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Tracking-by-Synthesis Using Point Features and Pyramidal

Blurring

Gilles Simon
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ABSTRACT

Tracking-by-synthesis is a promising method for markerigsion-
based camera tracking, particularly suitable for AugmeReality
applications. In particular, it is drift-free, viewpointvariant and
easy-to-combine with physical sensors such as GPS andainert
sensors. While edge features have been used succesfutiyn wit
the tracking-by-synthesis framework, point features haweour
knowledge, still never been used. We believe that this istdilee
fact that real-time corner detectors are generally weaiheatable
between a camera image and a rendered texture.

In this paper, we compare the repeatability of commonly used
FAST, Harris and SURF interest point detectors across view s
thesis. We show that adding depth blur to the rendered &xiam
drastically improve the repeatability of FAST and Harrisrear de-
tectors (up to 100% in our experiments), which can be vergfhkl
e.g., to make tracking-by-synthesis running on mobile plsoiwe
propose a method for simulating depth blur on the rendered im
ages using a pre-calibrated depth response curve. In ardierlt
the performance requirements, a pyramidal approach ishesset
on the well-known MIP mapping technique. We also propose an
original method for calibrating the depth response curvaickvis
suitable for any kind of focus lenses and comes for free imsenf
programming effort, once the tracking-by-synthesis athor has
been implemented.

Index Terms: 1.2.10 [Vision and Scene Understanding]:
Motion— [I.3.7]: Three-Dimensional Graphics and Realism—
Color, shading, shadowing, and texture

1 INTRODUCTION

Tracking-by-synthesis is a promising method for camerekirey
that is particularly suitable for Augmented Reality (AR)péipa-
tions [20]. This method is based on the knowledge ¢é&xured
3D model of the scene. Figure 1 illustrates the four stepsnef o
iteration of the algorithm. Arapproximatecamera pose and the
camera intrinsic parameters are assumed known at the legioh
the iteration. The approximate pose can be obtained using so
physical sensors (GPS, inertial, ...) or taken as the potsenaal

at previous iteration. From these data, the 3D textured incate
be rendered onto the image plane (step 1). Some featuress(edg
corners, ...) are then matched between the rendered imdghen
camera image (step 2). As the virtual camera pose correspptal
the rendered image is knovexactly features in the rendered im-
age, and therefore corresponding features in the camegeiman

be back-projected onto the 3D model (step 3), providing aobet
3D-2D correspondences between the model and the camera,imag
from which the current pose can be obtained (step 4).

This method has several advantages over other markerles

vision-based tracking methods [27, 14, 6, 12, 18]: (i) unlikcur-
sive methods such as planar tracking [27] or visual SLAM [, 1
errors do not accumulate from frame to frame and trackingifs d
free, (ii) as features are matched between close images, ithro
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Figure 1: One iteration of the tracking-by-synthesis algorithm.

need for scale or af ne invariant features [15, 17, 2, 18}t thie
generally slow to compute or storage consuming, (iii) thetesy
automatically performs detail culling and only searcheddatures
that are likely to be visible at the current scale and (iv)giveg with
other sensor data is natural and can be used to get the mital
[23], which is a recurring problem in AR.

Despite these advantages, tracking-by-synthesis hassogty
not been widely studied in the literature. In [20], a coars;
tured 3D model of an urban environment is used and edgels are
extracted from the rendered view using a standard edgetdetec
These edgels are then projected back onto the model to ab&in
3D coordinates of the sample points. The edge search is ctatiu
using an appearance-based model of the edge instead of ke simp
edge detector. This method has proven accurate enough foeAR
quirements. However, edges can be dif cult to match on adicig
contours, and while these features are often availablegaués of
buildings, these may be more rare on other kind of surfad¢es li
grass-soils, carpets, and so on. Using point features,mbicing
point features with edgels, within the same framework, niye-
fore be advantageous in terms of robustness, accuracy apd-ad
ability of the system.

However, up to our knowledge, point features have never
been used within the tracking-by-synthesis framework asrileed
above (see section 2.1). As our experiments show, this isapro
bly due to the fact that state-of-the-art real-time cornetedtors

Slike FAST [22] or Harris [9] are weakly repeatable betweerame

era image and a rendered texture, especially when the ¢ewias
captured from a distant viewpoint. Indeed, point featurtection
can be sensitive to several factors such as texture resayngipth
blur, motion blur and illumination changes between the timhen
the texture was captured and the time when it is renderedhidn t
paper, we tackle the depth blur issue and show that simplingdd
depth blur to the rendered texture can drastically impriweere-
peatability of corner detection (up to 100% in our experitagn
The main contributions of the current paper are: (i) we com-



pare the repeatability of commonly used FAST, Harris and BUR
interest point detectors across view synthesis (sectipriip)we
propose a method for simulating depth blur on the rendered im
ages using a pre-calibrated depth response curve assbeidtehe
camera (section 4). In order to ful | the performance requients,

a pyramidal approach is used based on the well-known MIP map-
ping technique [29]; (iii) we propose an original method éadi-
brating the depth response curve of the camera (sectiontbfhw

is suitable for any kind of focus lenses ( xed, manually a&iable
and motorized) and comes for free in terms of programmingreff
once the tracking-by-synthesis algorithm has been imphtede
(iv) we compare the repeatability of interest point detattcross
view-and-blur simulation (section 6). We show that addimgr b
greatly improves the repeatability of FAST and Harris corde-
tectors, leading to performance similar to SURF but with muc
faster running times, which can be very helpful to make tirsgk
by-synthesis running on mobile devices.

2 RELATED WORKS
2.1 Tracking-by-Synthesis Using Point Features

Point features have been used in visual panorama trackimgewh
a purely rotational motion is assumed [8, 23, 28]. A puretiota
does not create a parallax effect and hence the environnaent c
be mapped onto a closed two-dimensional surface, such asea cu
sphere or cylinder. The tracked video stream is used toetbat
environment map on the y. Once the map is built, interesnfmi

in the camera image are compared against their counterptrei
map. In [23, 28], locations of the interest points are selécising
the FAST corner detector [22]. Point correspondences aegrmul
using normalized cross correlation (NCC) between pixetped

Conjugate Sensor

Object plane Lens Image plane Image plane

(e}

Figure 2: The ideal thin lens model.

2.2 Rendering With Depth of Field

Rendering with depth of eld at interactive frame is an imjaort
and challenging task in computer graphics [21, 1, 7, 13]. fram
hensive surveys of available techniques are provided,Xamgle

in [7] and [1]. Using MIP mapping for fast generation of depth
of eld effects was rst published by [21] and is particulgrivell
suited for GPU-based approaches as noted by [7]. However, ou
problem is easier in some ways, because we only considearmplan
surfaces. But it is also more dif cult in other ways, becauise
simulated blur must t as closely as possible the depth bbally
observed in the camera images, while only a visual effebgbal

in the referenced papers.

3 PRELIMINARIES
3.1 Blurring Model

in the camera image and pixel patches warped from the map. In Depth blur is modeled using the ideal thin lens model [19isH

[8], the Shi and Tomasi's good features operator [25] is used
nd the candidate points. These are tracked from frame tmé&a
using a pyramidal version of Lucas and Kanade's optical dgoa
rithm [16] and features that are tracked for a number of ctutsee
frames are added to the map and used to combat drift. Dot gi®du
between normalized SURF descriptor vectors [2] are useditohm
features in the map with features in the camera images. A simi
lar approach is used in [3], though an Inertial Measuremaerit U
(IMU) is used to (re-)initialize the pose. Morevover, visimea-
surements and orientation data obtained from the IMU aredfus
using an Extended Kalman Filter.

6-degrees-of-freedom (6-dof) camera tracking based oal pix
patches associated with a CAD model is presented in [14].- Dur
ing an off-line stage, a small set of images, called keyframep-
resenting the scene or the object from different viewpoiistsho-
sen and calibrated. When the projection matrix is known ferg
keyframe, the system performs interest point detectionguge
Harris corner detector [9] and back-projects the 2D pixétipas
around the points that lie on the object surface. Viewpaiaaii-
ant descriptors of these patches are obtained by reregdesich
keyframe from different viewpoints around the camera posit
computed for the keyframe. Template matching is performed u
ing the eigen image methodology.

Actually, all these techniques are tracking-by-synthaspirit,
but not in letter, because once a feature is added to the miap (o
keyframe), it is used for the rest of the process. In trackipg
synthesis as described above, the complete set of modetdsas
replaced at each iteration by the set of features detectéziren-
dered image. This is the crucial step of this method, whickesa
it possible to handle large scale and perspective changéseof
scene during camera tracking. It may be noticed that straf6
tracking-by-synthesis based on point features has beeliedtin
[24], though using purely synthetic models instead of imhgsed
textured models.

trated in gure 2: all the light rays emitted by an object po@
in the scene and intercepted by the lens are refracted sohihat
converge to a point on the conjugate image plane. If the sémso
age plane is not aligned with the conjugate image plane nlagé
point becomes a spot. For a circular diaphragm, the spotirsle c
of diameteD calledcircle of confusion{CoC) orblur circle. Some
simple geometric considerations provide the formula:

fds

ot

ds =
0 ds

)

whered, is the depth of the object poinf, the focal lengthL
the diameter of the lens ari the distance between the lens and
the sensor image planed is the algebraic distance between the
conjugate image plane and the sensor image plane, sd4jdjt=
lor 1depending on whether the sensor image plane is in front of
or (resp.) behind the conjugate image plane.

The blurring effect nally obtained in the digital image dspds
on the transfer function of the optical system into the spato-
main. Traditionally in computer vision, this function is deled as
a Gaussian, so that:

In(i; 1) = 1s(i ) G(i;j); &)
wherely, is the blurred imagdsg the sharp (focused) imagethe bi-

dimensional convolution product ar@ the bi-dimensional Gaus-
sian function with spread parameter (standard deviason)

1
2ps?

i2+ j2

2s2

G(i;j) = exp 3)
The relation betwees and the diametdD of the CoC is simply

given by:

s = kD; (4)



wherek is a proportionality constant depending on the camera. In-

troducing equation (4) in equation (1) and rearranging shthat
the spread parametsris piecewise linear in the inverse deptidd
of the object point :

s(do) = Ai+ B;
do
whereA = kLds andB = kL(1 ds=f). In practice, parameters
k;L;ds and f can not easily be obtained, but calibration methods
exist to compute parametedsandB (see section 5).

®)

The depth of the scene points that are in focus on the sensor im

age plane is called tHecus distanceThe focus distance depends

on the distances between the lens and the sensor image plane, and

is limited by mechanical constraints. In the following, therve
s(do) obtained for a certain focus distance will be calleddegth
response curvgDRC) of this focus distance. The red curves in
gure 4(b) show the DRCs obtained for different focus distes,
using a standard webcam equipped with adjustable focusuré-ig
4(b) also shows a horizontal line that corresponds to theémax
permissible CoC, that is the maximum diamdbggax of the CoC
for which the image is “acceptably” sharp (see section Ggrbect-
ing this line with the DRCs shows that each focus distancgsléa

a range of depths of scene points that appear acceptably shar
the image. This range of depths is called tiepth of eld (DoF)

in the literature. As it is shown in gure 4(b), the DoF incees
with the focus distance. We cdiyperfocal distancéhe nearest fo-
cus distance at which the DoF extends to in nity, that is aickih
s (do) < Dmaxfor all depthsd, greater than a certain depth.

3.2 MIP Mapping

MIP mappingis a well-known technique in computer graphics, in-
tended to speed-up texture rendering and reduce aliasiifiacts
[29]. It is implemented in the OpenGL 3D graphics APl and is

been calibrated (see section 5) and the focus is not changedyd
the application, (iii) a textured planar surface has beemticed

in one camera image (called tloeiginal imagein the following)
and (iv) the position and orientation of the plane with regtr
the camera are known for that frame. In practice, these data c
be obtained automatically using a ducial marker, or inttrzely
using such techniques as those described in [26].

A pyramid of square blurred images suitable for tracking-by
synthesis is generated from these data using the followiogegs.
Let's callimage ithe image at level of the pyramid and let; r;
be the dimension of image For anyi(1 i N 1), we take
ri = rj 1=2. The choice ofy andN depends on the available mem-
ory size of the device and determines the scene depth raapsith
be properly handled by the algorithm.

4.1 Particular case

We rst consider the particular case where the following wemdi-
tions are satis ed: (i) the scene plane is fronto-paralbeihte cam-
era at a depthy;i and (ii) the scene plane is in focus in the original
image, that isls is such thatd = 0 andd, = doj in equation (1).

In that case, building the image at leviebf the pyramid is
straightforward: leiv h be the size of the original image asd
the scale applied to that image so that the scaled imagelis ful
contained in imageé: s = ri=maxw;h). As the scene plane is
fronto-parallel to the camera, the scaled image can be s#mrea
image of the plane observed at distagce dori=s. Then, as the
plane is in focus in the original image, the amount of blut ties
to be applied to each pixel of imageis simply given bys (d;)
wheres() is de ned in equation (5). Actually, in order to ap-
ply blur before resampling, a Gaussian blur of standardadievi
Sj = s(d)=5 = s(dori=s)=5 is applied to the original image and
the resulting image is resampled using bilinear interpartat

In order to accelerate this procedure, cascade convofutian

also available in OpenGL ES, a subset of OpenGL designed for also be applied to the original image [5], up and down the -pyra
embedded devices such as mobile phones, PDAs and video gamenid starting from the image having minimaj. However, as the

consoles. The principle of this technique is as follows. Waéwo-
dimensional texture map is applied (mapped) to a polygoyra-p
mid of N pre Itered texture maps of decreasing resolutions, called
mipmap imagess built. Typically, the original texture is at bottom
of the pyramid (level 0) and the image size atlaggél i N 1)

is half of the image size at levél 1 in each coordinate direc-
tion. When the textured polygon is viewed, the rendererchveis

to a suitable mipmap image, or interpolate between the tves-ne
est, according to the apparent size of the texture and tispgetive
distortion.

More precisely, when the polygon is rendered, a pixel in thal
image rarely corresponds to a pixel in the original textunage
(called atexe): a rendered pixel can be part of a texel (the textel
is enlarged), or, conversely, contain several texels (el$ are
reduced). Suppose a unit square corresponding to one pbidki
the rendered polygon is warped to the original texture atingrto
the perspective distortion. L&t be the size of the largest side of
the bounding box of the obtained parallelepiped, and le¢ a real
number de ned by:

I =log,r:

(6)

pyramid is built once and for all at the beginning of the tiagk
process, we do not necessary have to reach real-time fopttHs
cess. By contrast, during tracking-by-synthesis, MIP niragp|is

performed in real-time using this pyramid, providing apgincate

but (as shown experimentally) realistic non uniform depthr,b
without having to compute explicitly per-pixel ray depths.

4.2 General case

The two conditions mentioned in section 4.1 may be too m@stri
tive for practical use. For instance, in [26], the scene isi@ed by
performing camera rotations at a xed position and clickihg ver-
tices of the faces through the screen center. The textueedglob-
tained using this procedure are generally not fronto-perd¥iore-
over, using a xed-focus lens makes it impossible to focusoa@
at arbitrary distance. Even an adjustable focus lens has<amah
focus distance which can be smaller than the distance estjtir
acquire, for instance, the whole fagade of a large buildidgr al-
gorithm has therefore to be modi ed in order to be able todthie
mipmap pyramid from a defocused non-fronto-parallel textu
Without lose of generality, we assume that the camera Pose
associated with the original image is expressed in a world co

When!l > 0, a texel reduction occurs, and the nearest integer value ordinate system where the equation of the plane3s0. Let

of | is the level number of the nearest mipmap image in which
the reduced texels can be extracted. The valué can also be
used to interpolate between the two nearest mipmap images. |
our OpenGL-based implementation, a trilinear interpolais per-
formed between the 24 nearest texels in the two nearest views.

4 PYRAMIDAL BLURRING

In this section, we assume that (i) the intrinsic paramedéithe
camera are known, (ii) the depth response curve of the canaera

f 0 Uo
K= 0 af w be the intrinsic camera matri, = K (Rjt)
0 0 1

the projection matrix an® the 3 3 matrix made of the rst two
and the last columns d&. P 1 is a planar homography that warps
(rectify) the original image to the world plane, up to a scdlet
(Xmin; Ymin) and(Xmax Ymax) be the lower left and (resp.) upper right
corners of the bounding box of the shape obtained when ayplyi
P 1 to the boundaries of the plane in the original image. Gete
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Figure 3: Blurring of the rst image of the House sequence before perspective recti cation for three levels of the mipmap pyramid. Red circles
are proportional to the amount of blur already present in the original image, blue circles to the expected amount of blur.

a translation/scaling matrix de ned by:

1
S=-@0 1= ymin=a A ;
m o o =g

wherem= maX(Xmax Xmin; (Ymax Ymin)=8). A recti ed image at
resolutionr; can be built using the planar homogragtygiven by:

Hi=sP & (7)

Let Q; be the 3 3 matrix de ned by

Qi =(a1jazjas) = K s

The matrixQ;j is, up to a scals, the 3 3 submatrix ( rst two and
last column) of the camera pose associated with the rechiredje
at resolutiorr;. As %ql and%qz are columns of a rotation matrix,
the scale is= jjqyjj = jjgzj] = ri=(mf) and the depth associated
with all pixels of this image isl = q335jqijj, that is:

8)

HomographyH; and depthd; can now be used to compute the
non uniform blur that has to be applied to the original imagésit
itis transformed to a uniform blur of standard deviatifd;) in the
recti ed image. Let us consider any pixplin the original image. If
the depth blur around this pixel is approximated by a Ganddiar
of standard deviatios, then the depth blur around the pixel in the
recti ed image will be approximated by a Gaussian blur ohstard
deviationsy = rs , wherer is the size (as de ned in section 3.2) of
the warped pixel. As the convolution of two Gaussians ofamce
s? ands2 results in a Gaussian of varianeg = s?+ s2, the

variancesg of the blur to be applied to pixgd is therefore taken as:

s(d) 2
p 9

sg= s(dp)?;

whered; is given by equation (8% () is the DRC of the camera de-
ned in equation (5) andlp is the depth of the pixgb, obtained by
back-projecting the pixel ray onto the world plane, using pose
corresponding to the original image. The tesrtdp) in equation
(9) corresponds to the amount of blur we assume alreadyrriese
the original image.

Equation (9) can only be used when the required amount of blur
s(d)=r is greater than the already present amount of bl{dp).
In the contrary case, no blur is applied to the original imapgixel

p and the amount of blur obtained in the recti ed image is highe
than it should be. Tackling this issue is out of scope of thiggp,
and will be discussed in conclusion.

Once each pixel in the original image has been blurred, the re
sulting image is recti ed usindd; (a bilinear interpolation is per-
formed). Figure 3 illustrates the blurring procedure ae¢hlev-
els of the pyramid (images are shown before recti cationheT
red circles are proportional to the amount of bkifdp) already
present in the original image and the blue circles to the e
amount of blurs(d;)=r. For the image to be warped at resolu-
tion 216 216 (d; = 34:5m), all the red circles are inside the blue
circles, which means that some amount of blur has to be added i
the whole image, with increasing amount of blur from the back
ground to the foreground. For the images to be warped at reso-
lutions 512 512 @ = 17:2m) and 1024 1024 ¢; = 8:6m) the
farthest part of the building is not blurred (blue circles amside
the red circles). The non-blurred region represents abquiaer
of the image for; = 512 and about half of the image for= 1024.

5 CALIBRATION OF THE DEPTH RESPONSE CURVES

Many methods have been proposed in the depth-from-
focus/defocus literature [19, 30] to calibrate the DRC of a
camera, that is, to compute the paramefeasidB of equation (5).
Usually, a linear regression is performed on several pdivaloes
f 1=d;; sjg, obtained by moving the calibration target over different
places. The distances between the camera and the calibratipet
being controlled, the problem amounts to measuring theevafu
the spatial constargtj obtained in the resulting images. Different
methods have being used, such as measuring the slope of the
Laplacian at sharp discontinuities or comparing two imagEess
different apertures e.g. using Fourier transforms [19].eWhsing
camera motor systems, equation (5) can be arranged in arget t
itin terms of motor counts, which are measurable and cdabrig,
and therefore make the calibration of the DRC easier [30].

Our method differs from the literature in that (i) it can dedth
any kind of lenses: xed focus, manually adjustable focud am-
torized focus, and (ii) it is free in terms of programmingogffonce
the tracking-by-synthesis algorithm based on the methedriteed
in section 4 has been implemented. In a nutshell, rather rireas
surings; directly in the images, we resynthesize each imagih
different amounts of blur and taks that provides the nearest im-
age, in terms of matched features, to the real image.

5.1 Fixed-Focus Lenses

More precisely, the following procedure is used to comptie t
DRC of a xed-focus lens. An image sequence is produced by
moving the camera at different distances from a frontodfertex-
tured plane containing an ARToolkit marker [11]. The rsafne



of the sequence is assumed in focus and is used for texture map

ping with different amounts of blur (typically betweer08 and 3
with a step of 0.05). The marker is used to obtain that campknae

distanced; as well as the camera poses used to generate the ren-

dered views of the blurred textures. Harris corners [9] atected

in both the real and the rendered images and feature matching
performed using NCC. For each standard deviation of the Gaus
sian blur, we count the number of inliers obtained by RANSAC
computation of a planar homography, and takedpthe standard
deviation that maximizes this number. As a result, we getta se
of pairsf1=d;;sj;g from which a RANSAC linear tting is per-
formed. Actually, equation (5) is piecewise linear becaofthe
absolute value. We therefore use valfidsd;; sig whend; ds
andf 1=d;; sjgwhend; < dt, ds being the distance of the focused
(rst) image of the sequence.

In this procedure, we need a point detector thamas robust
against blur, otherwise the number-of-inliers criterisnniot dis-
criminating enough to enable determinisg That is the reason
why we chose to use the Harris corner detector, that has proe
robust against blur in our experiments (see section 6).

5.2 Adjustable-Focus Lenses

When using an adjustable-focus lens, we must be able to agem
the parameteré andB of the DRC each time the focus setting of
the camera, that is the distandgin gure 2, is changed. From
equation (5), we know that

A= Cds;
B=C A=f;

(10)
(11

whereC = kL is a camera constant. Parameteiand f can be esti-
mated by computing the DRC paramet@isB, andAy; B, of two
different focus settings of the camera (obtained using thegalure
described in section 5.1) and solving a system of two equaand
two unknown provided by equation (11). On€end f are known,
it is possible to estimate the valugésandB corresponding to any
value ofds, using equations (10) and (11).

Actually, it is usually not possible to get the distamzairectly,
but if the focus distance; between the camera and the scene object
on which it is focused is known, writing equation (1) widh = d¢
andd = 0 provides:

ds f

dsz df f:

(12)

Itis therefore possible to recompute the DRC of the camesh ea
time the focus setting is changed, assuming this changesgmnds
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Figure 4: Calibration of the DRC prediction parameters. Top to bot-
tom: (a) Linear tting of pairs of values (1=d;;s;) obtained on the
small marker sequence. (b) DRCs of the three calibration sequences
(red), predicted DRCs based on the other two DRCs (green) and
DRC corresponding to the maximum focus distance of the camera
(blue). The red horizontal line corresponds to the estimated maxi-
mum CoC.

(10cm, 27cm, 65cm, resp.) and used three markers of differen
sizes (2cm, 8cm, 26.5cm, resp.). The small and medium nsrker
were surrounded with postcards put on a table and the largeema
was surrounded with posters taped on a closet (see Fig. tGwos
rows). The camera was moved closer and farther from the marke
(depth ranges are 7-24cm, 15-67cm, 50-250cm, resp.) arehébr
sequence, a DRC was obtained using the procedure described i
section 5.1. Figure 4(a) shows the pairs of val(&sd;;s;) ob-

to a focus on a scene object whose distance to the camera can beained on the small marker sequence as well as the RANSAC t-

estimated. In our implementation, an Artoolkit marker isdifo es-
timate the focus distance, though any other measuremeceqiuce
could be used depending on the application context. Moreae
show in section 6 that the repeatability of point detectian be
signi cantly improved even with approximate focus distas@and
DRCs.

6 EXPERIMENTAL RESULTS

All our experiments were performed using a Logitech QuiakCa
E3500 at resolution 640480, equipped with a manually adjustable
focus lens.

6.1 Calibration

As seen above, the calibration of teand f values of the cam-
era can be done using a single Artoolkit marker and two sempgen
starting at different focus distances. However, in ordeadsess
the predictive property of the procedure described in spdsi.2,
we produced three sequences starting at different foctiandiss

ting. Figure 4(b) shows, in red, the measured DRCs of theethre
sequences and, in green, the DRCs predicted at each fotaisadis
using the DRCs of the other two sequences as explained ilosect
5.2. In blue is represented the DRC corresponding to thermani
focus distance of the cametlanax= 2050mm, which is below the
hyperfocal distance if we consider a conventional maximunC C
of 1/1250 of the image width (red horizontal line).

In the following, we will refer as “optimal DRC-predictiorap
rameters” to paramete@and f obtained by solving equation (11)
with the parameter& andB obtained in the three marker sequences.

6.2 Sensitivity against DRC accuracy

Sensitivity of point repeatability against accuracy of BIRC was
estimated using a part of the large marker sequence, whaailél

the Posterssequence in the table 1. Five different DRCs have been
tested: DRC 1 is the DRC directly measured from the large erark
sequence (see section 6.1), DRC 2 is the DRC predicted as$ focu
distanceds = 65cm, using the prediction parameters obtained from



the small and medium marker sequences, DRC 3 is the DRC pre-

dicted at focus distancgy, using the optimal DRC-prediction pa-

rameters. DRCs 4 and 5 correspond to erroneous DRCs that may Wl ! Depth of field DRC.3 - -~ |

be obtained in practical situations, due to the dif culty visu-
ally assess whether the camera image is perfectly focused. A
tually, the error that can be obtained is given by the intdise
of the maximum-CoC line with the correct DRC, as shown in g-
ure 5(a): at a focus distance of 65cm, we get an image that is vi
sually similar, in term of sharpness, to the images obtaatetls-
tancesdmin = 47cm anddmax= 103cm (47-103cm is the depth of
eld). DRC4 and DRCS5 are therefore the DRCs predicted at $ocu
distancedmin and (resp.Xdmax Using the optimal DRC-prediction
parameters.

A pyramid of blur is built for each DRC, and RANSAC match-
ing of Harris corners is used for tracking-by-synthesigoading
to the procedure described in the introduction of the pafale 1
(lines 4-8) shows the mean recall obtained on the whole segue
without blurring and with blurring, as well as the improvemeatio
between these two values. Trezall of a point detection between
two images is de ned as the number of points matched (tha-is r
peated) between the two images, divided by the minimum nambe
of points detected in these images. These results show limat b
ring the rendered texture is always bene cial, even withrpoesti-

mated DRCs. The improvement ratios are between 50 and 60 % for

all ve DRCs, including the distant DRC 4 and 5. Figure 5(bdpais

in more details the recall values obtained over the sequeitbe
DRCs 3, 4 and 5 and without blurring. In order to make this g-
ure more legible, the recall curves are drawn using very lthas,
and superimposed with thick smooth curves obtained by lagsp
Itering of the curves in Fourier domain. One can see thatghp
between the red curve (without blurring) and the other tlereges

is relatively high in all images of the sequence.

6.3 Comparison of FAST, Harris and SURF across View
Synthesis

Tracking-by-synthesis without and with pyramidal blugimvas
tested on several kinds of scenes, indoor and outdoor, flesk-d
top to building size and with different amounts of texturegufe 6
shows some snapshot of the used sequences, accompaniea-with
formation about the number of frames (from 298 to 796), focus

Maximum CoC (stdev=0.512) ——

Stdev (pixels)

) h 1 1 1
0 500 1000 1500 2000 2500 3000
Focus distance (mm)

T T
Without blurring s

With blurring (DRC 3)
s With blurring (DRC 4) +
With blurring (DRC 5)

Recall (%)

Figure 5: Sensitivity against DRC accuracy. Top to bottom: (a) DRCs
obtained at the extremities of the depth of eld (DRCs 4 and 5) and
at focus distance (DRC 3) of the Poster sequence. (b) Recall val-
ues obtained over the Poster sequence using DRCs 3, 4 and 5 and
without blurring.

FAST [22], Harris [9] and SURF [2], which are all widely used i
vision-based camera tracking systems. FAST and Harrisaanec
detectors that are fast to compute (implementations exignho-

distance (from 27cm to camera limit 2m) and scene depth range bile phones) but only rotation invariant. SURF is a blob dite

(from 10-44cm to 12-30m). ThBostcardsand Posterssequences
are parts of the medium and (resp.) large marker sequeneés us
to calibrate the DRC. They contain a lot of texture inforraatand

are easy to track. Th€arpetandWall sequences are much more
dif cult to track, the former due to the presence of repeétpat-
terns, the latter due to the rarity of texture informatiomeHouse
andBuilding sequences show typical urban facades with relatively
few texture information.

Tracking is initialized using an Artoolkit marker, and thisrper-
formed using the procedure described in the introductionintP
features are matched using NCC between Harris or FAST'd pixe
patches or SURF's description vectors. Outliers are dirhus-
ing a RANSAC computation of the homography between the two
set of points. Only one plane is used in each experiment, &hos
texture is captured in the rstimage. Just before the proctarts,
the camera is focused as sharp as possible on the markemixygtur
the focus ring in the limit of camera capability. When theqass
starts, the focus distanah to the marker is computed using the
marker, detected in the rstimage. df is below the maximum fo-
cus distanc@imay the DRC is computed fads using the optimal
DRC prediction parameters. Otherwise, the DRC correspoyii
dimaxis taken. It is important to note that the estimate of the DRC
may also be done at a different time than just before trackiags,
providing that the focus ring is not changed between the askd.

The three interest point detectors that we chose to compare a

which is scale, rotation and almost viewpoint invariant, flower
to compute. Even if an ef cient implementation of SURF hasiioe
proposed, bringing 30% speed-up to the original algorithmder-
formance is still not good enough for mobile phones. Howewee
main advantage of tracking-by-synthesis is that invagaocview-
point is obtained without need of viewpoint invariant feat due
to the fact that the camera and the rendered images to be edatch
are generally close to each other. It would therefore be useful
to be able to use FAST or Harris in tracking-by-synthesisyialing
that the performance of these detectors is similar to th&WRF
in term of repeatability across view synthesis.

Actually, this is not the case when no blur is added to the ren-
dered views, as shown in table 1 (a dash is used when trackied f
using the related detector). The mean recall of SURF is &y
ni cantly higher than for the other two detectors, except foe
Building sequence where it is comparable (though low) to the mean
recall obtained by Harris. Actually, this result is not veryrprising
because it has been shown, e.g. in [10], that SURF is rehatige
peatable across blur. Another result shown in table 1 iSRAST
seems less resistant to blur than Harris. However, an irmapore-
sult of this paper is that when adding blur to the renderedjenthe
repeatability of FAST and Harris can be greatly improved.cBg-
trast, the repeatability of SURF does not improve, whiclagain,
not surprising, for the same reason as just mentioned. Asudtye
Harris reaches mean recalls that are similar to those of SdERF
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Figure 6: Snapshots of the sequences used in our experiments.

even much greater for thauilding sequence (though much lower

for theWall sequence). The recall of FAST generally stays signi -
cantly below the recall of Harris. Figure 7 shows the recathined

in all images of théPosterssequence: results are conform, all along
the sequence, to the general tendency we just described.

Finally, virtual cube was added in the scene and tracking-by
synthesis was performed using Harris corner detector arahpy
dal blurring. The snapshots in gure 6 show that the cube its re
dered properly over a variety of viewpoints, which demaasts
that our system performs drift-free tracking under largeswiew-
point and perspective changes, and is therefore suitablkRap-
plications.

7 CONCLUSION AND FUTURE WORKS

The results of this work can be considered as a preliminargyst
to demonstrate that tracking-by-synthesis using pointfes is vi-

able, and can run at high speed by combining fast corner titatec
and pyramidal blurring. In particular, we have shown thahgs

Harris corners with image blurring is equivalent, in termegeata-
bility across view synthesis, to using SURF blobs withoutribhg.

In addition, we have proposed a practical method to cakbtiae
depth response curve of the optical blur at a given focusigt.

This work will be added to our interactive system [26] thébab
online reconstruction of several textured planar surfastéch are
immediately used for camera tracking. Initialization @faking-by-
synthesis using a GPS and an inertial sensor will be testexeM
over, as mentioned in section 4, a limit of pyramidal blugris that
shaper textures can not be obtained from more blurred &stur
However, in an interactive system, we can envision updaitireg
mipmaps on-the-y as closer views of the textures becomél-ava
able. Nevertheless, this will have to be done carefully ifdeenot
want to introduce drift in the process. Finally, repeaibécross
view synthesis may be improved by simulating other souréd#-o
ferences between the camera images and the rendered irsages,
as illumination changes and motion blur.



Table 1: Comparison of the repeatability of FAST, Harris and SURF
without and with addition of blur in the rendered images.

Point Mean recalj») Mean recal(%)
Sequence  detector wo blurring w blurring % impr
Postcards Harris 15.6 19.8 26.7
Postcards FAST 12.2 9.3 -23.9
Postcards SURF 24.0 23.9 -0.4
Posters - DRC 1 Harris 17.2 27.3 58.6
Posters - DRC 2 Harris 17.2 27.1 57.9
Posters - DRC 3 Harris 17.2 27.5 60.0
Posters - DRC 4 Harris 17.2 26.1 51.6
Posters - DRC 5 Harris 17.2 27.4 59.2
Posters FAST 9.9 15.1 53.7
Posters SURF 28.2 26.1 -7.3
Carpet Harris 6.5 7.0 7.5
Carpet FAST 4.8 5.0 3.8
Carpet SURF - - -
Wall Harris 3.8 6.1 60.4
Wall FAST - - -
Wall SURF 15.9 16.1 1.2
House Harris 9.6 13.8 43.7
House FAST 7.2 13.8 91.7
House SURF 11.34 12.0 6.1
Building Harris 7.0 14.6 109.0
Building FAST 4.9 10.6 119
Building SURF 7.6 7.0 -7.4
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