative probabilities to change or add an atom
1: for all k ∈ [1,min(length(Ind),lastReached(Ind)+1)]do
2: if IU([0, 1]) < pc

length(Ind) then // atom change
3: a← IU(Ind[k])
4: b ← IU({b ∈ M(a) | T (b) = ∆(Ind[k]) ∧ ∄c ∈

(Ind[k] \ {a}), b ∈M(c)})
5: Ind[k]← (Ind[k] \ {a}) ∪ {b}
6: if IU([0, 1]) < pa then // atom addition
7: a ← IU({b ∈ A | T (b) = ∆(Ind[k]) ∧ ∄c ∈

Ind[k], b ∈M(c)})
8: Ind[k]← Ind[k] ∪ {a}
9: return Ind

Algorithm 5 GenerateIndividual(N) // N = individual length
1: D ← {} // ordered list of timestamps
2: repeat
3: t← IU(T)
4: T ← T \ {t}
5: Insert(t, D) // maintainD ordered
6: until #D = N
7: Ind← {} // start building the individual
8: for t ∈ D do
9: s← {} // start building the intermediate goal

10: At ← {a ∈ A | T (a) = t} // atoms that can appear att
11: n← IU([1, #At]) // number of atoms
12: while n 6= 0 ∧At 6= {} do
13: a← IU(At) // uniform choice inAt

14: s← s ∪ {a} // add tos
15: At ← At \ ({a} ∪M(a)) // remove all mutex
16: n← n− 1
17: Ind← Ind + {s} // addition to the end of the sequence
18: return Ind

set of atoms, and added to the individual if notmutex with
any other atom already there (lines 12 to 16).

Evolutionary Loop
The first step of Algorithm 6 is the computation of the earli-
est start time for each atoma ∈ A estimated with the given

D
R

A
FT

Algorithm 6 DAEX(popSize, OffSpringSize, MaxGen, MaxChgt,pcross,
pmut, waddGoal, wdelGoal, waddAtom, wdelAtom, bmax, lmax, r, pc, pa)
Require: planner,h // embedded planner and heuristic function
1: for all a ∈ A do
2: T (a)← h(a) // compute earliest start time
3: T ← {T (a) 6= 0 | a ∈ A} // start times set
4: pop← {} // empty population
5: repeat
6: pop← pop∪ {GenerateIndividual(IU([1, #T])})
7: until #pop = popSize
8: repeat
9: offspring← {}

10: repeat
11: Ind1← IU(pop)
12: if IU([0, 1]) < pcrossthen
13: Ind2← IU(pop)
14: Newind← crossover(Ind1,Ind2)
15: else
16: Newind← Ind1

17: if IU([0, 1]) < pmut then
18: f ← IUweighted(addGoal, addAtom, delGoal, delAtom,

waddGoal, wdelGoal, waddAtom, wdelAtom)
19: Newind← APPLY(f , Newind)
20: offspring← offspring∪ {Newind}
21: until #offspring = OffSpringSize
22: for all Ind∈ pop∪ offspringdo
23: Evaluate(Ind, planner)
24: pop← SurvivalSelection(pop∪ offspring)
25: until #gen> MaxGen OR noImprovementSince(MaxChgt)
26: return Evaluate(pop.BestIndividual, planner).Sol

heuristic. The setT which gathers all potential start times
will be used later in a mutation operator. The initial popu-
lation is then set up by simply repeating calling the Gener-
ateIndividual function up to the desired size. Then comes the
main evolution loop (line 8). The offspring set is populated
with individuals from the population of the previous genera-
tion either as is or as the result of a crossover between two in-
dividuals and/or as the result of a mutation. The mutation is
chosen non-uniformally (according to a weight) among four
operators. All individuals are then evaluated before being
submitted to the survival selection, which selects the popula-
tion of the next generation from the parents+offspring (line
24). The evolution stops either after a maximum number
of generations or when no improvement has been observed
since a given number of generations. Lastly one of the best
individuals is evaluated to produce the best solution found.

Experimental Results
DAEX

2 has been implemented within the Evolving Objects
framework3, an open source, template-based, ANSI C++
evolutionary computation library. Experiments have been
conducted in order to assess the behavior of DAEX over
different kinds of planning tasks: classical planning tasks,
cost-based planning (actions with costs), and simple tem-
poral planning tasks (actions with duration). IPC bench-
marks domains have been used, from the corresponding IPC

2DAEYAHSP will be available soon under CeCILL-C license
3http://eodev.sourceforge.net/

tracks. In order to select test domains, we have chosen for
temporal planning tasks and planning with costs, all IPC6
domains that can be takled by YAHSP and several other do-
mains from previous IPC competitions for which we have
reference values4. For STRIPS problems, test domains were
chosen according to their complexity as defined by (Helmert
2008), with the goal of having different types of complexity.
The complete list of domains is given with the results in Ta-
ble 1: In total, 736 problems have been used.

Furthermore, the results of DAEYAHSP have been com-
pared with those of the best state of the art planners: LAMA
(Richter, Helmert, and Westphal 2008), updated version,
LPG (Gerevini, Saetti, and Serina 2003a; 2003b), and TFD
(Eyerich, Mattm̈uller, and R̈oger 2009), updated version
which, according to the authors, outperforms all state-of-
the-art temporal planning systems, plus of course the em-
bedded planner itself YAHSP (Vidal 2004).

Performance Measures
Experiments were done using a Intel(R) Xeon(R) CPU
X5355 2.66GHz computer with a 2Gb cache and a 16 Gb
RAM, running Linux. All algorithms are given at most 30
minutes of CPU time for each run on each problem instance.
Theircoverageis then measured by the number of instances
solved in each domain. The quality of the plans are evalu-
ated using IPC rules. For a given instancei, let Q∗

i be the
reference plan quality. The quality ratio for each planner is
defined byQ∗

i /Qi. Thequality score of a planner for do-
mainD is the sum over all instances ofD of the quality ratios
of this planner. The planner with the highest quality score is
designated as the best performer on the domain. Note that
if a planner cannot find a plan for a given instance after 30
minutes, its quality ratio is set to 0 for this instance.

However, DAEYAHSP and LPG are stochastic algorithms,
and no firm conclusion can be drawn from a single run.
Hence 11 independent runs have been performed on each
instance in order to assess their robustness. Theircover-
ageper domain is defined as the total number of instances
that have been solved at least once. Theaverage coverage
of LPG and DAEYAHSP for a given domainD is defined as
P

i;ni>0
ni

P

i;ni>0
1 , whereni is the number of successful runs (i.e.,

that found a plan) for instancei of D. The average cov-
erage hence lies in[0, 11], the higher the better. Finally,
the average quality of LPG and DAEYAHSP for domainD
is defined as the sum over all solved instancesi of D of
1
ni

∑
{run j solvedi}

Q∗

i

qj
whereqj is the quality of the plan

found by runj – the closer to full coverage, the better.

DAEYAHSP Settings
One identified weakness of EAs is the difficulty in tuning
their numerous parameters, as there exists no theoretical
guidelines to help the practitioner. Users generally rely on
their previous experience on similar problems, or use stan-
dard and expensive statistical methods, e.g. Design of Ex-
periments (DOE) and Analysis of Variance (ANOVA). Ex-

4Reference values are either the best results of all IPCs, or the
best values obtained with CPT (resp DAE1, DAE2).

D
R

A
FT

perimental statistical procedures have been proposed (e.g
Racing (Yuan and Gallagher 2004)), that build on standard
DOE and use the specificities of the EC domain to reduce
the amount of computations.

In order to tune DAEX , (Bibai et al. 2009) proposed a two
steps learning approach which involves choosing the prob-
ability and weights of each of the variation operators with
Racing, and then choosing which predicates will be used to
describe the intermediate goals with statistical analysis. In
this paper, only the first step of (Bibai et al. 2009) approach
has been used, over several domains of IPC benchmarks.
The best parameter set output by the Racing procedure has
be chosen as the common parameter configuration for all ex-
periments of this paper, and is described below.

However, the Racing procedure was limited to the param-
eters of the variation operators, and theevolution engine
had been fixed according to preliminary experiments: popu-
lation size is set to 100 and offspring size to 700, each par-
ent generates exactly 7 offspring using variation operators.
The survival selection is adeterministic tournamentof size
5: 5 individuals are uniformly chosen in the set of 800 par-
ents+offspring, and the best of those 5 is chosen to become
a parent of the next generation. Furhtermore, the same stop-
ping criterion has also been used for all experiments: After
a minimum number of 10 generations, evolution is stopped
if no improvement of the best fitness in the population is
made during 50 generations, with a maximum of 1000 gen-
erations altogether. Finally, the parameters of the variation
operators, as determined by the initial Racing phase, are the
following: the probabilities of individual-level application
of crossover and mutation (pcrossandpmut) are (0.2, 0.8) and
the relative weights of the 4 mutation operators (waddGoal,
wdelGoal, waddAtom, wdelAtom) are (3,1,1,1). The neighborhood
radius was set to 2, the longest sequence of states allowed
lmax was set to2 ∗ #T , and the relative probabilities to
change or add an atom (pc andpa) were set to (0.8, 0.5).

Results
First column (resp. second column) of Table 1 shows for all
algorithms the best coverage Splanner(resp. quality Qplanner),
together with the average quality of LPG and DAEYAHSP,
and the average coverage of DAEYAHSP (the average cover-
age of LPG is always equal to 11 and is therefore not pre-
sented). Last column is the ratio Qplanner/Splanner. The mean
values of those figures across test domains are also provided,
by domain category, and over all domains.

Figure 1 displays boxplots for the average number of
states and atoms per state for the best decompositions ob-
tained by DAEYAHSP onzeno simple time (the situa-
tion is similar on other domains). It shows that DAEYAHSP
builds larger decompositions with more atoms per state as
instances get harder – even though the settings are the same
for all instances. DAEYAHSP thus seems to somehow grasp
instance difficulty. Figure 2 shows two typical examples of
the fitness behavior along evolution oncrew planning
30 andopenstacks simple time 30. It highlights
the learning power of evolutionary computation for an un-
known problem structure, that seem very different between
these two instances.

1 3 5 7 9 11 13 15 17 19

0
1
0

2
0

3
0

4
0

5
0

6
0

Zeno−Time−Atoms: DAEx

instances

m
e
a
n
 #

A
to

m
s
 p

e
r

s
ta

te
s

1 3 5 7 9 11 13 15 17 19

0
5

1
0

1
5

2
0

Zeno−Time−States: DAEx

instances

#
S

ta
te

s

Figure 1: DAEYAHSP Diversity onzeno simple time.

@

@

@
@

@@

@
@@@@

@@@@@@@@@@@@
@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@@
@@@

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

Fitness behavior on crewplanning 30

evaluations
m

a
k
e
s
p
a
n

@
@

@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@

1
4
0

1
5
0

1
6
0

Fitness behavior on openstacks−time 30

evaluations

m
a
k
e
s
p
a
n

Figure 2: Fitness behavior of DAEYAHSP on crew
planning 30 andopenstacks simple time 30.

Discussion
The first clear results is that DAEYAHSP solves signifi-
cantly more problems (92.53% of total) than YAHSP alone
(88.86%), much more (91.25%) than LPG (82.50%) and
TFD (75.83%) on simple temporal planning, much more
(94.14%) than LPG (79.69%) on STRIPS planning, and lit-
tle more than LAMA on STRIPS planning and cost-based
planning. Then, DAEYAHSP has the best quality score (see
last lines of Table 1) for all kinds of planning tasks. Fur-
thermore, DAEYAHSP more often finds (see Table 1) either
the reference value (which may be optimal), or a value more
than 90% of the reference value, and always finds a better
plan quality than YAHSP alone (Table 1). Note that the qual-
ity score of YAHSP is improved at most by DAEYAHSP on
cost-based planning.

However, although the DAEYAHSP planner has the best
quality score over all tested domains (last lines of Table 1),
LPG has the best ratio on STRIPS domains and simple tem-
poral domains (last lines of the corresponding sub-tables of
Table 1). We believe that this is due to the use of a com-
mon parameter configuration for all experiments, and further
work will investigate instance-specific parameter tuning.
Nevertheless, there does not exist any absolute best method:
Even in the case where DAEYAHSP (respectively LPG) ob-
tains the best ratio value on a given type of problems, there is
always at least one domain of this type where the other plan-
ner performs better on all instances it could solve (see table
1). See for instance, thepegsolitaire (DAEYAHSP plan-
ner) domain for temporal planning tasks, andelevator
(LAMA planner) andpathways (DAEYAHSP planner) do-
mains for the other types of planning tasks.

D
R

A
FT

Table 1: Quality and scaling of satisficing planners YAHSP, LAMA, LPG, TFD and DAEYAHSP across the test domains. In
columnDomain(x), x denotes the total number of problem instances. Columns 2-4 (or 2-5) display the coverage, i.e. number
of instances solved (and also, for DAEYAHSP, the average number of successful runs – the closer to 11 the better). Columns 6-8
(or 7-10) show the quality score (and in parentheses, for DAEYAHSP, the average coverage, the closer to the quality score the
better). See text for the exact definitions. The values in bold are the best values obtained on each type of planning task (Cost,
Temporal and STRIPS). Columns 10-12 (or 12-15) display the ratios Quality Score

Coverage on each domain (with means of those ratios
across the domain types).

Costs Domain-ipc6
Coverage Quality Quality/ Total of solved problems

YAHSP LAMA DAEYAHSP YAHSP LAMA DAEYAHSP YAHSP LAMA DAEYAHSP

Woodworking (30) 20 30 27 / 8.9 15.96 24.36 24.79 (24.3) 79.82% 81.21% 91.81%

Pegsolitaire (30) 30 30 30 / 10.9 20.90 26.19 28.11 (27.2) 69.66% 87.31% 93.71%

Parcprinter (30) 28 22 28 / 11 16.87 11.94 27.25 (17.0) 60.24% 54.27% 97.33%

Openstacks (30) 30 30 30 / 11 8.52 20.73 19.45 (18.2) 28.39% 69.12% 64.85%

Transport (30) 30 30 30 / 11 16.73 26.40 24.99 (23.0) 55.77% 88.00% 83.30%

Scanalyser (30) 27 30 27 / 11 13.68 25.88 21.85 (20.9) 50.66% 86.27% 80.92%

Elevator (30) 30 24 30 / 11 9.60 22.65 18.31 (16.3) 32.00% 94.36% 61.05%

Sokoban (30) 24 25 20 / 9.6 21.32 24.25 19.79 (19.3) 88.85% 97.02% 98.96%

Total problems (240) 219 221 222 123.58 182.41 184.55 58.17% 82.19% 83.99%

Temporal Domain
Coverage Quality Quality/ Total of solved problems

YAHSP LPG TFD DAEYAHSP YAHSP LPG TFD DAEYAHSP YAHSP LPG TFD DAEYAHSP

Crewplanning-ipc6 (30) 30 12 29 30 / 11 24.55 12.00 (12.0) 28.76 29.90 (29.5) 81.82% 100% 99.17% 99.68%

Elevator-ipc6 (30) 30 30 17 30 / 11 8.31 25.83 (24.6) 13.45 23.24 (20.2) 27.70% 86.12% 79.11% 77.46%

Openstacks-ipc6 (30) 30 30 30 30 / 11 17.90 29.45 (27.6) 26.49 28.41 (27.8) 59.66% 98.15% 88.30% 94.71%

Pegsolitaire-ipc6 (30) 30 30 28 30 / 11 27.25 29.74 (28.4) 26.78 30.00 (29.8) 90.83% 99.14% 95.63% 100%

Parcprinter-ipc6 (30) 15 20 15 22 / 10.1 10.98 19.36 (19.2) 10.27 14.60 (14.2) 73.23% 96.82% 68.49% 66.35%

Sokoban-ipc6 (30) 22 16 17 17 / 10.5 17.20 11.14 (11.1) 12.74 15.60 (15.3) 78.20% 69.63% 74.92% 91.78%

Rovers-ipc3 (20) 20 20 6 20 / 11 17.74 19.95 (19.8) 5.78 19.86 (19.8) 88.69% 99.75% 96.39% 99.32%

Satellite-ipc3 (20) 20 20 20 20 / 11 6.33 20.00 (19.8) 12.55 16.86 (16.2) 31.64% 100% 62.77% 84.28%

Zeno-ipc3 (20) 20 20 20 20 / 11 9.70 18.98 (18.4) 11.62 17.50 (16.7) 48.49% 94.92% 58.09% 87.50%

Total problems (240) 217 198 182 219 139.96 186.46 148.44 195.97 64.47% 93.84% 80.32% 89.01%

STRIPS Domain
Coverage Quality Quality/ Total of solved problems

YAHSP LPG LAMA DAEYAHSP YAHSP LPG LAMA DAEYAHSP YAHSP LPG LAMA DAEYAHSP

Airport-ipc4 (50) 20 46 37 44 / 9.8 19.47 42.37 (41.1) 35.58 40.34 (38.9) 97.35% 92.10% 96.16% 91.69%

Psr small-ipc4 (50) 50 9 50 50 / 11 47.65 9.00 (9.0) 50.00 49.96 (49.9) 95.30% 100% 100% 99.91%

Satellite-ipc4 (36) 28 36 32 27 / 11 16.42 35.98 (35.9) 30.25 26.57 (26.5) 58.66% 99.95% 94.54% 98.40%

Openstacks-ipc5 (30) 30 23 30 30 / 10.8 27.98 22.43 (22.3) 28.55 29.97 (29.8) 93.28% 97.52% 95.16% 99.89%

Rovers-ipc3 (20) 20 20 20 20 / 11 17.74 19.93 (19.9) 19.33 19.80 (19.7) 88.71% 99.65% 96.63% 99.02%

Zeno-ipc3 (20) 20 20 20 20 / 11 15.37 19.45 (19.6) 19.25 18.91 (18.5) 76.86% 97.27% 96.23% 94.54%

Freecell-ipc3 (20) 20 20 20 20 / 8.5 12.50 18.01 (17.9) 19.52 15.68 (14.0) 62.52% 90.05% 97.62% 78.39%

Pathways-ipc5 (30) 30 30 29 30 / 11 25.57 29.37 (29.0) 26.78 29.47 (20.4) 85.25% 97.91% 92.34% 98.25%

Total problems (256) 218 204 238 241 182.72 196.555 229.26 230.70 82.24% 96.81% 96.09% 95.01%

Another conclusion we can draw from those results is
the robustness of DAEYAHSP. Its coverage robustness is as-
sessed by its very high average coverage (close to the max-
imum value 11): when an instance is solvable, almost all
runs succeed. Regarding the quality robustness, the average
quality of DAEYAHSP is most of the times larger than 95%
of the quality score, with however some outlier low values.

Related Work
Addressing the planning problem with an evolutionary al-
gorithm, Genetic Planning, is not new but is usually done
with a direct encoding of partial plans, i.e. individuals rep-
resent linear lists of actions, and is also usually restricted to
classical planning like in (Westerberg and Levine 2001) or
(Brié and Morignot 2005). A genetic algorithm for learning
macro-actions for arbitrary planners and domains has been

recently proposed in (Newton et al. 2007). In aggregating
several steps, macros indirectly divide the state space by fos-
tering better plan trajectories among all possible ones butthe
approach is much different from DAEX . It is worth mention-
ning also a successful space application, modeled with time-
lines and a multi-objective function, reported in (Cesta etal.
2008) and in which the MRSPOCK solver includes a clas-
sical genetic algorithm. But tough it is indeed a practical ap-
plication of evolutionary computation to planning, the rep-
resentation and operators used within MRSPOCK are very
different from what is done in DAEX .

LPG works by performing a stochastic local search, sim-
ilar to WalkSat, on planning graph subsets (Gerevini, Saetti,
and Serina 2003b). In both LPG and DAEX , the strat-
egy consists in gradually improving plan trajectories using
a stochastic scheme. Other similarities are timestamping

D
R

A
FT

atoms with an earliest time estimate, and mutual exclusion
constraints. However, there are fundamental differences be-
tween both approaches. Firstly, LPG is a self-contained
planner that performs a constructive method and reasons
on partial plans, whereas DAEX is a meta-algorithm that
modifies intermediate states and relies on an external solver
to generate partial plans. Furthermore, though it manipu-
lates several different plans by doing restarts, LPG is not a
population-based search algorithm, because there is no in-
teraction between the different “individuals”. The use of
timestamping is also very different in both approaches.

Plan optimization is also often performed by anytime
heuristic search algorithms, such as in LAMA; However, as
mentioned in (Richter, Thayer, and Ruml 2009), such algo-
rithms are often caught in unpromising parts of the search
space, thus being unable to really improve the plan. They
show that doing restarts in this kind of algorithms may be a
better strategy. In contrast, our approach is designed to intro-
duce diversity in the exploration of the search space, while
taking benefit of the past exploration through the evolution
of the population.

Conclusion
This paper introduced DAEX , an evolutionary metaheuris-
tic for satisficing planning. DAEX optimizes the decom-
position of a planning task into a sequence of intermediate
states that must be reached in turn by an embedded planner,
in order to find a plan of the best possible quality. Creat-
ing the initial population and evolving the individuals from
one population to the next through variation operators heav-
ily relies on standard features of modern planners, such as
binary mutual exclusions and reachability heuristics, in or-
der to build time-coherent mutex-free partial states. Experi-
ments demonstrate that the performance of an encapsulated
planner can be greatly increased, both in terms of coverage
and solution quality, making it competitive with state-of-the
art planners. Although we used a single planner (YAHSP)
in our experiments, future works will use different planners,
evaluating their behavior within DAEX . A portfolio of plan-
ners could also be used to solve each subtask; A sequence of
solvers would then be recorded in the individuals. It is also
interesting to see that these results are obtained with the sim-
pleh1 planning heuristic for the construction of individuals;
The use of more elaborate heuristics may be envisaged.

References
Bibai, J.; Sav́eant, P.; Schoenauer, M.; and Vidal, V.
2008. DAE: Planning as Artificial Evolution (Determin-
istic part). At International Planning Competition (IPC)
http://ipc.icaps-conference.org/.

Bibai, J.; Sav́eant, P.; Schoenauer, M.; and Vidal, V. 2009. Learn-
ing Divide-and-Evolve Parameter Configurations with Racing. In
ICAPS 2009 Workshop on Planning and Learning.

Bibai, J.; Schoenauer, M.; and Savéant, P. 2009. Divide-And-
Evolve Facing State-of-the-Art Temporal Planners during IPC6.
In Cotta, C., and Cowling, P., eds.,EvoCOP’09, number 5482 in
LNCS, 133–144. Springer Verlag.

Brié, A. H., and Morignot, P. 2005. Genetic Planning Using

Variable Length Chromosomes. In15th Int. Conf. on Automated
Planning and Scheduling (ICAPS 2005), 320–329.

Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2008. Look-
ing for MrSPOCK: Issues in Deploying a Space Application. In
ICAPS 2008 SPARK Workshop.

Chen, Y.; Hsu, C.; and Wah, B. 2006. Temporal Planning using
Subgoal Partitioning and Resolution in SGPlan.Artificial Intelli-
gence26:323–369.

Eiben, A., and Smith, J. 2003.Introduction to Evolutionary Com-
puting. AAAI.

Eyerich, P.; Mattm̈uller, R.; and R̈oger, G. 2009. Using the
Context-enhanced Additive Heuristic for Temporal and Numeric
Planning. In19th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS 2009), 130–137.

Gerevini, A.; Saetti, A.; and Serina, I. 2003a. On Managing
Temporal Information for Handling Durative Actions in LPG. In
AI*IA 2003: Advances in Artificial Intelligence. Springer Verlag.

Gerevini, A.; Saetti, A.; and Serina, I. 2003b. Planning through
Stochastic Local Search and Temporal Action Graphs in LPG.
JAIR20:239–290.

Haslum, P., and Geffner, H. 2000. Admissible Heuristics for Op-
timal Planning. In5th Int. Conf. on AI Planning and Scheduling
(AIPS 2000), 140–149.

Helmert, M. 2008. Understanding Planning Tasks. Springer
Verlag.

Korf, R. 1987. Planning as Search: A Quantitative Approach.
Artificial Intelligence33:65–88.

Koza, J. R., and al. 1999.Genetic Programming III: Automatic
Synthesis of Analog Circuits. MIT Press.

Morel, P.; Hamda, H.; and Schoenauer, M. 2005. Computational
Chair Design using Genetic Algorithms.Concept71(3):95–99.

Newton, M. H.; Levine, J.; Fox, M.; and Long, D. 2007. Learn-
ing Macro-Actions for Arbitrary Planners and Domains. In17th

Int. Conf. on Automated Planning and Scheduling (ICAPS 2007),
256–263.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
Revisited. InAAAI’08, 975–982. AAAI Press.

Richter, S.; Thayer, J. T.; and Ruml, W. 2009. The Joy of Forget-
ting: Faster Anytime Search via Restarting. InProceedings of the
International Symposium on Combinatorial Search (SOCS’09).

Schoenauer, M.; Savéant, P.; and Vidal, V. 2006. Divide-and-
Evolve: a New Memetic Scheme for Domain-Independent Tem-
poral Planning. In Gottlieb, J., and Raidl, G., eds.,EvoCOP’06,
number 3906 in LNCS, 247–260. Springer Verlag.

Schoenauer, M.; Savéant, P.; and Vidal, V. 2007. Divide-and-
Evolve: a Sequential Hybridization Strategy using Evolutionary
Algorithms. In Michalewicz, Z., and Siarry, P., eds.,Advances in
Metaheuristics for Hard Optimization, 179–198. Springer Verlag.

Sebastia, L.; Onaindia, E.; and Marza, E. 2006. Decomposition
of Planning Problems.AI Communications19(1):49–81.

Vidal, V., and Geffner, H. 2006. Branching and Pruning: An Opti-
mal Temporal POCL Planner based on Constraint Programming.
Artificial Intelligence170(3):298–335.

Vidal, V. 2004. A Lookahead Strategy for Heuristic Search Plan-
ning. In14th Int. Conf. on Automated Planning and Scheduling
(ICAPS 2004), 150–160.

Westerberg, H., and Levine, J. 2001. Optimising Plans using Ge-
netic Programming. In Cesta, A., ed.,6th Eur. Conf. on Planning
(ECP-01).

D
R

A
FT

Table 2: 6 runs au moins pour DAEYAHSP a comparer avec la table 1. Quality and scaling of satisficingplanners YAHSP,
LAMA, LPG, TFD and DAEYAHSP across the test domains. In columnDomain(x), x denotes the total number of problem
instances. Columns 2-4 (or 2-5) display the coverage, i.e. number of instances solved (and also, for DAEYAHSP, the average
number of successful runs – the closer to 11 the better). Columns 6-8 (or 7-10) show the quality score (and in parentheses,
for DAEYAHSP, the average coverage, the closer to the quality score the better). See text for the exact definitions. The values
in bold are the best values obtained on each type of planning task (Cost, Temporal and STRIPS). Columns 10-12 (or 12-15)
display the ratiosQuality Score

Coverage on each domain (with means of those ratios across the domain types).

Costs Domain-ipc6
Coverage Quality Quality/ Total of solved problems

YAHSP LAMA DAEYAHSP YAHSP LAMA DAEYAHSP YAHSP LAMA DAEYAHSP

Woodworking (30) 20 30 21 / 10.8 15.96 24.36 20.35 (19.6) 79.82% 81.21% 96.90%

Pegsolitaire (30) 30 30 30 / 10.9 20.90 26.19 28.11 (27.2) 69.66% 87.31% 93.71%

Parcprinter (30) 28 22 28 / 11 16.87 11.94 27.25 (17.0) 60.24% 54.27% 97.33%

Openstacks (30) 30 30 30 / 11 8.52 20.73 19.45 (18.2) 28.39% 69.12% 64.85%

Transport (30) 30 30 30 / 11 16.73 26.40 24.99 (23.0) 55.77% 88.00% 83.30%

Scanalyser (30) 27 30 27 / 11 13.68 25.88 21.85 (20.9) 50.66% 86.27% 80.92%

Elevator (30) 30 24 30 / 11 9.60 22.65 18.31 (16.3) 32.00% 94.36% 61.05%

Sokoban (30) 24 25 18 / 10.3 21.32 24.25 17.79 (17.4) 88.85% 97.02% 98.83%

Total problems (240) 219 221 214 123.58 182.41 178.1 58.17% 82.19% 84.61%

Temporal Domain
Coverage Quality Quality/ Total of solved problems

YAHSP LPG TFD DAEYAHSP YAHSP LPG TFD DAEYAHSP YAHSP LPG TFD DAEYAHSP

Crewplanning-ipc6 (30) 30 12 29 30 / 11 24.55 12.00 (12.0) 28.76 29.90 (29.5) 81.82% 100% 99.17% 99.68%

Elevator-ipc6 (30) 30 30 17 30 / 11 8.31 25.83 (24.6) 13.45 23.24 (20.2) 27.70% 86.12% 79.11% 77.46%

Openstacks-ipc6 (30) 30 30 30 30 / 11 17.90 29.45 (27.6) 26.49 28.41 (27.8) 59.66% 98.15% 88.30% 94.71%

Pegsolitaire-ipc6 (30) 30 30 28 30 / 11 27.25 29.74 (28.4) 26.78 30.00 (29.8) 90.83% 99.14% 95.63% 100%

Parcprinter-ipc6 (30) 15 20 15 20 / 10.8 10.98 19.36 (19.2) 10.27 13.87 (13.6) 73.23% 96.82% 68.49% 69.35%

Sokoban-ipc6 (30) 22 16 17 16 / 11 17.20 11.14 (11.1) 12.74 14.68 (14.6) 78.20% 69.63% 74.92% 91.75%

Rovers-ipc3 (20) 20 20 6 20 / 11 17.74 19.95 (19.8) 5.78 19.86 (19.8) 88.69% 99.75% 96.39% 99.32%

Satellite-ipc3 (20) 20 20 20 20 / 11 6.33 20.00 (19.8) 12.55 16.86 (16.2) 31.64% 100% 62.77% 84.28%

Zeno-ipc3 (20) 20 20 20 20 / 11 9.70 18.98 (18.4) 11.62 17.50 (16.7) 48.49% 94.92% 58.09% 87.50%

Total problems (240) 217 198 182 216 139.96 186.46 148.44 194.32 64.47% 93.84% 80.32% 89.34%

STRIPS Domain
Coverage Quality Quality/ Total of solved problems

YAHSP LPG LAMA DAEYAHSP YAHSP LPG LAMA DAEYAHSP YAHSP LPG LAMA DAEYAHSP

Airport-ipc4 (50) 20 46 37 43 / 10 19.47 42.37 (41.1) 35.58 39.38 (37.9) 97.35% 92.10% 96.16% 91.58%

Psr small-ipc4 (50) 50 9 50 50 / 11 47.65 9.00 (9.0) 50.00 49.96 (49.9) 95.30% 100% 100% 99.91%

Satellite-ipc4 (36) 28 36 32 27 / 11 16.42 35.98 (35.9) 30.25 26.57 (26.5) 58.66% 99.95% 94.54% 98.40%

Openstacks-ipc5 (30) 30 23 30 30 / 10.8 27.98 22.43 (22.3) 28.55 29.97 (29.8) 93.28% 97.52% 95.16% 99.89%

Rovers-ipc3 (20) 20 20 20 20 / 11 17.74 19.93 (19.9) 19.33 19.80 (19.7) 88.71% 99.65% 96.63% 99.02%

Zeno-ipc3 (20) 20 20 20 20 / 11 15.37 19.45 (19.6) 19.25 18.91 (18.5) 76.86% 97.27% 96.23% 94.54%

Freecell-ipc3 (20) 20 20 20 15 / 10.3 12.50 18.01 (17.9) 19.52 12.53 (11.4) 62.52% 90.05% 97.62% 83.53%

Pathways-ipc5 (30) 30 30 29 30 / 11 25.57 29.37 (29.0) 26.78 29.47 (20.4) 85.25% 97.91% 92.34% 98.25%

Total problems (256) 218 204 238 235 182.72 196.555 229.26 226.59 82.24% 96.81% 96.09% 95.64%

Yuan, B., and Gallagher, M. 2004. Statistical Racing Techniques
for Improved Empirical Evaluation of Evolutionary Algorithms.
In Proc. PPSN VIII, 172–181.

