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Sur la dimension de 'intersection d’un code et de son
orthogonal

Résumé : Nous donnons ici le nombre de codes linéaires de longueur n et de dimension k
sur GF(q) ayant une intersection de dimension donnée avec leur orthogonal. Nous montrons
que la dimension moyenne de cette intersection tend vers une constante strictement positive,
dépendant de ¢, lorsque n et k tendent vers 'infini.

Mots-clé : code correcteur d’erreurs, codes auto-duaux, hull



On the dimension of the hull 3

1 Introduction

We will consider here linear codes over a finite field GF(g). A [¢;n, k] code will be a linear
code of length n and dimension k over GF(g).

We will first study in §2 the properties of the Gaussian binomial coefficients, the coef-
ficient [Z] is the number of [¢;n, k] codes. The key result of this section is the inversion
formula given in Corollary 2.

The hull [AK90] of a linear code is defined to be its intersection with its dual. In §4
we express the number A, ;; of [¢;n, k] codes whose hull has dimension ! in terms of the
number of weakly self-dual codes of given parameters which is given in §3 (Theorem 1, due
to Pless [Ple65]). Using the inversion formula of §2, we obtain an explicit expression of A,
(Theorem 2). We then obtain an asymptotic equivalent of A, i, for fixed [ when n and k go
to infinity (Theorem 3), and we prove that under the same conditions, the ratio A, j i/ [Z] is
equivalent to a constant, dependent of ¢ (Theorem 4). At last we give the average dimension
of the hull of a linear code, which is asymptotically equal to 3,5, 1/(¢" + 1).

Most of the results above will be restricted to the case n > 2k, however, since the hull
of a code is equal the the hull of its dual, this assumption can be made without losing any
generality.

2 Gaussian binomial coefficients

Most of the result presented here can be found in [GR69] and [PAT1].

Definition 1 Let n and k be two integer. The g-ary Gaussian binomial coefficient [Z] 5

defined by
n]  (¢" = 1)(¢" "t =1).. . (¢"FF — 1)
[k’] (=D =) (g 1) (1)

whenever n > k > 0, and [Z] = 0 otherwise.

Note that the Gaussian coefficients are connected to the usual binomial coefficients by
limg 1 [Z] = (Z) The coefficient [Z] is the number of subspaces of dimension k of a vector
space of dimension n over GF'(q). More generally

Proposition 1 Let U be a vector space over GF(q) of dimension n, and let V' be a subspace
of U of dimension l. The number of subspaces C' of U of dimension k containing V, that is
VCcCCU, isequal to [Z:;]
Proof. See for instance [MS77, Th. 4, p. 698]. 0

We have the following identities:

Proposition 2 Let n > k > i be positive integers.

i = &
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i = GG/ ) @
= ! 9
e ! =
I P i A @)

2.1 Asymptotic behavior

For all i > 0, let [{] = (¢ — 1)(¢? — 1)...(¢" — 1). Using the fact that n(n + 1)/2 — k(k +
1)/2—=(n—k)(n—k+1)/2=k(n— k), we can rewrite (1) as

n [n] k(n—k)__ Yan
=== =9 EEEEme— 3
] = PR ®)
where the sequence (gy,n)n>0 is defined for all ¢ > 1 by
a 1
s =T10- ) o
i=1

This sequence is obviously decreasing and positive, we will see that it goes exponentially
quickly to its limit. We will first need the following result.

Proposition 3 [Com7/, Ch. II, p. 106]

t(g)u"

[[a+tw=>" (1—(1—t3) ... (1-t") ;

i>0 n>0

Proposition 4 The sequence (gqn)n>0 is strictly decreasing for ¢ > 1, we will denote by
Gg,00 tts limit when n goes to infinity. We have

9q,00 — ZL (_1)2 ) (6)

Yo Sparla=D(* =1 ... (¢ = 1)

Proof. By definition (4) of gqn,

99,00 _ Ly __
o T (1= ) =TT (1= )

i>n+1 i>0

we then write (5) with ¢ = 1/¢ and u = —1/¢"*!, and we get (6). O

INRIA



On the dimension of the hull

Ot

Corollary 1 For all integer n > 0

1 9,00
1-— < 222 <. 7
(¢—1)¢" = ggn — @

Proof. We can rewrite (6) as Y5 ,(—1)'G;, where Gil'=(g—1)...(¢" =1)¢™. The sequence
G; is strictly positive and decreasing for ¢ > 1, and thus, from a classical property of alternate
series, we have the inequalities (7). 0

2.2 An inversion formula

A classical inversion formula, given for instance in [Com74, p. 143], says that in any com-
mutative ring with identity, if for all n > 0, u,, = E::O (Z) vy, then for all n > 0, we have
v, = Z:IO (Z)(—l)"_kuk. A similar identity holds for Gaussian binomial coefficients. To
obtain this formula we will first examine how the two basis (2" ),>0 and (pn(z))n>0, where
pa(z) = (z— 1)(z —q)...(x — ¢"~ 1), of the ring of polynomial over integers are related.

Proposition 5 For all integer n > 0, let pp(z) = (x — 1)(z — q) ... (z — ¢" 1), we have

Proof. See [GR69] and [PAT1]. O
Corollary 2 (Inversion formula) Let (u;);>0 and (v;)i>o be two sequences. For all k > 0
(vz, 0<I<ku= ZI: H u) & (vz, 0<I<k,u= ZI: H (_1)’—Z'q(’5’)m) . (8)
izo L i=o L

Proof. ([Com74, p. 118-119,143]) We can express v; = El [1] u; as U = PV where U =

i=0 g
(ug,u1,...), V.= (vg,v1,...) and P is an infinite triangular matrix of general term [Zl] The
inverse P~ of P is given for u; = p;(z) and v; = 2* by Proposition 5, and its general term

is U] (—l)l_iq(l;i). And thus from V = P~'U we obtain u; = Ei’:o [Zl] (—l)l_iq(l;i)vi. 0

3 Weakly self-dual codes
Definition 2 A code C is said to be weakly self-dual (w.s.d.) if C C C*.

We will denote by oy,  the number of w.s.d [¢;n, k] codes. We have [Segh9, Ple65, Ple68]:

RR n 2682
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Theorem 1 Let n be a positive integer. The number of weakly self-dual [¢;n, k] codes is
equal to

1. ifnis odd and k < (n—1)/2
On,k =

i=1

2. if n and q are even and k < n/2

qn—k -1 k qn—2i+2 -1

Onk =
" =1 22
1=

3. if (n=0mod4) or (n =2mod4 and ¢ =1 mod 4)) and k < n/2

qn/2—k 41 k qn—2i+2 -1

Onk =
k qn/2_|_1

i )
i=1 q 1

4. ifn=2mod4, g=3mod4 and k <n/2-1

qn/2—k -1 k qn—2i+2 -1

o =
n,k qn/2 _1

i )
i=1 q 1

5. else (k too large) o, = 0.
Proposition 6 Let m = [n/2]|. For all k < m, we have

qk(n—k) 942 m

g =S
n,k n,k qk(k+1)/2 gq2 m_kgqyk’

where
1 if n is odd,
¢" —¢"
Sn.k = qgn —1
qn/2 _|_€qk
withe = —1 ifn =2mod 4 and ¢q = 3 mod 4 and € = 1 otherwise.

if n and q are even,

if n is even and q is odd,

Proof. If n is odd, we have n = 2m + 1 and from Theorem 1

. ko )
k qn+1_2Z _1 an+k—22i:12 k 1— 1/q2m+2—22

Onk = 11 qi 1 = qk(k+1)/2 £[1 1— l/qi
_ qk(n—k) gq27m (9)
qk(k+1)/2 gq2,m—kgq,k.

INRIA



On the dimension of the hull 7

If n is even, we have n = 2m. From Theorem 1, it comes

k Y
Snk qn 242 _ 1

Onk = = Ik, k
nk = "3 T T Tk Tndlks
¢ oo -1 q
and writing (9) for 0,41 1, We get
g k= _Sn7k qk(n+1_k) gq2,m = 8 k qk(n_k) gq2,m I:l
PR gE D2 g ger T R 2 g gy
Proposition 7 For all k < n/2,
11— — 1 _L
o qn/Q—k < Sn.k <1+ qn/2—k'
Proof. If k < n/2, we have the following inequalities
1 n/2 _ k n _ .k n/2 k
- P ik Py il USRS ik SP SIS
qn/2—k — qn/2_1 L S qn/2_|_1 — qn/2—k
which proves the result. d

4 Hull of a linear code

Definition 3 The hull of a linear code is defined to be the intersection of the code with its
dual.

We will denote by H(C) = C N C* the hull of a code C.

Lemma 1 Let V be a weakly self-dual [q;n,l] code. The number of [q;n, k] codes C such

that V.C H(C) is equal to [ 2.

Proof. Let C be a [g;n, k] code. We have V C H(C)=CNCL if and only if V.C C C V4,
and from Proposition 1 the number of such codes is equal to [”k__%l]. d

Lemma 2 Let C be a [¢;n, k] code and let H(C') be its hull, the number of weakly self-dual
[¢;n,1] codes V' such that V C H(C) is equal to [dlm ?(C)].

Proof. The hull H(C) of C is weakly self-dual, so is any of its subspace. The number of
dim ’H(C)]
I

subspaces of dimension ! of H(C) is [ , and thus we get the result. O

Proposition 8 For alli, 0 < i <k, let A, ; denote the number of [¢;n, k] code whose hull
has dimension i. We have, for alll, 0 <1<k,

[nk—jl] Ot = zk: m Ap i (10)

RR n 2682
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Proof. Let C be a [¢;n, k] code, from Lemma 2, H(C') contains [dim7(c)] different w.s.d.

[¢;n,]] codes. From Lemma 1 any [¢;n,l] w.s.d. code is contained in the hull of [72:211]

different [¢;n, k] codes. Finally, the number of w.s.d. [¢;n,[] codes is 0, ; and we get

dimH(C)] | [n—20]7"
| 2 TN
CCGF(q)™

dim C=k

which leads to the result since A,  ; is the number of [¢; n, k] codes whose hull has dimension

¢, and [ZI] =0 when 7 < L. d

Theorem 2 Let n be a positive integer, and let o, ; denote for all i the number of weakly

self~dual [q;n, ] codes. For allk < n/2 and alll < k, the number of [¢;n, k] codes whose hull
has dimension [ is equal to

Appa = Zk: [7;__2;] [;](—l)i_lq(l;l)o'mi. (11)

i=l

Proof. For all [, 0 <1 <k, let

k n — 2k + 21 k
[l] Varl= [ I ]ffn,k—z and [1] Un kg = Ank k-1, (12)

we write (10) with k — [ instead of [, and we get for all [ < k

. l .
) k—7g][k

An i = . n,k,js
P e of i H X%

where j = k — i in the last summation, and thus for all [ < k&, using (2b)

k

k n— 2k + 21
[l] Vaki = [ I ]Un,k—l = Z

i=k—1

=iy L
Vg = Z = Un gy = Z []] Unkj- (13)

j=0 [1] j=0
We now apply the inversion formula of Corollary 2 to (13), and we have for all [ < &

l

A 0
e
[1] j=0 J

-y ]! .](—1)’—k+iq<"$+’)7[k_—[i,]]””’i, (14)

)
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where i = k — j in the last summation. If we then replace k£ —{ by [ in (14) we obtain for all

1<k

Ap gy = Z["_Ql] ]( 1)i=1q(3 o—m_f:[n_m]u —1)i(e, . O

i=l

The result above will be practically useful only when & — [ is small. When the number
of terms in the summation (11) gets large, the formula becomes intractable. Furthermore,
it gives no precise idea of the asymptotic behavior of A, 1 ; when n and k get large.

4.1 Asymptotic behavior
Forall [, 0 <1<k, let

[n—2lk+2l] O_nyk_lqk(k+1)/2 An,k,k—lqk(k+1)/2
2] [7] [:][7]

Proposition 9 Let m = [n/2|. For all k < m and for alll, 0 <1 < k, we have

b= and  a, 1=

1(1+1)/2 9¢2,mIqn—2k+219¢n—k
b =q (+1)/ Sp k—1-

)

992 m—k+19¢,n—2k+19¢,n
Proof. From Proposition 6, we have
g(r=D(n=k+D) oo

On k-1 = — — Sp k—1-
q(k Dlk—1+1)/2 992 m—k+19q¢,k—1

From (3) we have
[n — 2k + 2]:| . ql(n—zk‘H) Gqn—2k+21
l gq,lgq,n—2k+l’

and

[”] [k’] = gP=k)+IE=D) 9q,nYqk
k] L1 gq,kgq,n—kgq,lgq,k—17

and thus, using k(k+1)/2—-1{({+ 1)/2=(k =Dk -1+ 1)/2+ (k-1),

—2k+21
[n ! ]Un,k—l _ g(H1/2 942 m9q,n—2k+219¢,n—k 0
— n,k—1-
[Z] [’?] gF D2 gg2 o 4190,n-2k 41900

Proposition 10 For alll, 0 <1< k, we have

1

{
Z u an ki = bn (15)

=0

RR n 2682
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10

Proof. We have a,, 1 ; = Un,kquk(kﬂ)/z/[;;] and by, 1 = Vn,k,lqk(k+1)/2/[2]; where U, 11 and
Vo k1 are defined by (12), and then (13) will give

(2] bn k1 n (2] an ki
JEFDZ = X_; H PV .

Lemma 3 Let m = |n/2], for all i < m,
942 mYq,n—i <1
9492 m—i9q,n

Proof. By definition of the sequences g, , and g2 ,, we have

[ i L= /g% o1 —1/g2m=2i+2
1—1/gn-it1 '

9e2mYgn—i
g2 m-idgn H?:n—H—l 1-1/¢7 i=1
For all j, 1 < j < i, and whatever is the parity of n, we have 1 —1/¢?™= 2142 < 1 —1/¢g"—J+1
which gives us the result. O
Lemma 4 Let m = |n/2], for all i < m,

942 009q,n—2i > 1

942 m—i9q,00

Proof. We have, by definition,
1— 1/q2m—2i+2j

setostan=i_ Dipmeil = Vi pp1 = yjgenses
Hj>n—2z' 1-1/¢ %0 1—1/qn—2+i

942 m—i9q,c0

For all j > 0, and whatever is the parity of n, we have 1 — 1/¢?m~ 2142 > | — 1/¢q"~2%4J,

a
Proposition 11 Let 6, ;= g+ n/2 bp i Foralll, 0 <1<k, we have
GEE

10-1)72
Sbnpa < =1 gk

- qn/Z—k

Proof. Let m = [n/2], we have
11+1)/2 992 m9qn—2k+219¢ n—k

bn,k,l =49 (+1)/ . Sn k-1,
992 m—k+19¢,n—2k+19¢,n

using Lemma 3, Lemma 4 and the fact that g, , and g,2 ,, are decreasing, we obtain

9q,00 bn,k,l
Snk—1 S —iTyz S Snk-l-
9g,n—2k+1 q

INRIA



On the dimension of the hull 11

From Corollary 1 and Proposition 7, we get

_ 1 1 bn k1 1
L= (1 o (q — 1)qn—2k+1) (1 o qn/2—k+1) < g+1D/2 <1+ gn/2—k+l’

Let’s consider the left-hand term L of this inequality

1 1
Loz 1= (g — L)gn=2k+1 — gn/2-k+
> 1 1 1 g
Z - (q _ l)qn/Z—k+l o qn/2—k+l - W:

and finally, we have

q bn k1 1
1= (g — 1)gn/>—F+ < PICSYE <1+ prYERTEE
which concludes the proof. d

Proposition 12 Let (u;)i>0 be the sequence solution of Ei’:o [l]uZ = ¢'U+D/2 gnd let

'3

Yokl = U — An k1. Forall [, 0 <1<k, we have Ei’:o U»]’Yn,k,z’ =bn k1

This proposition states that equation (15) can be cut into two pieces. We have for all /,
0 <<k,

{an,k,l = ug + Mkt g o [us = 4D
bori = M2 4 s o rmki = bnp

We will now examine these equation and prove that wu; is asymptotically proportional to
¢'1/2 and that the term Yn,k,1 can be neglected for fixed ! when n and k grow.

4.1.1 First order term

We now wish to solve the equation Ei’:o [Zl] u; = ¢'t1/2 By use of the inversion formula

(8) we get

= Z [Jeratsnes (16)

Lemma 5 For alll > 0, we have

w=30 [ vt < ) ol ()

u;  if l is even.

RR n 2682
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Proof. From (1_?1) = (1;) +!—iand (16) we get

:EH( RECIRCS _ul+2[] () g -,

and from (2c¢), we have U.](ql_i -1 = [1 1] (¢' — 1), thus

I —1 i1 1—i
LU]—U]—F(]—lZI: :| ll(2)+(2):ul—(ql—1)w1_1.
Now, w; = 0 when [ is odd because the terms for ¢ and { — ¢ in the sum are the opposite of
each other. And when [ is even, [ — 1 is odd and w; = u; — (¢' — Dwi_1 = ;. O
Proposition 13 Let u; be the sequence defined by

T
1

i=0
We have for alll >0

H qi H (qi_l):

0<i<1 0<i<1

i even i odd

or equivalently ug = 1 and for alll > 0

w = u—1q' if | is even,
= ui_1(q' — 1) ifl is odd.

Proof. We will prove the result by induction. Clearly ug = 1. From (16) and (2e), we have
!
-1 ,_; [—1 —i ()4 (1=
= ¢ 1)t ("2)+('3)
o= (e D< i
1
l— 1 z+1 1 z l— 1 . i41 11—
= 112]2 2 1_2(2)'*'(2)
> [ 3 [

) 3l el (BTN E R 1)_2[1_1] o1 ()47

=uj_1 =wi—1

Thus we have u; = ¢'uj_1 —wi_1, where w; is defined by (17). Lemma 5 then gives u; = g ui_q
if [ is even, and u; = (ql — Dug—y if [ is odd. O

INRIA
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Corollary 3 For alll > 0, we have

_q1(1+1)/2 9q,1 )
9q2,11/2]

Proof. From Proposition 13, we have

w = g+1/2 H < _) — D)2 H ( )
0<i<li ¢

0<i<1
i odd

()

0<i<|1/2]
which exactly means u; = ql(l'*'l)/zgqy;/ngyll/zj. d

4.1.2 Second order term

Proposition 14 For alll, 0 <1< k, we have

q ql(I—l)/2
n/2—k"

Yakgl £ (U +1
| = ( )q—lgq,u/zjq

Proof. The inversion formula gives

l

[ -
Yn k= Z H (—1)1_Zq( 2 )6n,k,ia

=0

i 1

Z q 3 UG
n < 67’1 ,2 .
el < — H Vool < (g—1)gn/2F & Hq

and since (1;) + (;) = (;) i(l — ), we have

Gq,1
|7n,k,l| S n/2 k Z |::| i(I— z) n/2 k Z

nggql z.

Finally, we have g,; < g, and g,1 < g4,1-i, thus gq,l/(gq,igq,l—i) < min(l/gq,ia 1/gq,1—i) <
1/9411/2), and
!
¢ ¢ 141
q—1q"2"% g, 1172

1Yn ke t| <

Corollary 4 There exists a constant K, only dependent of q, such that for alll, 0 <1 <k,

|7n,k,l| -
u <K PYERTET
Proof. From Proposition 14 and Corollary 3, we can easily find such a constant. d

RR n 2682
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4.2 Dimension of the hull

Theorem 3 Let n be a positive integer. For all k < n/2 and alll < k, the number of [¢; n, k]
codes whose hull has dimension [ is equal to

e (1o (7))
A, = 4 1+0 | —— .
o [k’] g1 goa | (k_1y/21 94,0 g2t

Proof. By definition, we have Amk’k_;qk(kﬂ)ﬂ = [Z] m an k1. We have an j r—1 = up_1 +
Yn,k,k—1 and thus from Corollary 4, we get

k k
A pagt D/ = [Z] Huk_, <1 +0 <W)) .

Finally from Corollary 3 and (3) we obtain the result. O

This result gives an accurate estimate as long as [ is not close to n/2, this will always
be the case if n — 2k is large. If n — 2k is small and [ is close to k, then formula (11) of
Theorem 2 will apply.

The fraction An,k,l/[Z] represents the proportion of [¢; n, k] codes whose hull has a given
dimension [. The next theorem states that this ratio is independent from n and £ when these
numbers grow.

Theorem 4 Let A, 1 ; denote the number of [¢; n, k] codes whose hull has dimension l. For
all l, the proportion Amk’l/[;;] of such codes is convergent when n and k goes to infinity.
We will denote Ry this imit. We have for all 1> 0,

Ity Ro Jq,00
R = = where Ry = ——.
B R VRV PEE VI P Y T e
Proof. Immediate application of Theorem 3. d

Corollary 5 The average dimension of the hull of a q-ary linear code is asymptotically

equal to .

1>1 i>1

Proof. Let’s apply (5) with t = 1/¢q and u = tz, we obtain

n

HO+FO:Z@4MLDWW4V

i>0 n>0

from which we obtain the series

R(:) =Y Rie' = Bo ] <1+qi)

>0 i>1

INRIA
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(Remark that when z = 1 we have

R(1) :ZRlzRon <1+%) :ROM = R

1>0 i>1 Hi21(1 - 1/4°) 9q,00

which was predictable.) The average dimension of the hull can be obtained by differentiation

of the series R(z),

dR(z) _ 1 R(z) 1
=2 =) G = RO

1>1 i>1 i>1

and thus, for z = 1,

1

1>1 i>1

5 Conclusion

We proved here that when the size of a code gets large its hull has a constant average
dimension. Additionally, from Theorem 3, the correcting term is exponentially smaller than
the dominant term term. For instance, in the binary case with n = 40 and k£ = 20, the average
dimension of the hull computed by the asymptotic formula has a relative difference of 1076
with the exact value computed with (11). This figure drops to 1071% when n = 2k = 100.

The dimension of the hull is a strictly positive constant, practically, this means that
the hull will be a vector space whose dimension is small but not necessarily zero, at least
for small values of g. We may then use the hull to obtain non trivial information on codes
for which the usual invariants (minimum distance, weight distribution ...) are difficult to
compute.

At last, if we remark that H(C) = CNCL = (C +C*)L, it appears that the hull can be
computed by a Gaussian elimination on a n X n matrix, where n is the length of the code.
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