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Abstract

Monte-Carlo Tree Search (MCTS) is a very e�cient recent tech nology for games and planning, par-
ticularly in the high-dimensional case, when the number of t ime steps is moderate and when there is
no natural evaluation function. Surprisingly, MCTS makes v ery little use of learning. In this paper, we
present four techniques (ontologies, Bernstein races, Contextual Monte-Carlo and poolRave) for learning
agents in Monte-Carlo Tree Search, and experiment them in di� cult games and in particular, the game
of Go.

I. Introduction

Monte-Carlo Tree Search (MCTS) was recently proposed [1, 2,3] for decision taking in discrete time control
problems. It was applied very e�ciently to games [4, 5, 6, 7, 8] but also to planning problems and fundamental
arti�cial intelligence tasks[9, 10]. It clearly outperfor med alpha-beta techniques when there was no human
expertise easy to encode in a value function. In this section, we will describe MCTS and how it allowed great
improvements for computer Go. Section II. shows the strengths and limitations of MCTS, and in particular
the lack of learning. There are, however, a few known techniques for introducing learning: Rapid-Action
Value Estimate (RAVE) and learnt patterns (both well-known now, and discussed below); our focus is on
more recent and less widely-known learning techniques introduced in MCTS. The next two sections will show
these less standard applications of supervised learning within MCTS: Section III. will show how to use past
games for improving future games, and section IV. will show the inclusion of learning inside a given MCTS
run. Section V. will be the conclusion.

Presentation of Monte-Carlo Tree Search

This part presents MCTS and the main improvements of the initial algorithm. A more detailed presentation
can be found in [3] which describes Upper-Con�dence-Trees (UCT), the most well known variant of MCTS.
The idea is essentially (1) performing many random simulations from the current state (2) biasing these
random simulations depending on the results, so that a player increases (respectively decreases) the prob-
ability of move m in state s when the percentage of games won withm played in s increases (respectively
decreases). This idea is illustrated in Algorithm 1.
MCTS is very convenient. One must �rst implement a simulator (which is necessary for nearly all optimiza-
tion algorithms), and then one just has to implement:

� a memory of 3-uples (state,action,total rewards), which isquite useful anyway for understanding what
happens in the system;

1



Algorithm 1 The UCT algorithm in short. nextState(s; m) is the implementation of the rules of the game,
and the ChooseMove() function is de�ned in Algorithm 2.

d =UCT(situation s0 , time t)
while Time left > 0 do

s = s0 == start of a simulation
while s is not terminal do

m =ChooseMove( s)
s =nextState( s; m)

end while
== the simulation is over

end while
d = most simulated move from s0 in simulations above

Algorithm 2 The ChooseMove function, which chooses a move in the simulations of UCT. k is an empirically
tuned crucial parameter.

ChooseMove(situation s)
if There's no statistics from previous simulations in s then

Return a move randomly according to some default policy
else

for Each possible move m in s do
compute a score(m) as follows:

average reward when choosing m in s +
r

k � log(nb of simulations in s)

nb of simulations of m in s
: (1)

end for
Return the move with highest score.

end if

� the chooseMove function (Algorithm 2), which is trivial (bu t requires a careful tuning of the constant
k).

Some important improvements are as follows:

� for small-sized boards, automatic building of opening books by MCTS on top of MCTS[11];

� multithreaded implementations[12, 13, 14, 15];

� message-passing implementations on clusters without master/slaver architectures [16, 13]; these authors
believe that this approach provides better results than themaster/slave version[17] but this issue is
still controversial;

� biasing Equation 1 as follows:

average reward when choosingm in s +

H (m; s)=(C + nb of sims in s) � + (2)
r

k � log(nb of simulations in s)
nb of simulations of m in s

:

for � ' 1, and whereH (m; s) is a heuristic estimate, either:

{ learnt on databases thanks to patterns [18, 4];

{ modi�ed by human expertise [19].

We refer to references above for more details on the handcrafted heuristics (which basically reect
human expert knowledge, known as lines of inuence, good kogeima, line of death, and other concepts
known by go players) or on the automatically learnt pattern values (which are statistics on 3x3, 4x4,
. . . patterns in professional games).
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� biasing Equation 2 by another term, termed the RAVE term[5, 6]:

� � average reward when choosingm in s

+ � � R(m; s) +  � H (m; s) +
r

k � log(nb of simulations in s)
nb of simulations of m in s

: (3)

where R(m; s) is the average reward when the player to play is the �rst who plays in m after state s
(and not necessarily ins), and where � , � and  depend on the number of simulations and verify:

� ! 1 as the number of simulations ins goes to in�nity

� ! 0 as the number of simulations ins goes to in�nity

� ' 0 when the number of simulations ins is small

� ' 0 when the number of simulations ins is small

� >> � when the number of simulations ins is moderate

 ' C1=log(C2 + number of simulations in s):

This involves several important constants, and provides very good results when compared to the naive
Equation 1.

MCTS performs incredibly well in various problems. Nonetheless, if real parameters can be tuned empirically,
some \big" parameters, namely the default policy (see Algorithm 2) and the heuristic H (:), are di�cult to
choose; both are biases in the agents performing the simulations. This paper is devoted to techniques aimed
at automatically or adaptively choose this default agent.

II. Strength, Limitations and the Need for Learning

MCTS algorithms are extremely free of expert knowledge, andextremely free of guidance from tactical
solving. This might be a strength: For example, it has often been said that MCTS algorithms are strong for
\aji", i.e. for taking into account the inuence of dead ston es. If MCTS was strongly based on a life&death
solver, it might underestimate dead stones. Also, MCTS is extremely strong for problems like so-called
Ishi-No-Shita[20], i.e. problems in which captures and recaptures at the same locations make the situation
extremely unclear whenever it's a very localized �ght. However, these strengths do not compensate some
big weaknesses when compared to human players. This will be detailed below.

A. Ishi-No-Shita and Nakade

To the best of our knowledge, the complexity of \Ishi-No-Shita" (Fig. 6, bottom right), i.e. tsumegos in
which captures and recaptures occur inside a �rst capture, is not known. This is an interesting question
as it might be part of a more general question: which complexity classes are easy for humans and which
are not ? To the best of our knowledge:

� The reading (solving) of Ishi-No-Shita is very di�cult and s omehow unnatural for humans;

� Computers are not disturbed by the strange structure of these situations and are particularly strong
in this case (according to [21]).

Nakade is a particular case in which a player builds a group A inside an opponent group B; A will
be killed, but the liberties of B will be reduced by the stonesused for killing A so that B will be dead.
Nakade situations are not easily handled in MCTS unless theyare the only �ght (as usual, MCTS has
troubles for mixing the solutions of several simultaneous �ghts - it does not back up the solving of local
tactical �ghts). It can, therefore, also be said that computers are weak for Nakade. Nakade can be
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small, therefore, there can be a Nakade in a corner of a 9x9 board whenever the rest of the board is non
trivial; they are in fact strong for Nakade as well as Ishi-No-Shita, but only as long as it's the only �ght
- they don't backup the result for keeping it in mind for all th eir simulations.

B. Limitations in Openings

Openings are the result of a long experience. Even professional players can play very weak opening
in a format in which they play for the �rst time, e.g. when they switch to 13x13 or 9x9 instead of the
classical 19x19. MCTS methods have no memory of previous games in their most classical formulation,
therefore, it is important to make them learn from their past games, or, as humans do, by watching
other games. This can be done by the use of ontologies, which will be discussed in Section A..

C. Limitations in Tactical Search

The use of tactical search is e�cient in Monte-Carlo methods[22] (here we mean Monte-Carlo methods
and not Monte-Carlo Tree Search methods, i.e. algorithms without the "chooseMove" functions), but
not yet in MCTS. As a consequence, MCTS methods are weak in some special situations which require
some speci�c knowledge. There's no current MCTS program able to play both situations correctly like
Fig. 1(left), i.e. a semeai which must be played immediately, and situations like Fig. 1(right), i.e. a
semeai which mustnot be played immediately.

Figure 1: Left: a semeai, white to play. White can kill the big black group J4 (and make
its own group M4 live) just by �lling its 8 liberties G1-G8. If white does not play in the
semeai, black can do it and kill the group M4: therefore, in this example, white must play
G1 or G2 or ... or G8 and nothing else. Right: Another semeai. Black can kill the white
group, but it's not urgent to play in the semeai: black is in advance of two liberties and
should therefore play somewhere else. Playing P1 or P2 or ...or P6 is here a big mistake
for black.

Such deep limitations of the method lead to a limited scalability of MCTS, i.e. a limited improvement
of performance when increasing the computational power. This contradicts what has often been said
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in the early years of MCTS. This is shown in Fig.1. These results show a decrease of scalability as
computational power increases. All results are for Chineserules, komi 7.5. The signi�cance of the
results is very clear from the standard deviations. Many people believe that the way for solving

Table 1: Scalability of MCTS for the game of Go.

N =Number Success rate of 2N Success rate of 2N
of simulationssimulations against N simulations against N

simulations in 9x9 Gosimulations in 19x19 Go
1 000 71.1 � 0.1 % 90.5 � 0.3 %
4 000 68.7 � 0.2 % 84.5 � 0.3 %
16 000 66.5 � 0.9 % 80.2 � 0.4 %
256 000 61.0 � 0.2 % 58.5 � 1.7 %

semeai situations is to include supervised learning; learning that, in Fig. 1, all simulations in which
white does not play G1-G8 as soon as black attacks the white group lead to the death of the white
group. Such a supervised learning of simulations would be a general tool and it would not be restricted
to Go. We will see several tools in that direction in Section IV..

III. Learning From Past Games: Ontologies and Races

In this Section, we will show two di�erent techniques for learning from past experience.
In Section A., we will use suggestions by strong players, whoaccepted to comment games lost by MoGo, for
building an ontology of Go openings. Then, this ontology will be used for modifying the openings. This is
related to teaching by imitation, which is often used by Go players who reproduce professional games.
Second, in Section B., we will select the best patterns for the tree part (the function H proposed in Eq. 2,
see section I.) by Bernstein races, thanks to many trials andcorrections. This is somehow \brute-force" in
the sense that it is based on tedious trial and error of each pattern; it has the advantage of being proved,
stable, and e�cient. It is somehow similar to the process by which human players learn patterns, by a long
experience of playing.

A. Ontologies: Improving the Openings by Using Past Experience

Agent-based systems embedded into the ontology are increasing being applied in a wide range of areas.
For example, the Multi-agent Systems Group (GruSMA) team designed and implemented a Healthcare
Services multi-agent system to help doctors reduce error ateach diagnostic and treatment stage [23]. [24]
developed an ontology model to represent the Capability Maturity Model Integration (CMMI) domain
knowledge to e�ectively summarize the evaluation reports for the CMMI assessment. Orgun and Vu
[25] proposed an electronic Medical Agent System (eMAGS) with an ontology based on a public health
message standard to facilitate the follow of patient information across a whole healthcare organization.
Lee, Wang, and Chen [26] also developed an ontology-based intelligent decision support agent to evaluate
the performance of each project member to assist in introducing project monitoring and control process
area of CMMI. [27] also proposed ontology-based multi-agents to evaluate the diet health status based
on the constructed common Taiwanese food ontology and the personal project ontology.
This section presents a developed ontology-based intelligent agent in MCTS for computer Go application.
We employ features derived from professional Go players domain knowledge to transform them into the
opening-book sequence and represent them by a computer Go ontology. Afterward, the domain experts
validate the built ontology. The developed computer Go ontology has been veri�ed through the invited
games for computer Go programs playing against human Go players.
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1) Ontologies for Opening Books

The building of an ontology for the knowledge of opening-books in the game of Go is illustrated in Fig.
2. The �rst step is to invite Go players to play against computer Go programs via a Go-playing graphic
interface such as Kiseido Go Server (KGS) or Go Graphical User Interface (GoGui). Once the game is
started, the records of board games are stored by following the Smart-Go Format (SGF). The records of
the Go games are stored into the SGF �les repository. Then, the linguistic descriptions, including very
good (VG) move, good (G) move, uncertain (U) move, bad (B) move, and very bad (VB) move, on each
move and alternative branches are given by the invited Go players via MultiGo software or talking to
the side assistant. Fig. 2 shows an example of the fuzzy sets for fuzzy variable Move-Score =f VeryBad,
Bad, Uncertain, Good, VeryGoodg, which indicates that there are �ve fuzzy sets, including VeryBad,
Bad, Uncertain, Good, and VeryGood, to describe the score ofthe move.

Figure 2: Left: Constructing the ontology to express some knowledge on the game of Go.
Right: example of the fuzzy sets for fuzzy variable Move-Score.

The opening-book sequences are extracted based on the SGF �les storing in the SGF �les repository
and obtained through the fuzzy pattern mechanism. The fuzzypattern is used to present the opening-
book sequence for the fuzzy ontology model. The fuzzy pattern template and one example are given in
Algorithm 3, where Fuzzy Linguistic Term denotes the linguistic meaning of the fuzzy set described by
various human Go players for the same fuzzy pattern or di�erent fuzzy patterns. Algorithm 3 indicates
that the 7P Go player (Ming-Chi Cheng) considers B13 is a VeryGood move, but the 6D Go player
(Biing-Shiun Luoh) regards B13 as Good move, which means that di�erent Go players have di�erent
thinking and linguistic descriptions of the same pattern. The fuzzy linguistic term is used to represent
the degree of goodness for each opening-book sequence via the fuzzy linguistic term representation
mechanism. Di�erent Go players maybe give di�erent linguistic descriptions for the same opening-
book sequence. Additionally, Fig. 3 illustrates part of fuzzy patterns of patterns 1 and 6 given by
Cheng. The linguistic descriptions of the moves given by Cheng and Luoh are written in blue and red
colors, respectively. Fig. 3 also shows there are di�erent descriptions for di�erent Go players for the
same pattern. Finally, the computer Go ontology can be built by integrating fuzzy pattern and fuzzy
linguistic term, and the domain experts validate and verify the correctness of the constructed computer
Go ontology.

There are eight patterns given by Cheng (patterns 1-4 are forBlack, and patterns 5-8 are for White).
Each pattern has several branches to reect parts of countless variations in Go. The details of the eight
given patterns, but excluding some of the branches due to length constraints, are shown in Fig. 4.
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Figure 3: Part of fuzzy patterns for patterns 1 and 6.

Algorithm 3 Fuzzy pattern template and given example.
Fuzzy Pattern:
if B1 Locates L1 and W2 Locates L2 and . . . and Bn-1 Locates Ln-1 and Wn Locates Ln, and Bn+1 Locates Ln+1 then

Bn+1 is Fuzzy Linguistic Term Move
end if
Given Example:
Go Player 1 (Ming-Chin Cheng, 7P)
if B1 Locates E5 and W2 Locates G5 and B3 Locates F3 and W4 Locates C6 and B5 Locat es D7 and W6 Locates F7 and
B7 Locates E7 and W8 Locates F6 and B9 Locates C4 and W10 Locates F4 and B11 Lo cates E4 and W12 Locates G3 and
B13 Locates G2 then

B13 is VeryGood Move.
end if
Go Player 2 (Biing-Shiun Luoh, 6D)
if B1 Locates E5 and W2 Locates G5 and B3 Locates F3 and W4 Locates C6 and B5 Locat es D7 and W6 Locates F7 and
B7 Locates E7 and W8 Locates F6 and B9 Locates C4 and W10 Locates F4 and B11 Lo cates E4 and W12 Locates G3 and
B13 Locates G2 then

B13 is Good Move.
end if

According to Cheng and Luoh, Black 1-15 in Pattern 1 of Fig. 4 are all VeryGood moves for Black,
and it is also a typical pattern for Black to de�nitely win. An other example is the pattern 5 in Fig. 4,
according to Cheng, White 16 is a Good move. But, Luoh thinks of White 16 as a VeryGood move. For
Pattern 5, White is de�nitely a sure-win in such a situation. Table 2 lists a more detailed analysis of
the given patterns 1-8 from Cheng.
Figs. 5(a) and 5(b) show the fuzzy linguistic term representation for fuzzy patterns 1 and 6, respectively.
Fig. 5(a) illustrates the sequence of the moves and the comments on each move for pattern 1 as Black.
It could be divided into two parts, that is, part 1 records the fuzzy pattern and part 2 stores the fuzzy
linguistic terms given by domain experts (DEs). However, each Go player has di�erent comments on
the same sequence of moves so that the part 2 will have variousfuzzy linguistic terms to represent the
comments given by various domain experts likeDE 1, DE 2, . . . , and DE N . Moreover, each comment
provided by the domain expert could be a fuzzy set, that is, a linguistic term. Hence, Fig. 5(a) shows
that the �rst moves comments given by DE 1, DE 2, . . . , and DE N are \VeryGood", \VeryGood", . . . and
\ F SN1", respectively. In Fig. 5, the linguistic descriptions marked in blue and red are given by Cheng
and Luoh, respectively. This �gure, 5, also indicates that \F SN1", . . . and \ F SN19", represent the
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