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Compiling data-parallel programs to a distributed runtime
environment with thread isomigration

Gabriel Antoniu Luc Bougé Raymond Namyst Christian Perez

Abstract

Traditionally, the compilation of data-parallel languages
is targeted to low-level runtime environments: abstract pro-
cessors are mapped onto static system processes, which
directly address the low-level IPC library. Alternatively,
we propose to map each HPF abstract processor onto a
“lightweight process” (thread) which can be freely mi-
grated between nodes together with the data it manages,
under the supervision of some external scheduler. We dis-
cuss the pros and cons of such an approach and the facilities
which must be provided by the multithreaded runtime. We
describe a prototype HPF compiler built along these lines,
based on the Adaptor HPF compiler and the PM2 multi-
threaded runtime environment.

Keywords: Parallel languages, load balancing, cluster
of SMP, distributed multithreaded runtime, thread migra-
tion, HPF, Adaptor, MPI
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at the 1999 Intl Conf. on Parallel and Distributed Process-
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1 Introduction

Data-parallel languages are now recognized as major
tools for high performance computing. Considerable effort
has been put in designing sophisticated methods to compile
them efficiently onto a variety of architectures, including
MIMD clusters of commodity processors interconnected by
very high-speed networks. As of today, this effort has been
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mainly concerned with the compilation of the High Perfor-
mance Fortran (HPF) language [10, 9].

HPF specifies the allocation of data slices to processors
through a 3-level scheme. In HPF, the parallel data are mul-
tidimensional arrays. First, arrays are mutually ALIGNed,
possibly with respect to optional abstract reference arrays
called TEMPLATEs. Mutually ALIGNed array elements are
guaranteed to be eventually stored into the same physical
memory. This step is entirely handled at compile-time, and
is of little interest here. Second, arrays are DISTRIBUTEd
onto the virtual topology of processors as defined by the
PROCESSORS directive. These processors are called ab-
stract processors in the HPF terminology. Several distri-
bution strategy can be used: BLOCK, CYCLIC, etc. Third,
abstract processors are mapped onto the real topology of the
physical processors of the architecture. Throughout the pa-
per, we refer to the physical processors as nodes. In most
HPF compilers, both topologies have the same number of
processors. They may only differ in their geometry, so that
this last level is mostly trivial. Moreover, the HPF doc-
ument itself (see [10, p. 125]) does not specify precisely
what should be done if it is not the case, that is, if the
PROCESSORS directive is not trivial. It is said to be “im-
plementation dependent”.

Most HPF compilers generate an SPMD code based on
this assumption. Each abstract processor defined by the
PROCESSORS directive is emulated (“virtualized”) by a
separate process placed on a separate node. We will call
them system processes. The process stores the data slice it
is in charge of managing, and it is responsible for fetching
the remote data which are involved in updating this slice.
This is done by exchanging point-to-point messages with
the other processes through some standard message-passing
communication library (MPI in the case of Adaptor). There
is thus a perfect overlapping between three distinct notions:

1. the HPF abstract processor as defined by the
PROCESSORS directive;

2. the system process which implements its behavior;

3. the physical node which runs this process.
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Figure 1. The HPF data placement model.
Note that the last level is only partly speci-
fied by the current language specification.

However, this approach has a number of drawbacks.
First, the mapping of abstract processors onto system pro-
cesses is determined at compile-time. At run-time, each
system process calls some appropriate function of the
underlying communication library (such as MPI_Comm_
rank in MPI), and the result is used to determine the slice
of data it is in charge of.

Second, the program cannot adapt to dynamic variations
in the resources available at each computing node. These
resources may consist of computation cycles, but also of
cache/memory space or connectivity with other nodes. The
only way to take such variation into account is to provide
some way of REDISTRIBUTEing the data among the ab-
stract PROCESSORS within the algorithm, which is obvi-
ously rather inconvenient!

Finally, the program cannot easily cope with heteroge-
neous configurations. Sophisticated distribution directives
have to be computed for each specific set of resources, and
this task is entirely left to the programmer.

In a previous paper [4], we have proposed to combine
language-level static distribution directives together with
runtime-level dynamic load balancing methods. The idea

is to transparently migrate HPF abstract processors at run-
time among the computing nodes. For this purpose, abstract
processors are mapped onto threads within a suitable multi-
threaded runtime environment which provides transparent,
preemptive thread migration. An external load balancing
strategy is then used to monitor the threads and decide upon
their migration.

In this paper, we discusses the various trade-off involved
in this new approach, the technical problems raised by its
implementation and the performance improvements which
may be expected from it. As a motivating illustration, we
report on the performance obtained for a flame simulation
code cited as a motivating application in the HPF 2 pro-
posal [8]. The program performs a detailed time-dependent,
multi-dimensional simulation of hydrocarbon flames in two
phases. Considerable improvements compared to the orig-
inal BLOCK or CYCLIC distributions have been observed.
More details are given in Section 3.3. An extensive presen-
tation of the experimental results can be found in the PhD
Thesis of Christian Perez [13].

2 A multithreaded runtime with thread mi-
gration for HPF

We take advantage of the lack of specification for the
lowest level of the HPF model to decouple the three notions
mentioned above. The goal is to enable abstract processors
to dynamically react to the variation of their resources and
balance their load.

A first idea is to implement abstract processors as data
structures which contain all necessary information about the
data slices to be managed. A number of computing nodes
are then in charge of “interpreting” these structures and
carry out the real computation. The advantage is that these
data structures can be migrated between the nodes with any
simple master/slave strategy: a central master dispatches the
abstract processors among the computing nodes as soon as
they are ready to handle them. This approach is quite flex-
ible, and it could be considered in certain cases. But the
common experience is that interpretation cannot compete
for high performance in general.

An alternative idea is to migrate the system processes.
The operating system may provide some runtime facility
to do it in a fully transparent way, as in Mosix [3] for in-
stance. Or one can use some modified version of traditional
communication library such as MPVM [6]. Again, this ap-
proach is quite flexible, but migrating a complete system
process between nodes is rather complex with respect to our
problem, and no currently available implementation can do
it efficiently enough with respect to our needs.

An intermediate possibility is to map abstract processes
onto special, lightweight processes, also known as threads,
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instead of heavy, regular ones. A number of multithreaded,
distributed programming environment offer a migration fa-
cility: Millipede [7], PM2 [12], etc. Abstract processors are
compiled into computation threads, instead of being inter-
preted: this makes an efficient execution possible. Abstract
processors can be migrated efficiently, as only computation
threads are moved instead of full system processes. Note
that this use of threads is rather non standard, as we do not
use their distinguished semantic feature, which is to share
memory. HPF abstract processors do not share any data
in the original HPF model, and all data exchanges have to
be explicitly specified by the compiler through the under-
lying communication library. This is the reason why we
have used the term lightweight processes instead of threads
above. Such a design decision raises a number of chal-
lenges.

Transforming processes into threads The original HPF
compiler is designed to map abstract processors onto sys-
tem processes. Each system process is equipped with its
own, private memory space and global variables are used.
In contrast, threads share a common memory space: local
variable are guaranteed not to collide (at least within some
reasonable limits), but global variables are shared. A pre-
liminary work is therefore to modify the compiler to priva-
tize all global variables in the generated SPMD code, and to
make the main function an ordinary function to be called
by an external harness.

Adapting the communication library The SPMD code
generated by the original compiler is usually based on some
traditional communication library such as MPI. For the sake
of portability, the code only uses a restricted number of
communication functions: initializing and finalizing the
session, sending and receiving a message, possibly a few
collective operations such as broadcasting, reducing, and
synchronizing. Such libraries are designed to interconnect
system processes, not threads. To make them use threads
instead, they have to be thread-safe, that is, allow several
calls to proceed concurrently within the library. Also, spe-
cific wrappers have to be designed so that the messages are
correctly sent and received by individual threads within the
system processes, even in the presence of preemptive mi-
gration. This is expected to be the most difficult point.

Migrating data along with threads In the SPMD
code generated by the compiler, each abstract processor
ALLOCATEs its personal slice of data within its own mem-
ory. As migration should be transparent as far as the gener-
ated code is concerned, the data should remain accessible to
the abstract processor upon a migration. A possibility is to
rely on some form of Distributed Shared Memory software

layer to provide system-wide accessibility, but does not pro-
vide enough performance in general. An alternative idea is
to systematically migrate the abstract processors along with
their data. One can keep track of the allocated data by wrap-
ping the allocation function adequately. Then, the hook
functions provided by the migration facility can be used
to pack the allocated data together with the thread on the
source node, and to unpack them on the destination node,
adjusting all pointers on the fly. However, this is not suf-
ficient, as the abstract processors continuously operate on
their data, possibly ALLOCATEing and DEALLOCATEing
them. A better choice is to rely on some system-aware al-
location facility, which guarantees that all returned virtual
addresses valid upon migration. We have developed such a
software library for the PM2 distributed multithreaded sys-
tem, called isomalloc [2], to be described below.

Managing scalar computation The original compiler
generates a SPMD code to be replicated on each system
process. For efficiency reasons, the scalar part of the data-
parallel computation is replicated by each abstract proces-
sor. If abstract processors are mapped onto threads instead
of system processes, this may be questioned: all threads lo-
cated within the same system process could share the (com-
mon) result. However, implementing such a scheme nec-
essarily involves some sort of additional synchronization
mechanism, which has to be inserted into the generated
code. Unless the code generator is heavily optimized, the
number of such local synchronizations may be very high,
and the grain of the scalar computations may be too small
compared to the synchronization cost.

3 An implementation within the Adaptor
HPF compiler

3.1 The PM2 multithreaded programming envi-
ronment

General presentation PM2 [12] is a distributed multi-
threaded runtime system for irregular parallel applications.
The main objective of PM2 is to provide a carefully chosen
set of basic features on top of which many dynamic load
balancing policies are easy to implement. Since PM2 appli-
cations may generate a large number of threads with unpre-
dictable lifetimes, the PM2 programming model is based on
the concept ofmobile threads. Threads can be preemptively
migrated from one node (say, a Unix process) to another
without any explicit state backup nor global synchroniza-
tion.

The PM2 threads interact through the Lightweight Re-
mote Procedure Call (LRPC) mechanism, which can be
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efficiently made “migration tolerant”. The current imple-
mentation of PM2 is based on two software components:
a POSIX-compliant thread package (Marcel) and a generic
communication interface (Madeleine).

Marcel Compared to a classical Pthread library, the Marcel
package introduces some original features which are
needed by PM2 to implement features such as thread
migration or reduced preemption. Its implementation
is currently available on the following architectures:
Sparc, ix86, Alpha, PowerPC and Mips.

Madeleine The Madeleine communication layer was de-
signed to bridge the gap between low-level communi-
cation interfaces (such as BIP, SBP or U-Net). It pro-
vides an interface optimized for RPC-like operations
that allows zero-copy data transmissions on high-speed
networks such as Myrinet or SCI.

Dynamic thread isomigration A PM2 thread may
silently migrate from one process to another without any
global action whatsoever. Only the origin and the destina-
tion processes are involved. The destination process does
not need to wait for the incoming thread: it can proceed
with its local threads as long as no dependency with the in-
coming thread is involved. Thus, thread migration can be
overlapped by computation.

Migrating a thread consists in moving the thread re-
sources (i.e. its stack, descriptor and private data) from
one node to another, where the thread can resume its ex-
ecution. A difficulty arises as soon as the migrating thread
uses pointers. The migration mechanism must ensure the
validity of pointers and must guarantee their safe use af-
ter migration. We have solved this problem [2] by de-
signing a mechanism which guarantees that a thread and
its data can always migrate while keeping the same vir-
tual addresses on the destination node as on the orig-
inal node. Our iso-address memory allocator (called
isomalloc) guarantees that for each dynamic memory
allocation carried out by a thread, the returned virtual ad-
dress range remains available on all nodes, such that iso-
address migrations never generate overwriting. Threads
may resume their execution on the destination node with-
out any post-migration processing, since all pointers re-
main valid. The PM2 programming interface provides
two primitives for iso-address allocation/release opera-
tions: void *pm2_isomalloc(size_t size) and
void pm2_isofree(void *addr). Threads should
call pm2_isomalloc instead of malloc to allocate
memory for data which must follow the thread on migra-
tion. Notice that pm2_isomalloc and malloc are not
incompatible: the malloc primitive may still me used to
allocate memory for non-migratable data.

3.2 A complete implementation within the Adap-
tor HPF compiler

Adaptor [5] is a public domain HPF compiler developed
at the GMD by Th. Brandes. It transforms HPF (or CM-
Fortran) data-parallel programs into Fortran programs with
explicit message passing. Adaptor itself consists of two
components: fadapt and DALIB. fadapt is a source-
to-source translator from HPF to F77 (or F90). DALIB (the
HPF runtime) handles descriptors for HPF arrays, sections
and distributions and also implements the communication
routines. We have used Version 6.1 of December 1998.

Adapting Adaptor to a multithreaded runtime environ-
ment The fadapt component has been left unchanged
but for the unparsing function. The main Fortran program
is transformed into a subroutine and a new main
program which calls our own initialization subroutine is
added.

Substantial modifications have been needed to let the
DALIB library work in a multithreaded environment. All
the global variables have been privatized, since several ab-
stract processors may concurrently call runtime routines.
Given that these variables have to follow an abstract pro-
cessor upon migration, functions to transfer them with the
migration message have been added to DALIB. Also, refer-
ences to abstract processors are no longer references to sys-
tem processes, but references to threads. Finally, DALIB
memory allocation functions that used malloc now use
pm2_isomalloc. It is only a text substitution, since they
have the same prototype.

A specific module has been added to DALIB runtime in
order to map its generic message-passing interface to the
PM2 Remote Procedure Call facility. Each abstract pro-
cessor owns a mailbox to store messages received by the
system process but for which the destination abstract pro-
cessor has not yet posted a receipt request. This module
also manages message forwarding when a message reaches
a system process just left by the destination abstract pro-
cessor. Because of message forwarding, the message order
between two abstract processors may be not preserved. It is
rebuilt by numbering messages, since DALIB requires that
messages are delivered in order.

Migrating abstract processors Migrating an abstract
processor consists in transferring the thread (i.e. stack and
internal data structures), its private dynamically allocated
memory and some related global variables. PM2 handles
thread migration with private data thanks to the iso-address
allocator. The global data are migrated by the DALIB func-
tions that concatenate them to the migration message.
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The interface of the abstract processor migration func-
tion is simple. It takes two arguments: the local abstract
processor id to be (preemptively) migrated and the process
id where to migrate. Various load balancing policies may
easily be implemented on top of this building block.

Figure 2 compares the cost of migrating an abstract pro-
cessor respectively using the pm2_isomalloc facility
and the original malloc facility to allocate memory dy-
namically. The test program consists in migrating a HPF
abstract processor (a thread) forth and back between two
nodes. The time is the average of 200 one-way migrations.
Both memory managers use some (software) cache mech-
anisms. For the pm2_isomalloc version, we have also
reported the performance without any memory cache.

The experiments have been performed on a 8-node clus-
ter of PC built up out of PentiumPro 200Mhz processors
with 512 kB of L2 cache and 64 MB of memory. The nodes
are connected through a Myrinet network [11]. PM2 is used
with the BIP communication library, a low level protocol
for the Gigabit Myrinet network. In this configuration, the
latency of a one-way communication is 10 s and the band-
width is 125 MB/s .

If no memory cache is used, the pm2_isomalloc ver-
sion has globally the same performance as the malloc ver-
sion. When using the software memory cache, the pm2_
isomalloc version is faster. The difference between the
performance of the two versions are mainly due to mem-
ory cache management. Since the pm2_isomalloc ver-
sion of the runtime allows the free use of pointers whereas
the malloc version does not, we can conclude that the
pm2_isomalloc version of the Adaptor runtime pro-
vides preemptive abstract processor migration at no extra
cost.

3.3 Experiment : Flame Simulation

Benchmark description We have validated our modified
Adaptor compiler on a Flame Simulation code (see Fig-
ure 4) mentioned as one of the motivating applications in
the HPF 2 proposal [8]. The program performs a detailed
time-dependent, multi-dimensional simulation of hydrocar-
bon flames in two phases. This Flame Simulation kernel
code is known to be interesting because its two phases have
different requirements. The first phase is well suited for a
BLOCK distribution of data (it requires neighborhood com-
munication and the computations are regular), whereas the
second phase needs an irregular distribution of data.

A global BLOCK distribution minimizes the communi-
cations in the first phase. But, in the second phase, the
application suffers the effects of the load imbalance.

A global CYCLIC distribution has opposite effects,

SUBROUTINE flame(X,Y,TIMESTEPS)

INTEGER TIME,TIMESTEPS
REAL X(:,:),Y(:,:)

!HPF$ inherit X,Y

DO TIME = 1,TIMESTEPS

! Convection phase
X(2:NX-1,2:NY-1) = X(2:NX-1,2:NY-1)+

& f( Y(1:NX-2,2:NY-1),Y(3:NX,2:NY-1),
& Y(2:NX-1,1:NY-2),Y(2:NX-1,3:NY))

! Reaction phase
FORALL(I=1:NX, J=1:NY)

X(I,J) = LocalReaction(Y(I,J))

END DO
END

Figure 4. The Flame Simulation kernel

compared to the BLOCK distribution. The load is quite
well balanced in the second phase, but the communi-
cations are expensive during the first phase: for every
iteration, each node has to send all its data to its 2 (resp.
4) neighboring nodes if one (resp. two) dimension(s)
is (are) cyclicly distributed.

Note that the CYCLIC distribution has an additional dra-
matic drawback: a huge waste of memory. To receive data
from the neighboring nodes, a node has to allocate 2 (resp.
4) arrays as large as the main array. So, only 33 % (resp.
20 %) of the memory on each node can be used for local
data.

A possibility is thus to run each phase with the best
suited static data distribution. Then, two data redistribu-
tions are to be performed for each iteration of the sequential
loop. For the Flame Simulation, the convection phase is
run with a BLOCK distribution whereas the reaction phase
is run with a CYCLIC distribution. This may improve per-
formance if the cost of the redistributions is lower than the
expected improvment within each phase. It turns out that
this is the case in our experiments. Yet, observe that it re-
quires the explicit insertion of redistribution directives into
the source code from the programmer. Doing such with a
reasonable chance of success may only be considered if the
programmer enjoys a definite expertise of the behavior of
his program. Otherwise, it is quite likely to produce oppo-
site results!

Our approach enables a new approach: compiling the
program with the simplest distribution, and letting an ex-
ternal plug-in facility redistribute the abstract processors
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Figure 2. Abstract processor migration time for different versions of the runtime varying with user
data size.

among the nodes on the fly. We choose here the the BLOCK
distribution, which provides best performance for the first
phase, and which is the easiest to compile. To handle load
imbalance in the second phase, abstract processors are mi-
grated from overloaded nodes to underloaded nodes. Since
the load distribution is unknown, migration is managed ac-
cording to a work stealing load balancing strategy. When
a system process is going to run out of active abstract pro-
cessors, it sends a request asking for active ones to another
randomly chosen system process. If the target process has
more active abstract processors than a user-defined thresh-
old, it migrates preemptively some of them to the requesting
process. If it has no abstract processor to let, a negative an-
swer is issued. In this case, the source process goes on with
another randomly chosen target process.

Performance results The experiments have been per-
formed on the cluster described in section 3.2, using PM2
on top of the MPI/BIP communication library. For this
configuration, the latency is 25 s and the bandwith is
120 MB/s .

We have considered four data sets, which differ in their
degrees of irregularity for the reaction phase. They range
from a regular to a highly irregular computational pattern.
The experimental results are displayed on Figure 3. For
each data set, we first present the execution times obtained
with the BLOCK and the CYCLIC distributions. The third

row contains the result of the redistribution-based code.
These three codes are compiled with the original Adap-
tor compiler. Then, we present the times obtained with
our modified Adaptor compiler. The data are BLOCK-
distributed among 128 abstract processors on 8 nodes, re-
spectively without and with activating the external load bal-
ancing facility. The results of all experiments have been
normalized according to the redistribution-based version.

One can see that the CYCLIC distribution incurs severe
overhead for all data sets due to communication. Despite
of two redistributions per iteration, the redistribution-based
code has better performance than the CYLIC distribution.
However, its performance, as for the CYCLIC distribu-
tion, is not very good for the regular and the low irregu-
lar situations. The BLOCK distribution performs well when
the computational cost is regular but its performance drops
a lot when the it becomes irregular. Introducing several
abstract processors per node allows communication to be
overlapped by computation. It leads to performance better
than for the BLOCK distribution. Load balancing the appli-
cation by migrating abstract processor according to a work
stealing algorithm leads to good performance in all circum-
stances. When the load is balanced, this strategy does not
generate any significant overhead. When the load is not bal-
anced, performance gets significantly improved.

It should be strongly emphasized that these experimen-
tal results are obtained without modifying the original HPF
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Distribution Mode Matrix irregularity
None Low Average High

Original ADAPTOR runtime
BLOCK 61 98 246 427
CYCLIC 129 136 128 142
Redistribution 100 100 100 100
Modified ADAPTOR runtime, 128 abstract processors
Block, without load balancing 62 73 141 261
Block, with load balancing 68 80 132 209

Figure 3. Normalized times for various distributions on the Flame Simulation benchmark on a 8-node
cluster of PC. The grid contains 1600 1600 elements. The communication library is MPI/BIP.

code: in opposite to the insertion of explicit redistribution
directives, no expertise at all about the behavior of the pro-
gram is required. Also, the external load balancing facil-
ity is completely independent of the application, and it may
be re-used without any modification in other circumstances.
Conversely, various facilities could be successively tried out
on the same application without any modification of the
source code. In our approach, tuning load balancing boils
down to selecting an option on the compiler command line!

4 Conclusion and perspectives

We have demonstrated that the lack of specification for
the lowest level of High Performance Fortran offers an inter-
esting opportunity to design distributed multithreaded run-
time layers. They provide the external world with a hook
function to dynamically migrate an abstract processor from
one node to another in a fully transparent way. Any kind
of external load monitoring facility can then be plugged
into the runtime to make the appropriate migration deci-
sions. Observe that there is no reason why these load mon-
itors should exclusively concentrate on the computing load.
They may also consider the free memory/storage space, or
the connectivity bandwith, as demonstrated in the Mosix
system.

This approach involves only minimal modifications to
the code generation layers of the compiler, at least as long
as the replication of scalar computation is not at stake. In a
simple benchmark, we could observe considerable improve-
ments with respect to the original execution times without
any modification of the program or the code generation.
No knowledge whatsoever of the application and/or its data
have been used. This should be compared with the explicit
insertion of redistribution directives in case of highly irreg-
ular data, which yields better results at the expense of a very
precise analysis of the program behavior.

These encouraging results were obtained using a sim-
ple work-stealing strategy, without any consideration to the
structure of the application. If some cooperation could be
set up between the load-balancing strategy and the applica-
tion and/or its data set, then much better improvements may
be expected.

Even though our benchmark is admittingly simple, these
results seem promising. Mapping abstract processors onto
multiples threads instead of single processes already im-
proves the performance! In fact, the cache locality of the
virtualization loops gets better, and this effect dominates the
replication of the scalar computation and the overhead of
thread management. This idea can be probably be applied
to other data-parallel languages as well, as demonstrated in
detail in Christian Perez’s PhD Thesis [13].
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