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Abstract. Monte-Carlo Tree Search is now a well established algorithm,
in games and beyond. We analyze its scalability, and in particular its lim-
itations, and the implications in terms of parallelization, in particular for
our program MoGo but also for our Havannah program Shakti. In partic-
ular, we get a good efficiency for the parallel versions, both for multicore
machines and for message-passing machines, but in spite of promising
results in self-play there are situations for which increasing the time per
move does not solve anything, and therefore parallelization is not the so-
lution either. Nonetheless, for problems on which the Monte-Carlo part
is less biased than in Go, parallelization should be very efficient even
without shared memory.

1 Introduction

Since 2006, Monte-Carlo Tree Search (MCTS[6, 9, 17]) is a revolution in games
and planning, with applications in many fields. After big successes in Go, MCTS
was applied to other games as well (Havannah[22],Amazons[19],General Game
Playing[21]). It was also applied to optimization on graphs ([11] with an appli-
cation to library performance tuning), and to fundamental artificial intelligence
tasks like non-linear optimization and active learning[2, 20]. It has in particular
the advantage that it does not require an evaluation function (whereas alpha-
beta does) and is therefore suitable for problems in which no good evaluation
function is known - one can consider that a random simulation, with the reward
at the end, is a form of evaluation function, but one can build such tools in any
game for which rules are explicitly provided.

It is also widely said that MCTS has some scalability advantages.

It is quite natural, then, to parallelize MCTS, both on multicore machines
[23] and on clusters [13, 5]. In this paper, after an introduction to MCTS we (i)
discuss the scalability of MCTS, showing big limitations to this scalability, and
not only due to Rave (section 2); (ii) compare existing algorithms on clusters
(section 3).



Monte-Carlo Tree Search

We below introduce Monte-Carlo Tree Search, i.e. MCTS. We here present the
MCTS variant termed UCT [17], which is shorter to present and very general;
the formulas involved in our programs are more tricky and can be found in [14,
18, 13, 22]; these details do not affect the parallelization.

UCT is presented in Algorithm 1. The reader is referred to [17] for a more
detailed presentation, and to [14, 23, 9, 7] for a more comprehensive introduction
in particular for the specific case of binary rewards and two-player games.

2 Scalability of MCTS

The scalability of MCTS, i.e. its ability to play better when additional compu-
tational power or time is provided1, is often given as an argument in favor of it.
Also, it is said that the parallelization is very efficient; the conclusion of these
two statements is that with big clusters, programs should now be much stronger
than humans in games in which single computers are already at the level of
beginners. We will here give more information (limitations) on this scalability.

The number of simulations per move is usually much larger in real games than
in experimental results published in papers, because of limited computational
power - it’s difficult, even with a cluster, to have significant results corresponding
to the computational power associated to realistic time settings on a big machine.
In this section, we investigate the behavior of MCTS when the time per move
is increased (section 2.1), followed by counter-examples to scalability (section
2.2).

2.1 The limited scalability by numbers

It is usually said that MCTS is highly scalable, and provides improvements
of constant order against the baseline when the computational power is dou-
bled. We here show that things are not so constant; results are presented in
Table 1 for the game of Go. These numbers show the clear decrease of scala-
bility as the computational power increases. This is not specific to Go; Table 2
shows that the situation is similar in Havannah. This holds even when the op-
ponent is a MCTS also; this is not equivalent to the case of the scalability study
http://cgos.boardspace.net/study/index.html which considers non-MCTS
opponents as well; we here see that just against the same MCTS program, we
have a limit in scalability; this even happens in 19x19. In Havannah with slow
simulations (the operational case, with the best performance in practice), 10
000 simulations per move give only 52% winning rate against 5 000 simulations
per move (Table 2). This suggests that the scalability is smaller than expected

1 This definition of scalability is often used in games; this is different from the defini-
tion used in parallelism, where it considers only the extent to which the sequential
behavior can be recovered (faster) by the parallel algorithm. As we will see, the
limited efficiency also occurs in the sequential case - the trouble is not due to com-
munication costs or overheads of the parallel implementation.



Algorithm 1 Overview of the UCT algorithm for two-player deterministic
games. The adaptation to stochastic cases or one-player games is straightfor-
ward. UCT takes as input a situation s ∈ S, and outputs a decision. For any
situation s and any decision d, s′ = s.d denotes the situation s′ subsequent to
decision d in situation s. T is made of two mappings (initially identically 0), NT

and ST : NT is a mapping from S to N (i.e. maps situations to integers) and
ST is a mapping from S to R. S is the set of states, ST stands for the sum of
rewards at a given state and NT stands for the number of visits at a given state.

Function UCT (s)
T ← 0
while TimeLeft> 0 do

PerformSimulation(T, s)
end while

Return r maximizing NT (s.r)

Function reward = PerformSimulation(T, s)
if s is a final state then

return the reward of s
else

if NT (s) > 0 then

Choose the move to be simulated as follows:

if Color(s)=myColor then

ǫ = 1
else

ǫ = −1
end if

d = arg maxd Score(ǫ.ST (s.d), NT (s.d), NT (s))
else

d = MC(d) /* MC(d) is a heuristic choice of move */
end if

end if

reward = PerformSimulation(T, s.d) // reward∈ {0, 1}
Update the statistics in the tree as follows:

NT (s)← NT (s) + 1
ST (s)← ST (s) + reward
Return reward

Function Score(a, b, c)
Return a/b +

p

2 log(c)/b /* plenty of improvements of this Eq. are published
in the literature for specific problems*/



N =Number Success rate of 2N simulations Success rate of 2N simulations
of simulations against N simulations in 9x9 Go against N simulations in 19x19 Go

1 000 71.1 ± 0.1 % 90.5 ± 0.3 %
4 000 68.7 ± 0.2 84.5 ± 0.3 %
16 000 66.5 ± 0.9 % 80.2 ± 0.4 %
256 000 61.0 ± 0.2 % 58.5 ± 1.7 %

Table 1. Scalability of MCTS for the game of Go. These results show a decrease of
scalability as computational power increases.

Number of fast Success
simulations rate

100 vs 50 68.6 ± 0.68%
1000 vs 500 63.57 ± 0.76%
2000 vs 1000 59.0 ± 1.0%
4000 vs 2000 53.9 ± 1.6%
10000 vs 5000 55.2 ± 1.6%
20000 vs 10000 54.89 ± 1.25%

Number of slow Success
simulations rate

100 vs 50 63.28 ± 0.4%
1000 vs 500 57.37 ± 0.9%
2000 vs 1000 56.42 ± 1.1%
4000 vs 2000 53.24 ± 1.42%
10000 vs 5000 52 ± 1.6%

Table 2. Scaling for the game of Havannah, for fast (left) and slow (right) simulations.
As we can see, the success rate is not constant; the numbers have somehow big standard
deviations, but we nonetheless see that the success rate of 2N simulations versus N
simulations decreases when N increases.

from small scale experiments. Usually people do not publish experiments with
so many simulations because it is quite expensive; nonetheless, real games are
played with more than this kind of numbers of simulations and the numbers in
the tables above are probably greater than the scalability in realistic scenarios.

A particularity of these numbers is that they are in self-play; this provides
a limitation even in the ideal case in which we only consider an opponent of
the same type; it is widely known that the improvement is much smaller when
considering humans or programs of a different type. Interestingly [16] has shown
that his MCTS implementation reaches a plateau against GnuGo when the num-
ber of simulations goes to infinity. This shows limited scalability, to be confirmed
by situations (practically) unsolved by Monte-Carlo Tree Search, presented in
section below.

2.2 Counter-examples to scalability

The RAVE heuristic ([4, 14]) is known as very efficient in several games: it in-
troduces a bias in H, based on permutations of simulations. It is nonetheless
suspected that RAVE is responsible for the bad asymptotic behavior of some
MCTS programs. We below recall some known counter-examples when RAVE is
included, and then give a detailed presentation of other counter-examples which
do not depend on RAVE.



Counter-examples based on RAVE values. Martin Müller posted in
the computer-Go mailing list the situation shown in Fig. 1 (http://fuego.svn.
sourceforge.net/viewvc/fuego/trunk/regression/sgf/rave-problems/).
In this situation, their MCTS implementation Fuego does not find the only
good move. This is due to the RAVE modification (discussed in section 2.2).
The only good move is B2: but any simulation including B2, except if B2 is
played as the first move as a simulation, is a loss for white - therefore the RAVE
values are misleading. The underlying assumption of RAVE, namely the fact
that a good move for now is a move which is good even when played later, is
wrong here.

Other counter-examples. Importantly, Fig. 2 from [3] shows that there
are some bad behaviours even without RAVE values.

Fig. 1. White to play, an example by M. Müller of bad scalability due to Rave. RAVE
gives a very bad value to the move B2 (second row, second column), because it only
makes sense if it’s the first move, whereas this is the only move avoiding the seki
(otherwise, black A5 and the two black stones A2 and B1 are alive).

Below, we propose new clear examples of limited speed-up, that have the
following suitable properties:

– These situations are extremely easy for human players. Even a beginner can
solve them.

– These counter-examples are independent of RAVE, as shown in our experi-
ments.

Such situations are given in Fig. 3. These situations are semeais; it is known
since [10, 18] that MCTS algorithms are weak in such cases. We show that this
weakness remains without RAVE and even with inclusion of specific tactical
solvers.



Fig. 2. White to play, an example of bad behavior shown in [3], independently of Rave
values: in many cases (yet not always, this depends on the first simulations), MoGo
is almost sure that he is going to win as white by playing C1, whereas it is a loss for
white.

It is often said that classical solvers are able to solve semeais and therefore
including expert modules should improve MCTS algorithms by including semeai
solver. We therefore tested two ways of including expertise in MCTS:

– Expertise: we introduce a bias in the score, as usually performed in MCTS
algorithms [6, 9, 18]. Some virtual wins are added to UCT statistics so that
moves which are good according to our tactical semeai solver are more simu-
lated; the idea, detailed in [6, 9, 18] consists in increasing the score of moves
evaluated as necessary by the semeai solver, so that the heuristic H is more
favorable to them. Only moves necessary for solving the semeai are given a
bonus; no move at all if the semeai is won even if the player to play passes.

– Conditioning: then, all simulations which are not consistent with the solver
are discarded and replayed. This means that when the solver predicts that
the semeai is won for black (the solver is called at the end of the tree part,
before the MC part), before the Monte-Carlo part, then the Monte-Carlo
simulation is replayed until it gives a result consistent with this prediction.
Human experts could validate the results (i.e. only simulations consistent
with the semeai solver were included in the Monte-Carlo) and the quality of
the solver is not the cause for results in Table 3; the coefficients have been
tuned in order to be a minimum perturbation for having a correct solving
for Fig. 3, left: the coefficients are (i) the size of semeais considered (ii) the
weight of the expertise in the function H (for versions with expertise).

The results are presented in Table 3. In order to be implementation-independent,
we consider the performance for fixed numbers of simulations; the slowness of
the tactical solver can’t be an explanation for poor results. From these negative



Fig. 3. Left: black to play. It is here necessary to play in the semeai. Right: black
to play: playing in the semeai is useless as the semeai is won anyway (black has two
more liberties than white) - good moves are outside the semeai. MoGo often makes the
mistake of playing in the semeai.

results, and also for many trials with various tunings, all of them leading to
success rates lower than 50 % against the baseline, we include that including
expert knowledge is very difficult for semeais; it is true that tactical solvers can
solve semeais, but they do not solve the impact of semeais on the rest of the
board: in conditioning, if simulations are accepted as soon as they are consistent
with the semeai solver, then the result of the semeai will be understood by the
program but the program might consider cases in which black played two more
stones than necessary - this is certainly not a good solving of the semeai.

These examples of bad behavior are not restricted to MoGo. Fig. 4 is a game
played by Fuego and Aya in the 56th KGS tournament (February 2010); Fuego
(a very strong program by Univ. Alberta) played (1) and lost the game.

Fig. 4. Fuego as white played the very bad move (1) during the 56th KGS tournament
and lost the game. This is an example of situation very poorly handled by computers.



Version of the algorithm Percentage of “good” moves

Situation in which the semeai should be played
1K sims per move

MoGo 32 %
MoGo with expertise 79 %

MoGo with conditioning 24 %
MoGo with exp.+condit. 84 %

Situation in which the semeai should not be played
1K sims per move / 30K sims per move

MoGo 100% / 58 %
MoGo with expertise 95 % / 51 %

MoGo with conditioning 93 % / 0 %
MoGo with exp.+condit. 93 % / 54 %

Table 3. These results are for Fig. 3; black should or should not play in the semeai
(left or right situation in Fig. 3). All results are averaged over 1000+ runs. Bold is for
results with more than 75 % on correct moves. We point out that the Go situations
under consideration are very easy, understandable by very beginners. We see that (i)
with 30K sims/move, many versions play the semeai whenever it is useless, and all
versions play it with significant probability, what is a disaster as in real situations
there are many time steps at which the MCTS program can have the opportunity of
such a bad move and even only one such move is a disaster (loosing one stone!) (ii)
removing RAVE does not solve the problem (iii) adding a tactical solver can work
better (moderately better) with the traditional solution of adding expertise as virtual
wins, but results remain very moderate, and far from what can do even a beginner. We
also tested many parameterizations in self-play and none of these tests provided more
than 50 % of success rate in self-play.

3 Message-passing parallelization

We here do not discuss the multithreaded parallelizations, which are detailed in
[23, 13, 12, 8]. Multi-core machines are more and more efficient, but the band-
width is nonetheless limited, and the number of cores is much bigger when we
consider clusters than when we consider a single machine. This is why message-
passing parallelization (in which communications are explicit and limited) must
be considered. We’ll see here that, in particular in 19x19, the technique is quite
efficient from a parallelization point of view: the main issue for MCTS is not the
computational power, but the limits to scalability emphasized in section 2.

The various published techniques for the parallelization of MCTS are as
follows:

– Fast tree parallelization consists in simulating the multi-core process on a
cluster; there’s still only one tree in memory, on the master, and slaves
(i) compute the Monte-Carlo part (ii) send the results to the master for
updates. This is sensitive to Amdahl’s law, and is quite expensive in terms
of communication when RAVE values are used[15, 13].

– Slow tree parallelization consists in having one tree on each computation
node, and to synchronize these trees slowly, i.e. not at each simulation but



with frequency e.g. three times per second [13]. The synchronization is not
on the whole tree; it is typically performed as follows:
• Select all the nodes with

∗ at least 5% of the total number of simulations of the root;
∗ depth at most d (e.g. d = 3);

• Average the number of wins and the number of simulations for each of
these nodes.

This can be computed recursively (from the root), using commands like
MPI AllReduce which have a cost logarithmic in the number of nodes. A
special case is slow root parallelization: this is slow tree parallelization,
but with depth at most d = 0; this means that only the root is considered.

– Voting schemes. This is a special case of tree parallelization advocated in
[8], that we will term here for the sake of comparison with other techniques
above very slow root parallelization: this is slow root parallelization,
but with frequency f = 1/t with t the time per move: the averaging is
only performed at the end of the thinking time. There’s no communication
during the thinking time, and the drawback is that consequently there’s no
load balancing.

It is usually considered that fast tree parallelization does not perform well;
we will consider only other parallelizations. We present in Table 4 the very good
results we have in 19x19 and the moderately good results we have in 9x9 for
slow tree parallelization.

Configuration of game Winning rate in 9x9 Winning rate in 19x19

32 against 1 75.85 ± 2.49 % 95.10±01.37 %
32 against 2 66.30 ± 2.82 % 82.38±02.74 %
32 against 4 62.63 ± 2.88 % 73.49±03.42 %
32 against 8 59.64 ± 2.93 % 63.07±04.23 %
32 against 16 52.00 ± 3.01 % 63.15±05.53 %
32 against 32 48.91 ± 3.00 % 48.00±09.99 %

Table 4. Experiments showing the speed-up of ”slow-tree parallelization” in 9x9 and
19x19 Go. We see that a plateau is reached somewhere between 8 and 16 machines in
9x9, whereas the improvement is regular in 19x19 and consistent with a linear speed-
up - a 63% success rate is equivalent to a speed-up 2, therefore the results sill show a
speed-up 2 between 16 and 32 machines in 19x19. Experiments were reproduced with
different parameters with strong difference; in this table, the delay between two calls
to the ”share” functions is 0.05s, and x is set to 5%. The numbers with high numbers
of machines will be confirmed in Table 5.

We can compare slow root parallelization to the “voting scheme”

very slow root parallelization: with 40 machines and 2 seconds per move
in 9x9 and 19x19, the slow root parallelization wins clearly against the version
with very slow root parallelization, as shown by Table 5. with a frequency 1/0.35
against the very slow root parallelization. As a rule of thumb, it is seemingly



Framework Success rate
against voting schemes

9x9 Go 63.6 % ± 4.6 %

19x19 Go 94 % ± 3.2 %
Table 5. The very good success rate of slow tree parallelization versus very slow tree
parallelization. The weakness of voting schemes appears clearly, in particular for the
case in which huge speed-ups are possible, namely 19x19.

good to have a frequency such that at least 6 averaging are performed; 3 per
second is a stable solution as games have usually more than 2 seconds per move;
with a reasonable cluster 3 times per second is a negligible cost.

We now compare slow tree parallelization with depth d = 1, to the case
d = 0 (slow root parallelization) advocated in [5]. Results are as follows and
show that d = 0 is a not so bad approximation:

Time per move Winning rate of slow-tree-parallelization
(depth=1) against slow-root-parallelization

2 50.1 ± 1.1 %
4 51.4 ± 1.5 %
8 52.3 ± 1 %
16 51.5 ± 1 %

These experiments are performed with 40 machines. The results are significant
but very moderate.

4 Conclusion

We revisited scalability and parallelism in MCTS.
The scalability of MCTS has often been emphasized as a strength of these

methods; we show that when the computation time is already huge, then dou-
bling it has a smaller effect than when it is small. This completes results pro-
posed by Hideki Kato[16] or the scalability study http://cgos.boardspace.

net/study/index.html; the scalability study was stopped at 524288 simula-
tions, and shows a concave curve for the ELO rating in a framework including
different opponents; Hideki’s results show a limited efficiency, when computa-
tional power goes to infinity, against a non-MCTS algorithm. Seemingly, there
are clear limitations to the scalability of MCTS; even with huge computational
power, some particular cases can’t be solved. We also show that the limited
speed-up exists in 19x19 Go as well, and not with much more computational
time than in 9x9 Go. In particular, cases involving visual elements (like big
yose) and cases involving human sophisticated techniques around liberties (like
semeais) are not properly solved by MCTS, as well as situations involving mul-
tiple unfinished fights. Our experiments also show that the situation is similar
in Havannah with good simulations. The main limitation of MCTS is clearly the
bias, and for some situations (as those proposed in Fig. 3) introducing a bias



in the score formula is not sufficient; even discarding simulations which are not
consistent with a tactical solver is not efficient for semeai situations or situations
in which liberty counting is crucial.

Several parallelizations of MCTS on clusters have been proposed. We clearly
show that communications during the thinking time are necessary for optimal
performance; voting schemes (“very” slow root parallelization) don’t perform so
well. In particular, slow tree parallelization wins with probability 94 % against
very slow root parallelization in 19x19, showing that the slow tree parallelization
from [13] or the slow root parallelization from [5] are probably the state of the
art. Slow tree parallelization performs only moderately better than slow root
parallelization when MCTS is used for choosing a single move, suggesting that
slow root parallelization (which is equal to slow tree parallelization simplified to
depth= 0) is sufficient in some cases for good speed-up - when MCTS is applied
for proposing a strategy (as in e.g. [1] for opening books), tree parallelization
naturally becomes much better.
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