
HAL Id: inria-00533528
https://hal.inria.fr/inria-00533528

Submitted on 7 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of Pointing Performance on Screen Edges
Caroline Appert, Olivier Chapuis, Michel Beaudouin-Lafon

To cite this version:
Caroline Appert, Olivier Chapuis, Michel Beaudouin-Lafon. Evaluation of Pointing Performance on
Screen Edges. ACM. AVI ’08: Proceedings of the Working Conference on Advanced Visual Interfaces,
May 2008, Naples, Italy. pp.119-126, 2008, <10.1145/1385569.1385590>. <inria-00533528>

https://hal.inria.fr/inria-00533528
https://hal.archives-ouvertes.fr

Evaluation of Pointing Performance on Screen Edges

Caroline Appert1,2,3

appert@lri.fr
Olivier Chapuis2,3

chapuis@lri.fr
Michel Beaudouin-Lafon2,3

mbl@lri.fr

1IBM Almaden Research Center 2LRI - Univ. Paris-Sud & CNRS 3INRIA
San Jose, CA, USA Orsay, France Orsay, France

ABSTRACT
Pointing on screen edges is a frequent task in our everyday use

of computers. Screen edges can help stop cursor movements, re-

quiring less precise movements from the user. Thus, pointing at

elements located on the edges should be faster than pointing in the

central screen area. This article presents two experiments to better

understand the foundations of "edge pointing". The first study as-

sesses several factors both on completion time and on users’ mouse

movements. The results highlight some weaknesses in the current

design of desktop environments (such as the cursor shape) and re-

veal that movement direction plays an important role in users’ per-

formance. The second study quantifies the gain of edge pointing by

comparing it with other models such as regular pointing and cross-

ing. The results not only show that the gain can be up to 44%, but

also reveal that movement angle has an effect on performance for

all tested models. This leads to a generalization of the 2D Index

of Difficulty of Accot and Zhai that takes movement direction into

account to predict pointing time using Fitts’ law.

Categories and Subject Descriptors
H.5.2 [Information Systems]: Information Interfaces and Presen-

tation (e.g., HCI) – User Interfaces, Input Devices and Strategies

Keywords
Edge pointing, Screen Edges, Fitts’ Law, performance modelling

General Terms
Human Factors, Experimentation, Performance

1. INTRODUCTION
Common graphical desktop environments display a number of in-

teractive widgets along the physical edges of the screen. Microsoft

Windows c© and several X Window environments, e.g., GNOME

and KDE, feature a task bar. This task bar contains buttons to nav-

igate among application windows, and shortcuts to the files and

applications used most often. It is also used to display notification

icons, current time, sound controls or system status. Mac OS X c©

C. Appert, O. Chapuis and M. Beaudouin-Lafon. Evaluation of Pointing
Performance on Screen Edges. In AVI ’08: Proceedings of the Working
Conference on Advanced Visual Interfaces, 119-126, ACM, May 2008.

Authors Version

displays the menus of the foreground application and some notifi-

cation icons in a menu bar that is always at the top of the screen.

It also features a dock holding icons to quickly launch frequently

used files and applications. Users can change the task bar or dock

location but the system constrains them to one of the four physical

edges of the screen (three for Mac OS X because of the menu bar).

Placing widgets along the edges makes it easier for users to orga-

nize their workspace, i.e., their windows and icons, in the central

area of the screen without occluding these widgets. However, it

also maximizes the distance between the working area and these

“edge widgets”. Since Fitts’ law [9] predicts that the larger the dis-

tance between the cursor and a target, the longer the time to reach

that target, edge widgets may impede pointing performance.

While pointing in the central screen area has been extensively stud-

ied and Fitts’ law has been shown to hold in most cases, e.g. [8, 16],

the situation with targets located on screen edges may be different.

A typical pointing movement is composed of two main phases: an

acceleration phase at the beginning of the movement and a decel-

eration phase at the end of the movement to stop the cursor within

the target bounds [19]. Figure 1 (left) shows the typical profile of

the speed curve for pointing at a “regular” target. When pointing at

an edge target, however, users can take advantage of the physical

boundary to stop the movement. They only have to stay within the

bounds of the target along the direction collinear to the edge, while

maintaining a high speed (prone to overshooting) along the main

movement direction. Figure 1 (right) shows the expected speed

curve when pointing at a target on a screen edge. Accordingly, edge

pointing should be faster than “regular” pointing. The intuition that

pointing at edge widgets should be faster has already been noted,

e.g., [18], Chapter 4, or [5], but, to the best of our knowledge, it has

never been empirically tested. Thus, we do not know if users can

perceive the potential advantage and actually use edges in practice.

t1

speed

time

speed

time

target
width

target
width

edge

t1 t2

Figure 1: Speed curves for regular pointing (left) and for edge

pointing (right).

In this article, we present two experiments to better understand

edge pointing and help interface designers in their desktop lay-

out choices. The first experiment identifies the relevant factors in-

volved in an edge pointing task and measures their effects on mouse

movements and pointing performance. Results show that some fac-

tors such as cursor shape or movement direction have an impact

on completion time and the use of edges. The second experiment

quantifies the gain of using edges by comparing edge pointing with

regular pointing and crossing [1]. It shows that movement angle

has a strong effect on performance in all three cases and that dif-

ferences between models increase with angle. We then propose a

generalization of the 2D Index of Difficulty of Accot and Zhai [2]

that captures the relation between pointing difficulty and movement

direction to provide better predictions of pointing performance.

2. RELATED WORK
Regular pointing has been extensively studied and providing a full

review of the literature is beyond the scope of this article. Since we

are interested in identifying relevant factors that influence comple-

tion time of an edge pointing task, we give an overview of factors

that have already been tested in regular pointing and the main find-

ings of these studies.

The most common way of studying pointing is to measure move-

ment time (MT) according to Fitts’ Index of Difficulty (ID) on a

one-dimensional pointing task [9]. Fitts’ ID is a function of the ra-

tio of two other factors: the distance to the target (D) and the width

of the target (W):

MT = a+b · ID , where ID = log2

(

D

W
+1

)

This law means that the larger and the closer the target, the shorter

the time required to point at it. Numerous studies have validated

this model, see [14] for a review.

Over the past fifteen years, a number of studies have attempted to

refine this model by taking into account other factors that might

influence pointing performance in a realistic two dimensional en-

vironment. Since many targets are rectangular, a number of mod-

els of 2D pointing have been proposed. For example, MacKenzie

and Buxton compared several models [15] and found that IDW ′ and

IDmin were the most promising, with IDmin providing slightly bet-

ter predictions :

W'Angle
W

H

IDW ′ = log2

(

D

W ′
+1

)

(1)

IDmin = log2

(

D

min(W,H)
+1

)

(2)

Accot and Zhai [2] criticized the similar importance attributed to

target width and height in these models. They proposed a more

complex model, noted IDaz in this article, that assigns a specific

role to each of these two dimensions, and showed that it provides

better predictions. They define target width as the side collinear

to the movement direction, i.e., the amplitude constraint, and tar-

get height as the side orthogonal to the movement direction, i.e.,

the directional constraint. Each of these dimensions makes its own

contribution to the task difficulty. In their study, p = 2, ω = 1 and

η = 1
7.3 were the best values for the three free parameters:

IDaz = log2

(

[

ω

(

D

W

)p

+η

(

D

H

)p] 1
p

+1

)

(3)

Regarding movement direction, the ISO9241-9 standard for evalu-

ating pointing devices [12] recommends to lay out targets in a circu-

lar pattern and to impose a specific order of appearance that forces

participants to perform movements in every direction to obtain re-

sults that are valid whatever the movement direction. However,

some studies have attempted to isolate and measure the effect of

movement angle on completion time. Mackenzie and Buxton [15]

used three different angles (0, 45 and 90 degrees) and found that

moves along the horizontal and vertical axes were about the same

while moves along the diagonal axis took 4% longer. Grossman

and Balakrishnan [10] tested angles 0, 22.5, 45, 67.5 and 90 degrees

and found that users were the fastest in horizontal movements. To

our knowledge, the studies that have tested a wider range of angles

have not given more fine-grained results. For example, Whisenand

and Emurian [20] found that diagonal movements were slower than

straight movements and that horizontal movements were the fastest.

Hancok and Boot [11] and Boritz et al. [7] also tested angles all

around the cursor with both left and right-handed users and found

that movements to the right were the fastest with the right hand for

right-handed users and a symmetric result for left-handed users.

Finally, a few studies have measured the effect of other factors such

as target feedback or cursor shape. Akamatsu et al. [3] compared

five different sensory feedback conditions (no feedback, auditory,

colour, tactile, and a combination of the three). They found that

feedback of any type decreases the final positioning time (between

entering the target an selecting it) but has no significant effect on

overall completion time. Regarding cursor shape, Po et al. [17]

compared a circle cursor and four arrow cursors (upper-left, upper-

right, lower-left and lower-right) and showed that (i) an arrow cur-

sor is more efficient when it is oriented in the direction of move-

ment and that (ii) a circle cursor is the most efficient on average

and its performance is independent of the movement angle.

3. STUDY 1: RELEVANT FACTORS
The goal of Experiment 1 was to measure the effect of variables

involved in an edge pointing task. First, since it is a pointing task,

we tested the effect of two common variables: Index of Difficulty

(ID) and movement angle. Second, we tested the effect of variables

that can help users feel the edges. While interacting with a direct

input device such as a stylus provides a physical feedback of screen

edges, indirect input devices such as a mouse, which are commonly

used with desktop interfaces, do not have this property. Let us see

what happens in today’s standard desktop interfaces.

The standard arrow cursor, which points toward the upper left, leads

to a situation where only one pixel (the tip of the arrow) is (barely)

visible when the cursor is located at the very bottom or right edge

of the screen (Figure 2-c). This could reduce the potential gain of

using edges since users have to perform a visual search to make

sure that they are on the right target (and possibly additional move-

ments to locate the cursor). This probably explains why, in such

situations, additional feedback is added to the target under the cur-

sor. For example, on Windows XP, the task bar icon under the

cursor is slightly highlighted. On the contrary, Macintosh menus,

which are always located at the top of the screen do not provide any

additional feedback (until the mouse is clicked) since the cursor re-

mains completely visible even when moved as far up as possible

(Figure 2-b).

In this experiment, we considered three factors specific to edge

pointing. First, we considered targets on the top (North) and bot-

tom (South) edges. While the task bar and the Mac OS X dock can

a - center b - top c - bottom

Figure 2: Edge and cursor visibility.

be on the left or right edges as well, we omit these cases to simplify

the design and leave them for future work. The important point is

that we have a condition where the arrow cursor almost disappears

(South) and one where it is always visible (North). The second fac-

tor is target feedback: either targets are highlighted when the cursor

is over them, or they are not. The third factor is the cursor type. We

tested the traditional arrow cursor as well as a circle cursor. The

circle cursor is symmetric and its hotspot is at its center. It remains

visible whichever edge it is pushed against (Figure 3). This factor

will help assess whether the observed effects of Angle and Edge

are due to the arrow cursor orientation [17].

hotspot

Figure 3: Circle cursor and Arrow cursor.

3.1 Apparatus
The experiment was run on a 2.66 GHz bi-processor PC running

Linux with a Nvidia Quadro FX 1000 graphics card connected to

a 1680 × 1050 LCD display (99 × 98 dots per inch). We used a

standard optical mouse with the default linear X Window acceler-

ation function. Our program was implemented in Java using the

Touchstone run platform [13] and the SwingStates Toolkit [4].

3.2 Subjects
Twelve unpaid adult volunteers (11 male, 1 female), from 24 to 34

year-old (average 27.92, median 27), all right-handed, served in the

experiment.

3.3 Task and Experiment design
Our experiment was a 2× 2× 2× 4× 7 within-participant design.

The following list summarizes the factors we tested:

• 2 Cursor conditions: arrow and circle,

• 2 Feedback conditions: highlight and none,

• 2 Edge conditions: top edge or bottom edge,

• 4 Width conditions: 20, 50, 100 and 200 pixels,

• 7 Angle conditions: -90, -60, -30, 0, 30, 60 and 90 degrees.

We used different angles and target widths to study edge pointing

in a realistic context of use. -60, -30, 0, 30 and 60 degrees cover

a good range of situations when the user is working at arbitrary

screen locations. We also included -90 and 90 degrees to represent

the frequent situation where a user moves the cursor horizontally

to switch among window icons in a task bar or to explore different

menus in the menu bar. For target widths, 20 pixels is roughly the

size of a notification item while 50, 100 and 200 pixels represents

a range of sizes for icons in the task bar or menus in the Mac OS X

menu bar. To limit the number of trials, we used a fixed distance of

500 pixels and a fixed height of 20 pixels for the target (which is the

typical height for a menu item or an icon in the task bar). Figure 4

illustrates the simple task participants had to perform: first click on

a circular starting point and then click on the target. The next trial

started only when the participant had clicked the target, i.e. every

trial had to end successfully even if it included clicks outside the

target.

30o

-60o

500 px

500 px

100 px

200 px
starting point
target

Figure 4: Two instances of the task used in Experiment 1. Left:

Angle = 30, Width = 100, Edge = bottom. Right: Angle = −60,

Width = 200, Edge = top.

We grouped trials into blocks according to the Cursor×Feedback

condition, each block containing the 56 combinations Edge ×
Width × Angle. To counterbalance the presentation order of

Cursor×Feedback blocks, we used a Latin Square to compute 4

presentation orders per participant, resulting in a design containing

4 trial replications per participant1. Each participant thus executed

16 blocks. Each block was divided into two series, one per Edge

condition. We divided our participants into two groups of six par-

ticipants. Participants in the first group performed these series in

the order top then bottom while participants in the second group

performed them in the order bottom then top. Within a series, par-

ticipants had to perform 28 trials per Width×Angle condition, pre-

sented in a random order (4 × 7 = 28 trials). Thus, the total number

of logged trials in our experiment was: 16 blocks × 2 series × 28

trials × 12 participants = 10752 trials. Before starting the experi-

ment, participants were instructed to point as fast and as accurately

as possible and had to perform a series of trials with a sample of all

the conditions they would face during the experiment.

Our software collected three main measures: completion time,

number of “errors” (clicks outside the target) and click position.

3.4 Predictions
Before running the experiment, we made the following predictions:

H1: circle cursor is more efficient than arrow cursor for Edge =
bottom because of the visibility problem caused by arrow cursor.

H2: Feedback = highlight is more efficient than Feedback = none

especially in condition Cursor = arrow × Edge = bottom. Feed-

back should help users quickly perceive that they are in the target,

making them more confident and avoiding a costly visual search

for cursor location.

H3: As in regular pointing, the larger the target, the shorter the com-

pletion time. Since we use a single target height and hypothesize

1Note that we do not use the same Latin Square for each participant
so as to ensure that within a group of 6 participants, the 4! = 24
possible orders are presented.

that participants will use edges to stop their movement, completion

time should be a linear function of IDe = log2(1+
D

Width). Contrary

to Accot and Zhai [2] who defined width and height according to

movement angle, we consider that target width is always the length

of the target side collinear to the screen edge2.

3.5 Results
We collected a total of 10752 trials. 690 of them included clicks

outside the target (error rate = 6.41%). We did not remove these tri-

als for our analyses since participants had to end each task success-

fully (errors are thus included in task completion time as a penalty).

There was a significant learning effect: Block number has a signifi-

cant effect on completion time (F31,341 = 2.4, p < 0.001) and com-

pletion time decreases according to Block number. This should not

affect the validity of our analyses since our counterbalancing strat-

egy ensured that each condition appeared in every position across

participants. This is supported by an analysis of variance that did

not reveal an effect of presentation order on completion time: the

interaction effect Block number ×Cursor × Feedback on comple-

tion time is not significant.

IDe

Me
an

 T
im

e (
m

s)

1.81 2.58 3.46 4.70

40
0

50
0

60
0

70
0

80
0

●

●

●

●

● bottom x circle
bottom x arrow
top x circle
top x arrow

Figure 5: Mean time as a function of IDe by Edge × Cursor

Analysis of variance did not reveal a significant effect of Cursor

on task completion time but revealed a strong interaction effect

of Edge × Cursor on task completion time (F1,11 = 65.2, p <
0.0001). Tukey post hoc tests showed that bottom×circle is signif-

icantly faster than bottom×arrow (a difference in mean of 40±6

ms representing a speed up of 6.5%) and that top× arrow is sig-

nificantly faster than top× circle (a difference in mean of 19± 6

ms representing a speed up of 3.4%). We found no significant

difference between bottom × circle and top × circle. These re-

sults support hypothesis H1. H3 is also supported since we ob-

served a significant simple effect of IDe on task completion time

(F3,33 = 262.8, p < 0.0001). Figure 5 illustrates these results.

Hypothesis H2 however is rejected since there was no significant

effect of Feedback on task completion time (nor any significant in-

2Actually, using Accot and Zhai’s definitions of width and height
would have been confusing since we would have had to swap these
two variables according to the value of the Angle factor. Indeed,
Accot and Zhai use two movement angles (vertical and horizon-
tal) and define target height as the directional constraint and target
width as the amplitude constraint. In our case, the range of angles
is much larger so one target dimension cannot be mapped directly
to one of these constraints, as illustrated by Figure 12.

teraction effect of Feedback with any other factor on completion

time). Analyses of the number of errors revealed that Feedback

has a significant effect on number of errors (F1,11 = 20.1, p =
0.0009) with participants making significantly more errors in the

Feedback=highlight condition (6.5%) than in the Feedback=none

condition (5.1%). It seems that providing feedback by highlight-

ing the object under the cursor is more disturbing than helpful in

our experimental task. This is consistent with Akamatsu et al. [3]

who observed no significant effect of feedback on completion time.

We also observed a significant effect of IDe on number of errors

(F3,33 = 12.8, p < 0.0001). This is not surprising since clicking

in a small target requires more precision than clicking in a large

one. A linear regression of completion time as a function of IDe,

MT = 208+ 114.IDe, shows a high correlation with an adjusted

r2 = 0.992 (we consider here 4 mean completion times per IDe).

-90 -60 -30 0 30 60 90
circle

-90 -60 -30 0 30 60 90
arrow

-90 -60 -30 0 30 60 90
circle

-90 -60 -30 0 30 60 90
arrow

0

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

Angle within Cursor Angle within Cursor
Me

an(
T)

Me
an(

Ed
geC

lick
ed)

Figure 6: Mean time (left) and mean number of clicks along the

edge (right) by Angle × Cursor

Our analyses showed that movement direction is an important fac-

tor for edge pointing. First, participants were faster at pointing up-

ward than downward since we observed a significant effect of Edge

on task completion time (F1,11 = 45.8, p < 0.0001). Second, per-

formance varies according to the movement angle: Angle has a sig-

nificant effect on task completion time for both edges (F6,66 = 11.8,

p < 0.0001 for Edge = bottom and F6,66 = 4.1, p < 0.0014 for

Edge = top). This is probably because it is easier to use edges to

stop when the movement is orthogonal to the edge, i.e. when Angle

is close to 0. Comparing the mean completion time and the mean

number of times users stopped on an edge according to the angle of

movement supports this interpretation (Figure 6): participants stop

more often on an edge for angles close to 0. Note that these results

differ from those on regular pointing, in which users are faster in

horizontal movements than in vertical ones [10, 15, 20].

We also observed an Angle ×Cursor interaction effect on com-

pletion time (F6,66 = 6.2, p < 0.0001 for Edge = bottom and

F6,66 = 2.7, p = 0.0202 for Edge = top). This interaction effect

seems stronger for Edge = bottom probably because this edge suf-

fers from the cursor visibility problem. Finally, there was a sig-

nificant Angle × IDe interaction effect (F18,198 = 3.7, p < 0.0001

for Edge = bottom and F18,198 = 4.1, p < 0.0001 for Edge = top).

The comparison of mean completion times across Angle×IDe con-

ditions revealed that performance is less sensitive to angle for easy

pointing tasks, i.e., low IDs, than for difficult ones.

This first experiment revealed that edge pointing exhibits some dif-

ferences with previous results on regular pointing, especially re-

garding the effect of movement angle. This is a motivation to fur-

ther study edge pointing in order to better understand its underlying

model and compare it with other models for target selection.

4. STUDY 2: PERFORMANCE GAIN
The goal of Experiment 2 is to identify a model for edge point-

ing. Our approach consists in comparing edge pointing with well-

known models such as regular pointing or crossing, as well as a

model that has not been studied yet, i.e., pointing a Semi-Infinite

target, and that we hypothesize to be close to edge pointing.

4.1 Candidates for a model
Regular Pointing. In this model, based on Fitts’ law, the user has

to stop within the bounds of a finite target and click to select it.

Edge pointing follows this model if users do not use edges to stop

their movement.

Crossing+Click. Crossing was introduced by Accot and Zhai [1]:

A target is a segment, and selection consists in overshooting the

target with the pen down. Accot and Zhai showed that crossing a

segment whose width is W can be more efficient than pointing a

target of width W . Crossing follows Fitts’ law but has lower em-

pirical coefficients (a and b) when the segment is orthogonal to the

movement direction. Crossing and edge pointing share the follow-

ing property: the user does not have to perform the last part of the

movement which consists in precisely stopping within the target.

While crossing seems a good candidate to model edge pointing,

crossing does not require a click to select the target (the selection

is completed as soon as the user has crossed the segment). There-

fore, we compare a variant of crossing that we call Crossing+Click

which consists in first crossing the target and then clicking to ac-

tually select it. A pilot experiment revealed that it was hard for

participants to know which target side they had to cross and to be

sure that they had actually crossed it when the target was on the

edge. Thus, in this experiment, we used a black line to indicate

which side to cross (Figure 7-a) and the target was highlighted as

soon as it had been crossed.

selected target
(xA, yA)

(xB, yB)

selected target
(xA, yA)

(xB, yB)

selected target

screen edge

(xA, yA)

(xB, ymax)

(a) (b) (c)

Figure 7: Selection by crossing (a), by pointing a semi-infinite

target (b) and by edge pointing (c).

Semi-Infinite Pointing. A close look at current implementations of

edge pointing in standard desktop environments shows that mouse

movements along the x-axis are still taken into account once the top

or bottom of the display is reached. We therefore introduce semi-

infinite pointing. Figure 7 illustrates the difference with crossing.

If a target is selected by crossing, only the position on the x-axis at

crossing time is taken into account. This means that if the cursor

has a diagonal trajectory and its speed would make it stop further

along the edge, the part of the movement beyond the edge is ig-

nored. On the contrary, if a target is selected by edge pointing, it is

the x-position of the cursor when the click occurs that is taken into

account to determine which target is selected. Therefore, in an edge

pointing task, targets can be seen as semi-infinite, i.e., they are not

bounded along the orthogonal direction of the edge. As mentioned

earlier, pointing at targets with various W/H ratios has already been

studied but only on a limited set of angles (0, 45 and 90 degrees in

[15] and 90 degrees in [2]). Each study yielded a formula (IDmin

and IDaz) that does not include the angle of movement.

We hypothesize that edge pointing is close to pointing a semi-

infinite target, i.e., pointing a target with a W/H ratio close to zero,

and that both models (IDmin and IDaz) do not capture this configu-

ration properly since Experiment 1 has revealed a significant effect

of angle of movement on movement time in edge pointing.

4.2 Task and Experiment design
We used the same hardware and software as in Experiment 1.

Eight participants, all having already completed Experiment 1, also

served in Experiment 2. The task also consisted in selecting a target

but under different model conditions (Figure 8).

-60o
600 px

140 px

starting point
target

-60o
600 px

-60o
600 px

-60o
600 px

140 px

140 px140 px

Figure 8: The 4 Model conditions for a given Edge × Width ×
Distance × Angle condition. Clockwise from upper-left: Semi-

Infinite, Edging, Pointing Crossing+Click.

To limit the length of the experiment and focus on the study of

the underlying model, we did not include Feedback and Cursor

as factors in this experiment. Participants had to perform target

acquisition tasks with a circle cursor and no feedback. This allowed

us to study a wider range of ID. Our experiment was a 4×2×3×
2×7 within-participant design with the following factors:

• 4 Model: Pointing, Crossing, Semi-Infinite and Edging,

• 2 Edge: top edge or bottom edge,

• 3 Width: 35, 70 and 140 pixels,

• 2 Distance: 300 and 600 pixels,

• 7 Angle: -90, -60, -30, 0, 30, 60 and 90 degrees.

The trials were grouped into 12 blocks, 4 Model conditions re-

peated 3 times. Each Model block was divided into two sub-blocks,

one per Edge condition and each of these sub-blocks contained 3

Width × 2 Distance × 7 Angle = 42 trials. The target height was

320 pixels in the Semi-Infinite condition while it was 20 pixels in all

other conditions. To counterbalance the presentation order of con-

ditions, we created 4 groups of 2 participants and computed 12 pre-

sentation orders for the Model condition using three Latin Squares.

We concatenated 3 orders to compose a sequence of 12 blocks so

we obtained 4 sequences, one per group of two participants. Within

a group, one participant saw this sequence with sub-blocks in the

order Edge = bottom then Edge = top while the other participant

saw this sequence with sub-blocks in the order Edge = top then

Edge = bottom. Finally, the 42 trials of a Model block were pre-

sented in a random order. To summarize, the total number of logged

trials in our experiment was: 12 blocks × 2 sub-blocks × 42 trials

× 8 participants = 8064 trials. As in Experiment 1, participants

were instructed to acquire the target as fast and as accurately as

possible and had to perform a series of trials with a sample of all

the conditions before starting the experiment.

4.3 Results
Before analyzing the results, we first checked that participants did

not use the physical edge of the screen in the Semi-Infinite condition

in order to avoid a confound with the Edging condition. The cursor

reached the edge in only 0.34% of the trials and 99% of mouse

clicks occurred within the first 250 pixels of the 320-pixels target.

Learning effect and error rate (6.05%) were similar to the ones ob-

served in Experiment 1. Here again, our design counterbalanced

learning effects since we did not observe a significant interaction

effect of Block number × Model on completion time.

M
e
a
n
 T

im
e
 (

m
s
)

1.65 2.40 3.26 4.18

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0 Crossing+Click

Edging

Pointing

Semi−Infinite

IDe

Figure 9: Mean time as a function of IDe by Model (error bars

are shown to the left of each symbol).

Analysis of variance revealed a significant effect of Model (F3,21 =
141.3, p < 0.0001) and IDe (F3,21 = 440.3, p < 0.0001) on task

completion time. We also observed a significant Model × IDe

interaction effect on task completion time (F9,63 = 28.7, p <

0.0001)3. Figure 9 illustrates these results: performance com-

parison among conditions depends on IDe. First, Tukey post hoc

tests showed that Crossing+Click is significantly faster than Point-

ing for easy tasks (i.e. IDe = 1.65) and significantly slower than

Pointing for difficult tasks (i.e. IDe = 4.18). This result is con-

sistent with Accot and Zhai [1]. Second, the difference between

Pointing and Edging is larger for easy tasks than for difficult ones:

Tukey post hoc tests showed that Edging is significantly faster

than Pointing for all IDe values, but the difference between mean

completion times is 36.8% for IDe = 1.65 while it is only 6.8%

for IDe = 4.18. Focusing our analyses on the Edging and Semi-

Infinite conditions, we still observe a significant effect of Model

(F1,7 = 19.4, p = 0.0031) and IDe, but no Model × IDe interaction

effect (F3,21 = 2.6, p = 0.0803) on completion time4. Tukey post

hoc tests showed that Semi-Infinite is significantly faster than Edg-

ing with a difference in mean of 26± 6 ms, this difference being

almost similar across IDe.

In summary, Edging and Semi-Infinite seem to follow a similar un-

derlying model for IDe and only differ by a small constant. Point-

ing and Crossing seem to follow different models.

Contrary to Experiment 1, we found no significant effect of Edge

3A finer analysis considering Width and Distance separately
showed that this interaction effect was mainly an effect of Width.
4And no significant Model × Width and Model × Distance inter-
action effects when we consider Width and Distance separately.

on completion time (F1,7 = 2.9, p = 0.1339), and no significant in-

teraction effect of Edge with any other factor on completion time.

This difference between the two experiments is probably due to the

use of a single symmetric circle cursor. This allows us to simplify

our analyses by considering Angle without distinguishing the Edge

conditions. We found a significant effect of Angle (F6,42 = 13.1,

p < 0.0001) and a significant IDe × Angle interaction effect on

completion time. Here again, we observe that movement time de-

pends on movement direction (Angle) especially for easy selection

tasks whatever the Model condition (Model × IDe × Angle inter-

action effect was not significant).

M
e
a
n
 T

im
e
 (

m
s
)

−90 −60 −30 0 30 60 90

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

Crossing+Click Edging Pointing Semi−Infinite

Angle

Figure 10: Mean time as a function of Angle by Model (error

bars are shown to the left of each symbol).

Figure 11: Mean cursor off-screen y-coordinate at target selec-

tion time according to Angle (Model = Edging).

Analysis of variance also revealed a significant Model × Angle

interaction effect (F18,26 = 19.7, p < 0.0001) on completion time

as illustrated in Figure 10. First, Pointing is faster for horizon-

tal movements than for vertical movements, while Crossing+Click

is faster for vertical movements than for horizontal movements.

These results are consistent with the ones reported in previous

work: [10, 20] showed that pointing is faster for horizontal move-

ments than the two other angles they tested and [1] showed that

crossing an orthogonal goal is faster than crossing a collinear goal

in a continuous movement. Second, differences between Pointing

and both Edging and Semi-Infinite are higher for vertical move-

ments (i.e. Angle close to zero). For instance, Tukey post hoc

tests showed that Edging is significantly faster than Pointing for

Angle = 0 (a speedup of 34.0%) while there is no significant dif-

ference for Angle = ±90. This is probably due to the “virtual”

target height in the Edging condition that offers a lower amplitude

constraint for angles close to 0 than for angles close to 90 or -90.

The histogram in Figure 11 supports this interpretation: it plots

the “virtual” y-coordinate5 of the cursor at target selection time

according to Angle in the Edging condition and shows that partic-

ipants stopped their movement further away for angles close to 0

(i.e. vertical movements).

In summary, Edging and Semi-Infinite seem to follow a similar un-

derlying model for Angle while Pointing seems to follow a different

one. This result also supports our hypothesis regarding the similar-

ity between the underlying models of Edging and Semi-Infinite.

5. DISCUSSION
The first important finding of this study is that users do take advan-

tage of edges to facilitate target acquisition. Our analyses reveal

that acquiring a target on an edge is similar to acquiring a target

with a very large height: completion times for both tasks follow a

similar function in terms of IDe (Figure 9) and Angle (Figure 10).

The second important finding is that pointing at a target on an edge

is quite different from pointing at the same target in the middle

of the screen. First, the relationship between movement time and

IDe is different for the two conditions: while in both cases it is

an increasing function of IDe, differences between regular pointing

and edge pointing are much larger for low IDe values than for high

ones (Figure 9). Second, the relationship between movement time

and movement direction is different: for edge pointing, movement

time seems to be a linear increasing function of the absolute value

of Angle while for edge pointing, it seems to be a linear decreasing

function of the absolute value of Angle. This results in performance

differences between regular pointing and edge pointing between

+33±49 ms (i.e. 4.4% of movement time) and −278±20 ms (i.e.

44.6% of movement time).

As far as we know, the only model that takes movement direction

into account is IDW ′ (eq. 1), which was introduced with IDmin (eq.

2) by Mackenzie and Buxton [15]. In their study, IDW ′ was shown

to be less accurate than IDmin. Accot and Zhai raised issues with

both models and introduced IDaz (eq. 3). The table below reports

the linear regressions of completion times as a function of ID using

each of these models (we consider the 42 mean completion times

per condition Angle × Distance × Width for a given Model6):

Model MT = a+b.IDW ′ MT = a+b.IDmin MT = a+b.IDaz

a b r2 a b r2 a b r2

Edging 205 127 0.80 80 144 0.90 -37 166 0.92

Semi-Inf. 178 129 0.80 59 143 0.87 -59 166 0.90

Pointing 233 106 0.73 -215 188 0.71 -253 181 0.76

Since IDaz contains three free parameters, we tested different com-

binations for ω ∈ [0,10]× η ∈ [0,10]× p ∈ {0,1,2} with a step

of 0.1 for ω and η . Since the simple values ω = η = p = 1, cor-

responding to ID = log2(
D
W + D

H + 1), did not provide noticeably

worse correlation coefficients, we use these values in the table.

Once again, these results support the hypothesis that Edging and

Semi-Infinite follow the same underlying model but differ from tra-

ditional Pointing. The correlation coefficients however are not as

good as for regular pointing, calling for a more detailed analysis.

5Even though the cursor is graphically blocked on the edge, we
recorded input events directly from the mouse to compute the “vir-
tual” off-screen location at target selection time.
6For Edging and Semi-Infinite, we approximate “infinite” height to
250 pixels, i.e. the height of the area that contains 99% of mouse
clicks in the Semi-Infinite condition (see Section 4.3).

Angle = 0 Angle =−45 Angle =−90

directional
constraint

amplitude
constraint

amplitude
constraint

amplitude
constraint

directional
constraint

directional
constraint

amplitude
constraint

amplitude
constraint

amplitude
constraint

directional
constraint

Figure 12: Amplitude and directional constraints for regular

pointing (top) and edge pointing (bottom) according to move-

ment direction.

Let us come back to the notions of amplitude and directional con-

straints defined by Accot and Zhai [2]. The Amplitude constraint is

the interval within which the user must stop along the movement di-

rection while the Directional constraint is the interval within which

the user must stop along the direction orthogonal to the movement.

In their study, Accot and Zhai only evaluated non-diagonal move-

ments, so these constraints were simple functions of target width

and target height. Figure 12 suggests that taking movement direc-

tion into account should help describe the task more accurately. We

propose to introduce movement direction in the IDaz model based

on two ideas mentioned by Accot and Zhai [2]: (i) satisfying an

amplitude constraint takes more time than satisfying a directional

constraint and (ii) the shortest side must dominate the ID.

To this end, we add a term that emphasizes the contribution of the

shortest side to the ID, and we make this term a function of |Angle|.
Figures 10 and 12 show that the larger the difference between the

orientation of the shortest side and movement direction, the smaller

the amplitude constraint. In the Edging and Semi-Infinite condi-

tions (where W is the shortest side), this difference is an increasing

function of |Angle| while in the Pointing condition (where H is the

shortest side), this difference is a decreasing function of |Angle|.
We therefore propose the following model where the |Angle| term

captures the relationship between orientation of the shortest side

and movement direction:

IDAngle = log2

(

D
W + D

H + f (|Angle|). D
min(W,H)

+1
)

f (|Angle|) = 0.6× sin(|Angle|) for Edging and Semi-Infinite

f (|Angle|) = 0.6× cos(|Angle|) for Pointing

The table below and Figure 13 show that IDAngle provides much

better predictions than the other models studied above:

Model MT = a+b.IDAngle

a b r2

Edging -57 156 0.97
Semi-Inf. -82 156 0.96
Pointing -335 191 0.96

To select the functions f (|Angle|), we balanced a trade-off between

simplicity and prediction accuracy after systematically considering

the following functions: {x× |Angle|, x× sin(|Angle|)} for Edg-

ing and Semi-Infinite and {x× (π

2 −|Angle|), x× cos(|Angle|)} for

Pointing, with x ∈ [0,10] with a precision of 0.05.

2.5 3.0 3.5 4.0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

IDaz

T
im

e
 (

m
s
)

: −90
: −60
: −30
: 0
: 30
: 60
: 90

2.5 3.0 3.5 4.0 4.5 5.0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

IDangle

T
im

e
 (

m
s
)

: −90
: −60
: −30
: 0
: 30
: 60
: 90

Figure 13: Movement time as a linear function of IDaz (left) or

as a linear function of IDAngle (right) for Edging.

6. CONCLUSION AND FUTURE WORK
We have presented an empirical study to better understand pointing

at targets on screen edges. We have also proposed an analysis of the

differences between regular pointing and edge pointing and shown

that the angle of movement affects the amplitude constraint for a

rectangular target. In order to account for these differences with

Fitts’ law, we have extended Accot and Zhai’s definition of index

of difficulty (ID) for bivariate pointing. While our model provides

better predictions in the study presented here, its validity must be

further tested by considering larger sets of target heights and edge

orientations, i.e., left and right as well as top and bottom.

Having assessed the effect of various factors on edge pointing per-

formance and compared different pointing models, we can draw

the following recommendations to improve current desktop envi-

ronments. First, the cursor should always be visible even when

located on a screen edge. We have shown that a circular cursor

shape does improve performance but that target highlighting does

not. Other alternatives worth exploring in future work include dis-

playing a small halo around the cursor when it is on the edge [6]

or having virtual edges within a few pixels of the physical edges so

that the cursor does not move to the physical edge and stays visi-

ble. Second, we encourage the use of edges for placing a widget

if this does not significantly affect its average distance to the cur-

sor in a typical context of use. The edge creates a “semi-infinite”

target that can be acquired up to 44% faster than a regular target

at the same distance in the central screen area. Third, we found

that movements orthogonal to a given edge, i.e., with a zero angle,

afford better performance. Designers should therefore lay out fre-

quently used “edge widgets” close to the center of the edge. Note,

however, that we have not tested the special case of corners, which

are probably even faster to acquire than edge widgets.

Another research direction for this work is to explore whether “vir-

tual” edges, such as the borders of a window, that would block the

cursor under certain conditions, could also improve selection time

in specific situations. Obviously, it is important to clearly identify

when and how to activate and deactivate such virtual edges so that

the user can easily access the rest of the screen. One idea would be

to activate the virtual edges while transient graphical components,

e.g., a pop up menu, are displayed.

7. ACKNOWLEDGEMENTS
We wish to thank Emmanuel Pietriga, our experiment participants

and the anonymous reviewers for their feedback. Caroline Appert

was supported by a grant from the French Lavoisier program.

8. REFERENCES

[1] J. Accot and S. Zhai. More than dotting the i’s — foundations

for crossing-based interfaces. In Proc. CHI ’02, pages 73–80.

ACM, 2002.

[2] J. Accot and S. Zhai. Refining Fitts’ law models for bivariate

pointing. In Proc. CHI ’03, pages 193–200. ACM, 2003.

[3] M. Akamatsu, I. S. Mackenzie, and T. Hasbroucq. A com-

parison of tactile, auditory, and visual feedback in a pointing

task using a mouse-type device. Ergonomics, 38(4):816–827,

1995.

[4] C. Appert and M. Beaudouin-Lafon. Swingstates: Adding

state machines to the swing toolkit. In Proc. UIST ’06, pages

319–322. ACM, 2006.

[5] AskTog. A quiz designed to give you Fitts, 1999.

http://www.asktog.com/columns/022DesignedToGiveFitts.html.

[6] P. Baudisch and R. Rosenholtz. Halo: a technique for visu-

alizing off-screen objects. In Proc. CHI ’03, pages 481–488.

ACM, 2003.

[7] J. Boritz, K. S. Booth, and W. B. Cowan. Fitts’s Law Studies

of Directional Mouse Movement. In Proc. GI ’91, pages 216–

223. Canadian Hum.-Comp. Comm. Soc., 1991.

[8] S. K. Card, W. K. English, and B. J. Burr. Evaluation of

mouse, rate-controlled isometric joystick, step keys, and text

keys, for text selection on a crt. Human-computer interaction:

a multidisciplinary approach, pages 386–392, 1987.

[9] P. M. Fitts. The information capacity of the human motor

system in controlling the amplitude of movement. J. Exper.

Psych., 47:381–391, 1954.

[10] T. Grossman and R. Balakrishnan. A probabilistic approach

to modeling two-dimensional pointing. ACM Trans. Comput.-

Hum. Interact., 12(3):435–459, 2005.

[11] M. S. Hancock and K. S. Booth. Improving menu placement

strategies for pen input. In Proc. GI ’04, pages 221–230.

Canadian Hum.-Comp. Comm. Soc., 2004.

[12] ISO. 9241-9 Ergonomic requirements for office work with vi-

sual display terminals (VDTs)-Part 9: Requirements for non-

keyboard input devices. Inter. Org. for Standard., 2000.

[13] W. E. Mackay, C. Appert, M. Beaudouin-Lafon, O. Chapuis,

Y. Du, J.-D. Fekete, and Y. Guiard. Touchstone: exploratory

design of experiments. In Proc. CHI ’07, pages 1425–1434.

ACM, 2007.

[14] I. S. MacKenzie. Fitts’ law as a research and design tool in

human-computer interaction. Hum.-Comput. Interact., 7:91–

139, 1992.

[15] I. S. MacKenzie and W. Buxton. Extending Fitts’ law to two-

dimensional tasks. In Proc. CHI ’92, 219–226. ACM, 1992.

[16] I. S. MacKenzie, A. Sellen, and W. Buxton. A comparison of

input devices in element pointing and dragging tasks. In Proc.

CHI ’91, pages 161–166. ACM, 1991.

[17] B. A. Po, B. D. Fisher, and K. S. Booth. Comparing cursor

orientations for mouse, pointer, and pen interaction. In Proc.

CHI ’05, pages 291–300. ACM, 2005.

[18] J. Raskin. The Humane Interface: New Directions for Design-

ing Interactive Systems. Addison-Wesley, 2000.

[19] N. Smyrnis, I. Evdokimidis, T. Constantinidis, and G. Kastri-

nakis. Speed-accuracy trade-off in the performance of point-

ing movements in different directions in two-dimensional

space. Experimental Brain Research, 134(1):21–31, 2000.

[20] T. G. Whisenand and H. H. Emurian. Some effects of angle of

approach on icon selection. In Proc. CHI ’95, pages 298–299.

ACM, 1995.

	Introduction
	Related Work
	Study 1: Relevant Factors
	Apparatus
	Subjects
	Task and Experiment design
	Predictions
	Results

	Study 2: performance gain
	Candidates for a model
	Task and Experiment design
	Results

	Discussion
	Conclusion and Future Work
	Acknowledgements
	References

