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Abstract: For points sampled near a compact setX, the persistence barcode of the Rips
Itration built from the sample contains information about the homology of X as long asX
satis es some geometric assumptions. The Rips ltration is prohibitively large, however zigzag
persistence can be used to keep the size linear. We present selespecies of Rips-like zigzags
and compare them with respect to the signal-to-noise ratio, a measure ofdw well the underlying
homology is represented in the persistence barcode relative to thaoise in the barcode at the
relevant scales. Some of these Rips-like zigzags have been availablegasg of the Dionysus library
for several years while others are new. Interestingly, we show that@ne species of Rips zigzags
will exhibit less noise than the (non-zigzag) Rips ltration itself. Thus, the Rips zigzag can o er
improvements in both size complexity and signal-to-noise ratio.

Along the way, we develop new techniques for manipulating and comparig persistence barcodes
from zigzag modules. We give methods for reversing arrows and remag spaces from a zigzag. We
also discuss factoring zigzags and a kind of interleaving of two zigzags dh allows their barcodes
to be compared. These techniques were developed to provide ourdhretical analysis of the signal-
to-noise ratio of Rips-like zigzags, but they are of independent integst as they apply to zigzag
modules generally.
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Zoologie des zigzagsa base de complexes de Rips pour
I'inerence homologique

Resune : Pour des pointsechantillonres pes d'un compact X, le code-barrede la Itration de
Rips construite sur les points contient de I'informationa propos del'homologie de X sous certaines
hypotheses gonetriques. Toutefois, le colt de constructionde la ltration de Rips est prohibitif,
mais la persistence des zigzags peut permettre de le rendre lae en le nombre de points de
donrees. Nous pesentons plusieurs types de zigzags bass sur desmplexes de Rips, et nous
les comparonsa l'aune de leur rapport signal sur bruit. Certains de ce zigzags sont disponibles
dans la bibliotreque Dionysus depuis plusieurs anrees, tandigjue d'autres sont nouveaux. Il est
ineressant d'observer que certains ont des codes-barres aveigai cativement moins de bruit que
celui de la ltration de Rips standard. Ainsi, les zigzagsa base de comfexes de Rips permettent-
ils non seulement de eduire la complexie maisegalement d'aneliorer le esultat de I'approche.
Dans notre analyse nous ceveloppons de nouveaux outils pour manipuler $ezigzags et comparer
leurs codes-barres. En particulier, nous fournissons des netli®s pour inverser des eches ou
enlever des espaces dans un zigzag, tout en controlant I'impact sur soodae-barre. Nous parlons
egalement de factorisation et d'entrelacement de zigzags. Ces outilost la clef de vodte de notre
analyse, et ils pesentent un inerét incependant puisqu' ils s'appliquent aux zigzags en greral,
et non pas seulementa ceuxetudes ici.

Mots-cks : Persistance des zigzags, inerence homologique, Itrations de Ripstopologie
appliqee



Zigzag Zoology 3

1 Introduction

The goal of homology inference is to extract the homology of a space from a niteanple. The
problem is ill-posed in general, but under the right geometric assumgions about the input and the
underlying space, one can compute an object called gersistence barcodevhich provably contains
information about the underlying homology. Indeed, homology inference wagnd continues to
be one of the main motivations for the development of topological persisteretheory.

The barcode is computed from a sequence of simplicial complexes, fatich two main chal-
lenges arise. The rst challenge is to guarantee that the simplicial corplexes remain small.
Commonly used methods produce complexes that quickly become to@irge to t in memory.
The topological signal is the information about the underlying space contaired in the barcode.
The second challenge is to decrease noise in the barcode that can obsetine topological signal
while still guaranteeing that the signal remains. We confront both of these challenges, analyze
several approaches that give linear size data structures, and providéheoretical guarantees on
the signal-to-noise ratio in the barcodes.

The standard persistence theory applies to nested, parameterizefamilies of simplicial com-
plexes called Itrations . The persistence algorithm takes a Itration and produces a barcode
describing all the changes in homology as one goes from one complex to the héx the lItra-
tion [14, [23].

Persistent homology has an important connection with geometric inferene results that de-
scribe conditions when homology inference is possible using a union balls centered at the
sample points (see the survey by Chazal and Cohen-Stein€rl[4]). Th@/ietoris-)Rips lItration
fR g ¢ is useful when these conditions are met. It is de ned to have a siplex in R for every
subset of points with diameter at most . So, the Itration parameter is the geometric scale
and the existing theory guarantees the existence of some range of scales Wwhich the barcode
encodes the homology of the underlying space. The barcode of this lation thus has an elegant
multi-scale interpretation of the results as being \the homology of the input point cloud across
scales.”

The immediate drawback to using the Rips ltration is that it quick ly becomes so large that it
no longer tsin main memory. The scale of this breaking point varies with the input data as well
as with the ltration and computer used, however, it is observed to happen early enough so that
not all the interesting homological information hidden in the data can be dscovered | see [19] for
a compelling example. Recent research looks at how to reduce thezsi of the lItration elements
and thereby to postpone the breaking point. For example Chazal and Oudot9] use truncated
Itrations on a nested sequence of subsets of the input points corrggnding to samplings at
di erent scales. They compute the barcodes of the Rips ltration of each subset restricted to
a range of scales near the sampling scale of the subset. This can prevehe size blowup in
the Rips ltrations because every subset looks like a uniform samp at the relevant scale. The
lingering challenge from this work is to relate the bars in the resuling barcodes for di erent
scales.

Taking advantage of the recent introduction of zigzag persistence by Casson and de Silval[3],
Morozov suggested a simple way to connect the truncated Rips Itrations of consecutive subsam-
ples together, to obtain a single long sequence of simplicial complexe&onnected by inclusions |
called the Morozov zigzaghereafter. Zigzag persistence relaxes the condition that the familyof
complexes be a ltration and instead allows consecutive spaces to badluded in either direction,
forwards or backwards, so the sequence is a zigzag diagram rather than a rttion. The Morozov
zigzag has been integrated into the Dionysus library[[13] since early 2009, dnas reported by
its author from preliminary experiments [21], it has given surprisingly good results in practice.
However, to date it comes with no theoretical guarantees, so a primary mtivation of our paper
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4 Oudot & Sheehy

is to assess the theoretical quality of the results provided by ths zigzag.

Existing methods for building sparse approximations to the Rips lItration have all focused on
the size question, but have ignored the question of noise. For exampleven the Rips lItration
can have noise in the barcode at the scales where it represents thenderlying topology. We
show that a generalization of the Morozov zigzag not only recovers the topologal signal but
also provably eliminates noise in the relevant range.

Contributions. We provide the following theoretical guarantees for the Morozov zigzag:
When the input point cloud P is su ciently close (in the Hausdor distance) to a compact
set X with positive weak feature size inRY, there is a sweet rangeof geometric scales
over which the persistence barcode of the Morozov zigzag exhibitshe homology of X
(technically, the o sets X for an arbitrarily small > 0). That is, the barcode has long
intervals spanning the entire sweet range, and their number is at last the dimension of the
homology groupH (X )| Theorem 5
There is a smaller Gweete) range over which the number of spanning intervals is exactly
dimH (X ). The other intervals in the sweeter range are ephemeral (length zex) and can
therefore be ignored.

- For the 0-th and 1-st homology, the sweeter range is as large as the sweet ranghs a
consequence, the 0-th and 1-st homology of can be read from the barcode of the
Morozov zigzag whenX has positive weak feature size | Theorem [5.6.

- For the k-th homology with k 2, our proof of existence of a sweeter range requires
X to have positive -reach | Section §.3.2] It remains an open question whether
there exists a sweeter range fok-th homology when X has zero -reach and positive
weak feature size. Although it is possible, there is no theoretical ddence to suggest
that it always exists even for small, non-zero -reach.

This motivates the study of more elaborate variants of the Morozov zigzag thatare less likely to
carry topological noise in the sweet range, even when the underlying sgge X has zero -reach
and positive weak feature size. We analyze three variants in the paper:
The rst one, called the discretized Mozorov zigzagconsists in considering only subsamples
whose corresponding geometric scales are of the forthfor a xed constant ¢ and an integer
i. This discretization makes sure that the geometric scale drops signcantly (by a factor
of ¢) from one subsample to the next, so there is enough room in each conriaEm between
truncated lItrations to kill the noise.
The second one, called thescillating Rips zigzag consists in somewhat relaxing the trun-
cation parameter in the Rips lItrations before connecting them together. The e ect is to
leave enough room in every truncated ltration for the noise to be killed.
Finally, the third one, called the image Rips zigzag consists in taking a nested pair of
Morozov zigzags with di erent Itration parameters, and in connecting t hem by canonical
inclusions to obtain an image zigzag module at the homology level. Taking a paof zigzags
instead of single zigzag Kkills the noise in the same way as taking a pair ofifs complexes
instead of a single Rips complex did in[[9].
Each one of these variants comes with the desired guarantee that the setand sweeter ranges
are equal, meaning that there is guaranteed to be only ephemeral noise the sweet range even
when the underlying spaceX merely has positive weak feature size. Consequently, the homology
of X can be inferred from its persistence barcode. Moreover, the noiseithin the sweet ranges
is ephemeral, so the barcodes exhibit less noise than the standaraidn-zigzag) Rips Itration
itself. Thus, Rips zigzags o er improvements in both size complexy and signal-to-noise ratio
compared to the Rips lItration. The price to pay compared to the basic Morozov zigzag is
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Zigzag Zoology 5

a somewhat increased time and/or space complexity | Theorems[6.5 and[6.p. The overhead
depends on the variant considered but it always remains bounded, sdhe variants are tractable
alternatives to the Morozov zigzag in practice.

To prove the aforementioned results we develop new techniques fonanipulating zigzag mod-

ules and comparing their persistence barcodes. More precisely:

We show how arrows in a zigzag module can be reversed while presemny the persistence

barcode | Theorem Applied repeatedly, this result makes it possible to turn zigzag

modules into standard persistence modules, eventually leadingo a stability result for

zigzag modules | Theorem §.4]

We give a method for removing spaces from a zigzag module while tracky the intervals

in its barcode | Theorem 3.2.] For instance, this result tells how the persistence barcode

of a zigzag homology module evolves when an inclusion between simplicisbmplexes at

the topological level is replaced by a sequence of elementary inclasis where one simplex

is added or removed at a time.
These low-level manipulations on zigzag modules enable us to deriv@gher-level comparison
theorems. In particular, we discuss factoring zigzag modules (Theetm), as well as a special
kind of interleaving between zigzags that allows their barcodes to b compared (Theore).
These theorems are the cornerstones of our proofs of the aforementioned agantees on the
Morozov zigzag and its variants. However, they are also of independent tarest as they apply
to zigzag modules generally.

Related work. A di erent approach to the problem of building sparse lItrations for os ets
of point clouds in Euclidean space was presented by Hudson et al. J19]. Theused ideas from
Delaunay re nement mesh generation to build linear size ltrations that provide provably good
approximations to the persistence diagram of the o sets. However, thatapproach requires build-
ing a complex that covers the ambient space and includes simplices to its dimension. Moreover,
the construction requires the use of high degree predicates. In cordst, the new methods de-
scribed here only depend on an intrinsic dimension of data and can be ldtiusing only distances
comparisons.

Recently, Sheehy[[22] proposed a method for building a sparse zigzaljration whose barcode
is provably close to that of the Rips Itration as well as a non-zigzagging vaiant achieving similar
guarantees. Also, Dey et al. gave an alternative persistence algorithm forimplicial maps rather
than inclusions, which is closely related to zigzag persistencd2]. Their approach similarly gives
barcodes that are provably close to that of the Rips Itration. We obtain c omparable space/time
bounds to these results but get stronger guarantees regarding noise. Mwods that approximate
the Rips ltration directly can, in principle, have noise that is as large as the noise in the Rips
[tration itself (or worse).

Paper layout. After introducing the necessary background in Sectior] P, we presenvur low-
level zigzags manipulations in Sectior] |3, then our high-level zigzags compaon theorems in
Section[4. These theorems are used to analyze the properties of Morozoigzags and their
variants in Section[5. Finally, we discuss the impact and limitations ofour results in Section[®,
before presenting some experimental data in Section] 7.
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6 Oudot & Sheehy

2 Background

Section[2.] gives a brief overview of the concepts and results fromgzdag persistence theory that
will be used in the algebraic part of our analysis. Our terminology is the ame as in [3] up to a
few minor variants, and we refer the reader to that paper for a more in-deth treatment.

Section[2.2 introduces some concepts and results from the samplingeory for compact sets
in Euclidean spaces, which will be used in the geometric part of our angkis. We refer the reader
to [4] for a comprehensive survey on this topic.

2.1 Zigzag persistence

A zigzag moduleV is a nite diagram of nite-dimensional vector spaces over a same eldF:
VzvléIVZéz f$lvn;

where the notation V, é Vi+1 indicates that the linear map f; can be either a forward map
(fi :Vi! Vi) or a backward map (i : Vi Vi+1). An equivalent notation is fi : Vi $ Vis1.
The sequence of map orientations (forwards or backwards) de nes théype of the module V. A
persistence moduleas de ned in the standard (non-zigzag) persistence literature[[23],9 a zigzag
module in which all the maps are oriented forwards. Thus, all persisgtnce modules have the same
type.

A submoduleW of a zigzag moduleV is de ned by subspacesW; V; such that for all i we
have f;{(W;) Wi, if f; : Vi $ Vii1 is a forward map andf;(W;+1) W; if f; is a backward
map. The maps in W are then the restrictions of the maps inV to the W;'s, which makes the
types of V and W the same. W is called asummandof V if there exists another submoduleX
of V such that V; = W; X for all i. In that case, we say thatV is the direct sum of W and X,
written V = W X. As pointed out in [3], all summands are submodules but not all submodds
are summands.

A zigzag moduleV is called indecomposablédf it admits no nonzero summands. It is known
since Gabriel [15] that the indecomposable zigzag modules are the so-eallinterval modules
Given a module type and an integer interval [b; d, the interval -module with birth time band
death time d is written | [b; d and de ned with spacesl; such thatl; = Fifi 2 [b;dandl; =0
otherwise, and with identity maps between adjacent copies of the baseeld F and zero maps
elsewhere (the maps are oriented according to). Another way of stating Gabriel's result is to
say that every -module can be written as a direct sum of -intervals. Moreover, it follows from
the Krull-Schmidt principle that this decomposition is unique u p to a reordering of the terms |
see Proposition 2.2 in[[3]. We gather these facts into a single statement

Theorem 2.1 (Interval Decomposition). Every -module can be written uniquely (up to reorder-
ing) as a direct sum of -intervals.

Thus, as in standard (non-zigzag) persistence theory, the structureof a zigzag moduleV is
fully and uniquely described by a multiset of integer intervals, called the persistence barcodef V
and noted PerqV). Given an interval [b; d, we write mult([ b; d; V) for the multiplicity of [ b;d|
in the multiset PerqV), which is also the number of copies of the interval moduld, [b; d in the
decomposition ofV.

Carlsson and de Silva gave a constructive proof of Theoretn 2.1 | seel[3, Tim. 4.1], which
lead to an algorithm for computing the decompositions of zigzag modules. Amanthe concepts
and results presented in their paper, the following ones play an irportant part here.

Inria



Zigzag Zoology 7

Given a zigzag moduleV = V; §Sl f$ 'V, and two integersp  q2 [1;n], let V[p; d denote
the restriction of V to the index setp i ¢
V[p;Q] = Vp %p Vp+1 f$+l f$ ' Vq;
and let PergV)ji,.q) denote the restriction of PergV) to [p; d]:
PergV)ipq; = flb;d\ [p;dj [b;d 2 Per{V)g:

The restriction principle [B] Prop. 2.12] states that the restrictions of a module and of its barcode
behave as expected, namely:

Theorem 2.2 (Restriction). PergV[p;d) = PergV)jip.q)-

In other words,

ult((b;d;V) if p<bandd<aq;

@ qmult([b;d; V) if p<bandd= g;

w pMult((B%d]; V) if p= band d <q;

oo [piq] MUt P d%; V) if p= bandd = q:

m
P
8b d2[p;q; mult(b;d; V[p;d)= _ p
P

Given a zigzag moduleV = V; %1 f$ ' V,, the right Itration of V, noted Ry, is a ltration
(i.e. a nested sequence of subspaces) of the vector spage de ned recursively as follows:
if n=1, then Ry =(0;Vy);
else > 1),
8
Ry = aRo)i ifn (R V)i fa 1:Ve 2! Vo

©0;f, Y (Ro);  sfuY(Rn 1) if fn 1:Va 1 Vi

where Ro; ;Rn 1) is theright ltration of V[1;n 1].
We write Ry[K] for the k-th element in the right Itration of V. Note that the recursive de nition
maintains the ltration property, that is,

0=Ry[0] Ry[1] Rv[n 1] Ry[n]= Vi:

The left Itration Ly is de ned symmetrically as the right ltration of the reversal of V. Itis
thus a lItration of the space V;.
The birth-time index by is a vector of integers de ned recursively as follows:
if n=1, then by = (2);
else o> 1), 8
<

by = (bly o l;n)iffn 1:Va 1! Vg
©o(mby; by 1) iffn 1iVe 1 Vas

where (; ;by 1) is the birth-time index of V[1;n 1].
In other words, by stores a permutation of the index set [1n], and it derives from the type
of the module V in a similar way as Ry derives fromV itself. The k-th element in by, denoted
by by[k], corresponds to the image ok through the permutation. The death-time indexdy is
de ned (almost) symmetrically as n+1 by, whereV is the reversal ofV. The Localization
Theorem [3, Thm. 5.3] describes how these various quantities intetpy with each other in the
expression of the interval multiplicities in the barcode of V:

RR n° 8141



8 Oudot & Sheehy

Theorem 2.3 (Localization). Given an index k 2 [1;n], for all i;j in the range 1 i K,
1 j n+l1 Kk,

mult( byglils dviengli] 5 V) = dim( Rypglil\ Lynli])
dim(Rypxgli - 1\ Lypwenili])
+dim( Ryl 1\ Lvpengli 10)
dim(Rypxg[iIN Lvpengl 1D:

2.2 Critical Point Theory for Distance Functions

The geometric part of our analysis takes place in Euclidean spacBY, where k k denotes the
Euclidean norm. The distance from a pointy to asetX R%isd(y;X) =inf x2x kx yk. When
X is compact, the in mum becomes a minimum, and we let ¢ denote the function distance
to X.

8y 2 RY; dy(y) % d(y;X)=min kx  yk:
X

The -osetof X is the locus of the points ofRY whose distance toX is at most

def
X =

dy ' ([0; D:

Although dx may not be di erentiable everywhere in RY, its gradient can be extended to be well-
de ned over all RY [6]. The extended gradient is denotedr x in the following. When working
with o sets, it is useful to observe that for y 2 X , dx (y)=dx (y) ,s0r x (y)=r1 x(y).

De nition 2.4. A critical point of the distance functiondy to a compact setX RY is a point
p of RY nX such thatr x (p) = 0. Equivalently, a critical point is a point of R nX that is in
the convex hull of its nearest points inX. A number r 2 R is a critical value if there exists a
critical point p such thatdy (p) = r.

De nition 2.5.  The weak feature sizeof a compact setX , noted wfs(X ), is the smallest critical
value of its distance functiondy .

Given X RY and 0, we let H (X ) denote the image of the homomorphism
H (X )! H (X )induced at the homology Ieve[ﬂ by the canonical inclusionX | X

Lemma 2.6 ([9]). Let X be a compact set and® a nite setin RY, such thatdy (X;P) <" for
some" < %WfS(X). Then,H (P )=H (X )forany ; 2[" wfs(X) "]such that 2",
and for any 2 (0;wfs(X)).

Forany nitesets P Q R and any non-negative parameters; & ; Osuch that 0
0 and ° O we have the following commutative diagram where all linear maps
are induced by inclusions:
H(P) ! H(EQ)
" " (1)
HFE) ! H(@Q)

This commutative diagram induces a homomorphismH (P )! H (Q 2).

1Throughout the paper we use singular homology with coe cien ts in a eld | omitted in our notations.

Inria



Zigzag Zoology 9

Lemma 2.7. Let X be a compact set and® Q be nite sets in RY, such thatdy (X;P) <"
and dy (Q; X) <" for some" < %WfS(X). Then, forany ; % ; 92 [3"wfs(X) "]such that

2", 0 0 0 and ° | thelinearmapH (P )! H (Q 2) induced by the
diagram () is an isomorphism.

Proof. According to Lemma, H (P )and H (Q Z) are isomorphic vector spaces, therefore
0
all we need to show is that rankH (P ) ! H (Q ,) = dim H (P ). We have the following

commutative diagram where all the maps are induced by inclusions (notehat Q 2° P since
du (P;Q)  du(P;X)+du(Q;X) 2'):
b
H B39 —H Q0
d

a

" e uﬁ‘* Q0

H(@Q %)

The homomorphismH (P )! H (Q 2) we are interested in is the restriction ofbto im a, whose
rank is the same as the one ob a. By composition and commutativity, we have

rankd f =rank b a e rankb a ranka;

and by Lemma[2.6 we haverankd f =rank a=dim H (P )since 2 "and ° wfs(X) ".
Hence, rankb a=dim H (P ). O

Combining the above analysis with the Persistent Nerve Lemnﬁ [9, Lemma 3.4], we obtain
the following result where the notation H (C (P)) stands for the image of the homomorphism
H (C (P))! H (C (P)) induced at the homology level by the inclusionC (P) ! C (P).

Theorem 2.8. Let X be a compact set and® and Q be nite sets in RY with P Q, such that
du (P;X) <" anddy (Q; X) <™.
@ If"< %WfS(X), then for any ; 2 [';wfs(X) "] such that 2", for any
2 (0; wfs(X)), the spacesH (C (P)) andH (X ) are isomorphic.

(i) If " < iwfs(X), then for any ; % ; ©2 [3;wfs(X) "] such that 2", 0
o v 0 and © , the homomorphismH (C (P)) ! H (C 2(Q)) induced
by the following commutative diagram (where the maps are inducedy inclusions) is an
isomorphism.

H(C(P) ! H (Cu(Q)
H(C(P) ! H (Co(Q)

2We are in fact using an extended version of the Persistent Ner ve Lemma, stated in [8]] where the index sets
of the open covers may di er.

RR n° 8141



10 Oudot & Sheehy

3 Manipulating Zigzag Modules

Suppose we have a zigzag modud = V1 $ $ V, and we want to reverse the mapvk $ Vi+1
for some arbitrary index k in the range [, n 1], while preserving the persistence barcode df.
The following theorem shows that this is always possible, moreovewith a reverse map that is
closely tied to the original map.

Theorem 3.1 (Arrow Reversal). Let V = V; $ $ W é Vik+1 8 $ V, be a zigzag
module. Then, there is a mapg : Vk $ Vk+1 oriented opposite tof , such thatf gjim¢ = Lim+
andg fjimg = limg, and the zigzag moduley obtained from V by replacing the submodule

Vi é Vik+1 by W ¢ Vk+1 has the same persistence barcode a&

Observe that whenf is injective, g is surjective andg f is the identity over the domain of
f . Conversely, whenf is surjective, g is injective and f g is the identity over the codomain of
f . The analysis of these special cases will be the rst step in our proadf the theorem.

Suppose we have a zigzag modué = V1 $ $ V, and we want to remove a spacé/ from
the sequence while preserving most of the persistence barcode\of| except intervals bounded
at index k since these disappear from the sequence. The following theoremahs that this is
always possible, and the magh connecting Vi 1 and Vg+1 can be chosen with some other useful
properties.

Theorem 3.2 (Space Removal) LetV =V;$ $ W 1i Vi$ ku$ $ Vobea
zigzag module. Then, there is a mag : Vk 1 $ Vk+1 such that the zigzag modulé/ obtained
from V by replacing the submodulé&/ 1 é Vi ¢ Vk+1 by Vk 1 § Vk+1 has a persistence barcode
that derives from the barcode oV as follows:

(@ for i k 1, mult((i;k 1V )=mult( i;k 1] V)+mult( i;k]; V),

(b) for j  k+1, mult((k+21;jL;V )=mult([ k+1;j];V)+mult( k;j1;V),

(c) for any other interval [i;j ] with i;j 6 k, mult([i;j I;V ) =mult([ i;j ]; V).
Furthermore, the map h makes the following triangle commute when applicable:

=,

4
Vk 1 QO—‘h Vk +1

More precisely:
h=g f whenVk 1! Vi !® Viur,
h=f gwhend 1f Vi ng+1,
f =g hwhenV 1 !f Vi g Vk+1 andimf img,
g=f hwhenV ; !f Vi g Vk+1 andimg imf,
f=h gwhenVik 1 ' V! Visa andkerg kerf,
g=h f whenVk ; f Vi 19 Vk+1 and kerf  kerg.

Note that the condition im f  im g is not restrictive in the sense that it is a requirement for
the existence of mapsh : V¢ 1! Vi41 suchthatf = g h. Similarly,img imf is required for
g=1f h,kerg Kkerf isrequiredforf = h g, kerf kergisrequiredforg= h f. When these
conditions are not satis ed, the theorem still provides mapsh : Vx 1 $ Vk+1 (both orientations
are possible) such that assertions (a){(c) hold, however the triangle ahnnot commute.

Theorem[3.2 has the following high-level interpretation, which coresponds to the behavior
observed in non-zigzag persistence theory:

Inria



Zigzag Zoology 11

intervals [k; k] in PergV) disappear in PergV ),
intervals [i; k] with i <k in PergV) become [k 1] in PergV ),
intervals [k;j] with j >k in PergV) become k+1;j]in PerqV ),
all other intervals in PerqV) remain unchanged inPergV ).
The rest of Section[3 is devoted to the proofs of Theoren|s 3.1 arjd 3.2, wdfi are interleaved
to some extent. Here is the outline:

" Section[3.] focuses on the reversal of injective or surjective mapand proves Theoren] 3.]L
in this special case.

"~ Section[3.2 focuses on the composition of successive maps with same wt@ion in a zigzag
module, and proves Theorenj 32 in this special case.

"~ Section[3.3 combines these restricted results together to obtain & more general versions
stated above.

3.1 Reversing Injective and Surjective Maps

Lemma3.3. LetV=V;$ $ W \ Vks1 $  $  V, be a zigzag module such that the map
f is surjective. Then, there exists an injective mapg : Vk+1 ! Vk such thatf g= 1y, and

the zigzag module&/ =Vi$ $ Vi ° Vku 3 $  V, has the same persistence barcode as
V. Conversely, if V is given, with g injective, then there exists a surjective mapf : Vi ! Vi1
such thatf g= 1y,,, and the corresponding modulé/ has the same persistence barcode a5 .

Note that by reading the zigzag modules from right to left instead of from left to right in
the statement of the lemma, we obtain the same guarantees for when the gective map f is
oriented backwards and the injective mapg is oriented forwards.

The proof of the lemma proceeds in two steps corresponding to Lemmd&4 and[3.5 below.
Given a surjective mapf : Vi« ! Vii1, we rst show that an injective map g : Wi+ ! Wk
can be built, such that f g = 1y,,, and g ! pushesthe right Itration of the submodule
Vi$ $ VW into V.1 in the same way asf does. Then, we show that these properties imply
that the persistence barcode ofV is preserved whenf is replaced byg. While step 1 relies only
on standard arguments of linear algebra, step 2 requires the use of the Reistion Theorem P.7]
and Localization Theorem[2.3.

Lemma 3.4. Let V; $ $ Ve and Vksr $ $ V, be two zigzag modules. Given any
surjective mapf : Vi ! Vii1, there exists an injective mapg : Vk+1 ! Vi such that:
@ f 9=1v.,
(b) 8i=0; ;k, (kerf\ R)) (img\ R))= R;, where(Ro; ;Rx) is the right Itration of
Vl $ $ Vk.
Conversely, given any injective mapg : Vk+1 !V, there exists a surjective mapf : Vg ' Vi
such that these conditions are satis ed.

Proof. Assumingf : Vk ! W1 is given, choose any complement of kdr in Vi, and let im g be
that complement. Then, f jin g is an isomorphism ontoVi+1 , so letg = (f jim g) 1 This map is
an injection Vg+1 ! VW, with f g = 1y,,, , thus it satis es condition (a). In order to satisfy

condition (b) as well, the choice of img as a complement of kef must be made in a way that is

compatiblewith the right ltration ( Ro; i Rk). We de ne im g as a direct sum img = ikzo Ji,
where the subspaced; are de ned by induction:
Jo=Ro =0,

8i 1, letJ; be any complement ofR; 1 +(ker f \ Rj)in R;.

RR n° 8141



12 Oudot & Sheehy

An easy induction (left to the reader) shows that the J;'s are in direct sum with one another and
with ker f , and that (ker f \ R;) (im g\ R;) = (ker f \ R;) }:0 Jj = R; forall i =0; 1K,
thus satisfying condition (b). In particular, when i = k we have (kerf \ Ry¢) (im g\ Rg) = Ry,
so kerf  img= V.

Assuming now that g : Vk+1 ! Vi is given, choose any complement of irg in Vi, and let
kerf be that complement. De ne now f jin 4 to be the inverse function ofg over img (recall that
g is an isomorphism onto its image). Then,f =0 fjmg:kerf img! Vi1 is a surjection
Vi ! Vi1, with f g= 1y,,, , thus it satis es condition (a). In order to satisfy condition (b) as
well, the choice of kef as a complement of ing in Vx must be made in a way tf]gt iscompatible

with the right Itration ( Rp; ;Rk). We de ne kerf as a direct sum kerf = :‘zo Ji, where
the subspaces); are de ned by induction:
Jo=Rp=0,

8i 1, letJ; be any complement ofR; 1 +(im g\ R;)in R;.
An easy induction (left to the reader) shows thaﬁ_the Ji's are in direct sum with one another and
with im g, and that (ker f \ R;) (img\ R;) =( }:0 Jj) (mg\ Rj)=R;foralli=0; ;Kk,
thus satisfying condition (b). In particular, when i = k we have (kerf \ Ry) (im g\ Rg) = Ry,
so kerf  img= V. O

Lemma 35. LetV=WV$ $ W% f Visr $  $  V, be a zigzag module, and le¥ be

obtained fromV by replacing the submodulé/ !f Vik+1 by Vk g Vk+1 - Assume that the following
conditions are met:
(a) gis injective and f is surjective, withf g= 1y, ,
(b) forall i =0; ;k, (kerf\ R;) (img\ R;)= R;, where(Ro; ;Rx) is the right ltration
of ; $ $ V.
Then, V and V have identical persistence barcodes.

Proof. An interval [i;] ] of PergV) or PergV ) can be of ve dierent types:
M) ij<k,

(i) i;j>k +1,
@iy i k<k+1 j,
(iv) i=k+1,
v) j =k

Intervals of type (i) are easily dealt with by restriction to [1 ; k]. By the Restriction Theorem 2.2,
for all intervals [i;j ] of V[Lk]=V1$ $ W=V [Lklwith]j k 1, we have
mult([i;j I V) = mult([ §;j ]; VIL;K]) = mult( i;j IV [LK]) = mult([ i;] [;V ):
The same goes for intervals of type (ii) by restriction to Kk + 1;n].
Intervals of type (iii) and (iv) are dealt with by localizing at index k + 1. Given the right
Itration  Ryp1x) = Rv ] = (Ro; ; Rk), we have
Ryiik+1 = (F(Ro); 5 (Rk); Vk+1);
Rv pxey =059 *(Ro); 19 Y(Re)):

For all i = 0; ;k, the hypotheses (a) and (b) imply g *(R;) = f(R;) becausef (R;) =
f(kerf \ R))+ f(img\ R;))=f(img\ R)="f g(g Y(R)= g *(Ri): Now, given the birth-
time index byjix; =bv kg = (b, ;b), we have

bviik+y =(b;  sbhok+1);
by k+y = (k+1;b;  sh):

Inria



Zigzag Zoology 13

Thus, modulo some boundary e ect at positions 0 andk + 1, the right Itration and birth-time

index of V [1;k + 1] are obtained from the ones ofV[1; k + 1] by a right-shift of the elements.
In addition, since the submodulesV[k + 1;n] and V [k + 1;n] are identical, the left Itrations
Lvik+1:n) @nd Ly x+1 .07 are the same, and so are the death-time indices\g+1 .nj and dy [k+1 :nJ-

It follows then easily from the Localization Theorem that mult([i;j I; V) =mult([ i;j I;V )
for all 1 i k <k +1 ] n. Indeed, letting I;r be such that byjx+q[l] = i and
dviks1nilf]=j,wehavel | kandl r n k, and Theorem[2.3 says that

mult([i;] ]; V)

mUIt( bV[l;k+1] [I];dV[k+1 ;n][r] ;V)
= dim( Rvpk+ay 1V Lypker nlr])
qlm(RV[l;k+1] [ 1\ Lygernlr])
+d|_m( Rvipk+y [ 1\ Lygsrmlr 1D
dim(Rypz k1) [V Ly mglr 1])
= dim( Rv [T+ 1]\ Ly pesanglrD
d_lm(RV [1;k+1] [I]\ I—V [k+1 ;n][r])
+d|_m( Ry wk+y [\ Ly e mlr 10)
dim(Ry kg 1+ 1]\ Ly e mlr 1D
= mult( by kg [ +1]50dv kernglr] 2V )
= mult( by 0] dvker nglr] 5V)

= mult(C ;] LV ):

Thus, intervals of type (iii) have the same multiplicity in V asinV .

Intervals of type (iv) correspond to the case where = k + 1 in the above analysis, and they
must be handled separately due to the boundary e ect. Note that b1 x4y [k +1] = k+1 =
by [1k+y[1], soforanyk+1 j nweletl r n Kk be suchthat dyy+y;n[r]=j, and by
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14 Oudot & Sheehy

the Localization Theorem[Z2.3 we have

mult((k +1;j];V)

mult( by K+ 1]; Ay ;nylr] 5 V)

= dim( Rypx+) [K+ 1]\ Ly nglr])
dim(Ryz;k+17 [KI\ L+ n1[r])
+dim( Rypyk+ [KIN Ly gl 1))
dim(Ryrk+1y [K+ 1]\ Lygsrnglr 10)

= dim( Vs \ Lygrea nglr])
dim(Vk+1 \ I-V[k+1 ;n][r])
+dim( Vi1 \ Lv[k+1 ;n][r 1])
dim(Vk+1 \ Lv[k+1 ;n][r l])

=0

= dim(O \ Ly g+ nlr])
dim(O\ Ly +1:n(r])
+dim(0 \ Ly e1nlr 1))
dim@O\ Ly +1:nlr 1))

= dim(Ry e+ [\ Ly ez ;n[r])
dim(Ry [1k+17 [O1\ Lv k+1:00rD
+dim( Ry 1x+1) [01\ Lv kernlr 1))
dim(Ry 1:x+17 [\ Ly weamlr 10

= mult( by [1:k+1] [1]; dy [k+1 ;n][r] Vo)
= mult(k+1;j];V ):

Thus, intervals of type (iv) have the same multiplicity in V asinV .

Finally, the case of intervals of type (v) is handled by localizing at index k. The submodules
V[1;K] and V [1;K] are identical and so are the corresponding right Itrations and birth-time
indices. It is easy to check that the left Itrations of V[k;n] and V [k;n] are such that

Lvikn1[0] = O;
Lven[d] = ker f;
Lv inyn+1 K= V; and
Lv geny[n k] =im g:

Moreover,

dvicnild] =dy genjn+1 K] = k:

Let | be the index ofi in by, that is, bypll] = by 4[] = it Recall that hypothesis (b)
says thatforallm=0:::k

Ryuig[m] = (Rypg[m]\ kerf)  (Rypg[m]\ img):
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We can thus compute the multiplicity of intervals of type (v) as follows:
mult((i;k; V) = mult( byrg(l]; dvicas[] V)

= dim( R\ Lvpen (2D
dim(Ry 1\ Lven1[0])
+dim( Ryl 1]\ Lypen[0])
dim(Rypgll 11\ Lypeny[2])

= dim( Rypqll]\ kerf)
dim(Ryz[1]\ 0)
+dim( Ryl 1]\ 0)
dim(Rupiqll 1]\ kerf)

= dim( Rypuq[l]\ kerf)
dim(Rypagll 1]\ kerf)

= dim( Ry[l])
dim(RV[l;k][l]\ im g)
+dim( Rv[l;k][l 1]\ img)
dim(Ryp.gll 1)

= dim(Ry uxll]\ Ly wnjln+1 k]
dim(Ry xl]\ Ly njln K]
+dim( Ry gl 1\ Ly engn K]
dim(Ry [l 1\ Ly nin+1  K])

= mult( by pyllldv engn+1 K] V)
= mult( i;K];V ):

Thus, intervals of type (v) have the same multiplicity in V asinV . O

3.2 Composing Maps

Lemma 3.6. LetV =V, $ $ W1 f Vi 19 Vis1 $ $ V, be a zigzag module, and

let V be obtained fromV by replacing the submodulé/ ; !f Vi 19 Vik+1 by Vk 1 9 f Vi+1 -
Then, the persistence barcode ol derives from the one ofV through assertions (a){(c) of
Theorem[3.2.

By reading the zigzag modules from right to left instead of from left toright in the statement
of the lemma, we obtain the same guarantees for when the magsand g are oriented backwards.

Proof. Localize atindexk+1. Giventhe right ltration Ryp.c 13 = Rv px 131 = (Ro; iRk 1),
we have

Rviik+) = (9 f(Ro); ;9 F(Rk 1);9(Vk); Vk+1);
Rv pk+1 =(9 f(Ro); ;9 f(Rk 1);Vk+1):
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16 Oudot & Sheehy

Now, given the birth-time index by 13 =bv px 13 =(b; ;b 1), we have

bvpk+y = (b; b 1 kk+1);

by pk+y =(b; b 11k+1):
Since the submodulesV/[k + 1;n] and V [k + 1;n] are identical, the left Itrations Lyk+1 .0 @and
Lv k+1;0] are the same, and so are the death-time indices\g+1 .nj and dy (+1;1]. Therefore,

foranyk+1 j nweletl r n kbe suchthatdyk.1.n[r]= ], and by the Localization
Theorem[2.3 we have

mult((k +1;j1; V) + mult([ k;j1;V)

dim( Vic+1 \ Lvsanglr])
dim(g(Vik) \' Lvk+1:n3[r])
+dim( g(Vk) \ Lvk+1n[r 10
dim(Vk+1 \ L\/[k+1;n][r 1])
+dim( g(Vk) \ Lyksa;nlr])
dim(g f(Vc 1)\ LvgsrnlrD
+dim(g f(Mc 1)\ Lygsrmlr 1)
dim(g(Vik) \ Lvk+1.nr 10

= dim( Vk+1 \ Lygsrnlr])
dim(g f(Mc 1)\ Lvsanglr])
+dim(g f(Mc 1)\ Lygsr .t 1)
dim(Vis1 \ Lygernglr 1D

mult( k+1;j];V );

which proves assertion (b). The proof of (a) is symmetric, based on lealization at index k 1.
To prove (c), we need to consider all other intervalsifj ] with i;j 2f1; ;ngnfkg, which
can be of the following three types:
(c0)1 i k 1<k+1 | n,
(1 i j k 2
(c3) k+2 i j n.
Intervals of type (c;) are handled by localizing once again at indexk + 1. Referring to the
expressions ofRy(1;k+1)» Ry 1+ Pyvpak+1y» Bv 1+ s Lyvik+1n] = Lv k+1:n], @nd Gyeer oy =
dv k+1:n] given above, we havei = b for some | k 1 and therefore the expressions of
mult([i;j ]; V) and mult([i;j 1;V ) given by the Localization Theorem are identical.
Intervals of types (c;) and (c3) are handled using restriction. Consider the submodulé/[1; k
11=V1$ $ VWV 1=V [1;k 1]. By the Restriction Theorem , foralll i | k 2
we have

mult([i;j V) =mult ] [ VIL Kk 1) =mult(( ;] LV [k 1) =mult(( 5]V ):
Similarly, restriction to the submodule VIk+1;n]= V1 $ $ V, =V [k+1;n]gives
mult([i;] 1; V) = mult( i;j [ VIk +1;n]) = mult( ] [V [k +1;n]) = mult i;j [;V )

forallk+2 i | n. This concludes the proofs of assertion (c) and of the lemma. O

3.3 Proofs of the Arrow Reversal and Space Removal Theorems

We will now combine Lemmas 3.8 and 3.6 together to prove the more general s&ons stated in
Theorems[3.1 and 3.P.
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Proof of Theorem[3.1. Assume without loss of generality thatf : Vi ! Vik:1 (the case wheref
is oriented backwards is symmetric and reduces to this one by readinthe zigzag module from
right to left). Consider the module W = Vi $  $ Vg fr Vies1 =2 2 Vit $ $ Vi,
where V41 o =im f, f; = f and f, is the canonical inclusion imf ;! V41 . Sincef = f, fq,
the persistence barcodes o/ and W are related to each other through the matching given by
Lemmal3.8.

Then, we apply Lemma[3.3 twice, once for the surjective mag ; and again for the injective
map f,. We thus obtain a moduleW =V;$ $ Vi ® Vieioo 2 Vkr $ $  V, that has
the same persistence barcode a4/.

Finally, consider the moduleV =V $ $ W "Vis1 8% Vi, whereg= g1 0.
Its persistence barcode is related to the one ofV through the matching given by Lemma][3.8.

Together, these relations imply that for any 1 i j k lork+2 i |j n or
1 i k<k+1 j n,

mult([i;] I; V) = mult([ i;j ; W) = mult([ i;j ;W ) =mult([ i;j IV ):
Moreover, for anyi 2 [1;k],

mult([i; k1; V) = mult([ i;k]; W) +mult( i;k +1=2]; W)
=mult([ i;k]; W ) +mult( i;k + 1=2;W )
=mult([ i;kL;V ):

And symmetrically, for any j 2 [k +1;n],

mult(k +1;j; V) =mult([ k+1;j];W)+mult([ k+1=2;j]; W)
=mult( k+21;j;W )+mult( k+1=2;j];W )
=mult( k+21;j;V ):

Thus, V and V have identical persistence barcodes.
Recall now from Lemma[3.3 thatf; g1 =g f2= lim¢. Therefore,

f odims=F2 f1 @ Ljms =F2 Lint PJmr =2 Bjims =2 BRjimf, = Lims, = Lims;
g fimg=01 @ f2 fijmg= Limf Fiimg=0 fiimg= % Fijimg = limg = Limg:

O

Proof of Theorem[3.2. CasesVy 1 f Vi g Vi+1 and Vi 1 y Vi 19 Vk+1 are already handled
by Lemma 3.6, therefore we only need to analyze the other two cases. Smcheir proofs are

essentially the same, we will focus on casé 1 f Vi ¢ Vi1 and leave casel 1 ! Vi 1% Vi
as an exercise to the reader.

First, we apply Theorem to reverse the mapg in V, which gives a mapg®: Vi ! Vis1
such that g g%im g = 1im g and the persistence barcode o¥ is preserved.

Next, we remove the spacé/ by composing the maps and g, which gives the zigzag module
V with h=¢° f :Vk 1! Vka. By Lemmal[3.6, the persistence barcodes of and V satisfy
assertions (a){(c) of Theorem.

In addition, we have

8x2Vk 1,9 h(x)=g ¢ f(x)=g gAf (X);

which is equal tof (x) if we further assume that imf  img (recall that g g%im g = limg)-
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18 Oudot & Sheehy

Symmetrically, starting from V we can reversef to obtainamap f°%: Vi ! Vk 1, and then
compose this map withg. This gives another zigzag modulev with h=f°% g: Vi ! W 1,
whose persistence barcode is related to the one df through assertions (a){(c). Furthermore, a
short calculation as above giveggy= f h if we further assume that img imf. O
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4 Comparing Zigzag Modules

4.1 Factorization

Consider the following diagram of vector spaces and linear maps:

W, $ W, $ $ Wn1 & W,
Vi $ VWV, % $ Vi1 $ VW 2
Uj_ $ U2 $ $ Un 1 $ Un

letU=U;$ $ U, V=V $ $ V,,andW=W;$ $ W, be the zigzag modules
represented on the three lines of the diagram. The following resulis an easy consequence of the
Interval Decomposition Theorem|[2.1, or rather the uniqueness part of it.

Theorem 4.1 (Factorization). Assume that the following conditions are met:

the zigzag moduled), V and W are of the same type,

all the quadrangles in the diagram) commute,

for all k 2 [1;n], the mapsUx ! Vi ! Wy compose into an isomorphismUy ! Wy.
Then, PerqU) PerqV).

The nameFactorization Theorem is coined afer the fact that (J) factors the morphism between
zigzag modulesU ! W through V.

Proof. Let J be the submodule ofV formed by the imagesJy of the mapsUx ! Vi. This is a well-
de ned submodule thanks to the commutativity of the bottom quadrangles in the diagram @).
Similarly, let K be the submodule ofV formed by the kernelsKy of the mapsV« ! Wy, which
is well-de ned thanks to the commutativity of the upper quadrangles in (). Since the maps
Uc! W ! W compose into an isomorphism, we haveé = Jx Ky for all k 2 [1;n]. Thus,
V =J K, from which follows that Per{J) PerqV) by the Interval Decomposition Theorem|2.]
(more precisely the uniqueness part of it). Now, each mapJy ! Vi being an isomorphism onto
Jk, we havePerqJ) = PergU). O

4.2 Interleaving

Consider now the following diagram of vector spaces and linear maps:
é!ﬁg% MEQ% V‘E‘B%
VO QVZY ¥84/&/6 V4n %;.—j; VAB'B“ 4/K/4n %‘ %‘B

V3 Van s Van 1
(3)
Let V= V! VWV Vs V3! V4! Vs Vs Vian 6 Van 5 ' Van 4!
Van 3 Van 2 Van 1! Van be the oscillating zigzag, and letW = Vo ! Vo, V4! Vg
' Van 6 Van 4! Van 2 Van be the axis zigzag in [(8). The following result provides
guarantees for this special kind of interleaving between zigzag modes.

Theorem 4.2 (Interleaving) . Assume that the following conditions are met for alk 2 [O;n 1]
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20 Oudot & Sheehy

all the triangles in the diagram @) commute,
all maps Vg ! Vak+2 and Vg2 Vak+4 are isomorphisms,
all maps Vak+1 Vak+2 are injective,
all maps Vak+3 ! Vak+4 are surjective.
Then,
(a) every interval in PergW) is of type [0; 4n],
(b) every interval in PergV) is of type [0;4n] or [2k +1;2k + 1] for somek 2 [0;2n 1],
(¢) mult([0; 4n]; V) = mult([0 ;4n]; W).

Rephrased in terms of information theory, the conclusion of the theorensays that the persis-
tence barcodes ol and W contain the same signal, formed by a given number of copies of the
full-length interval [0 ; 4n], however, while Per{W) contains only the signal, Per{V) may contain
additional ephemeral noise formed by intervals of length zero startingand ending at odd indices
in the range [0 4n].

Proof. We will use arrow reversal and composition to turnV into W, while tracking the changes
in the persistence barcode.

We rst apply Theorem 8.I|on every injective map Vak+1 Va+2 and on every surjective
map Vak+3 ! Vak+s, t0o get a new zigzagvV = Vp! V1! V, V3 Va! V5! Vg !
Van 6 Van 5 Van 4! Van 3! Van 2 Van 1 V4n that has the same persistence
barcode asV. Moreover, the mapf : Va1 ! Vaks2 provided by Theorem[3.1 when reversing
g : Vak+1 Vi+p satisesf g= 1y,,,, ., while the map 9% : Viak+3 Vak+4 provided when
reversingf %: Vixis | Vak+q satisesfO ¢°= 1y, . It follows that every triangle commutes
in the resulting diagram involving V. and W:

é’%% Eml% V@Béz%
Vo %‘/qv V, —— Mg Vin %’Z‘ Van 4 —— Ny %Z; Vin

Vs Vian s Van 1

Now, for k ranging from O ton 1, we composéVak ! Vak+1 ! Vak+2 into a single map Vg !
Vak+2 , and similarly we composeV+2 Vak+3 Vak+4 Into a single map Vak+2 Vak+a -
Since composition preserves commutativity of the subdiagrams, thedllowing diagram involving
W (straight path) and the newly obtained zigzag W (curved path) commutes:

q q VDN
Vo — z\ﬁ\()r Vv, —g V4n Q0 Vi, 4 4/’(/4n 20 Vg,
N4 \/ \/

Hence, the zigzagsW and W are identical. It suces then to prove assertions (a){(c) with
V replaced byV and W by W , becausePergV) = PergV ) and PergW) = Per{W ). Recall
that W is obtained from V by removing the spacesVo+; for all k 2 [0;2n 1], so the Space
Removal Theorem[3.2 relates their persistence barcodes.
Assertion (a) follows from the fact that all maps in the zigzag moduleW are isomorphisms.
Assertion (b) follows from (a) and Theorem[3.2. Indeed, for anyk;| such that 0 <k I<
2n, we have mult([2k; 2I; W ) = mult([2 k; 2I]; V ) + mult([2 k  L;21];V )+ mult([2 k 1,21 +
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1V ) + mult([2 k; 2 +1];V ) by Theorem [3.2, and this sum is equal to zero by assertion (a).
Therefore, mult([2k; 2IT;V ) =mult([2 k  1;2I];V )=mult([2 k 1,21 +1];V ) =mult([2 k; 2| +
1];V ) = 0. Similarly, mult([2 k;4n];V ) = mult(2 k 1;4n];V )=0forany 0 <k 2n, and

mult([O; 2I;V ) = mult(JO ;2| +1];V )=0forany 0 | < 2n. Hence, forany 0 i | 4n,
we have mult(fi;j ];V )=0unlessi =0and j =4n,ori=j =2k +1 forsomek 2 [0;2n 1].
Assertion (c) follows directly from Theorem[3.3. O
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5 Rips Zigzags

Let P be a nite point cloud in some metric space, and suppose that the matrixof pairwise

distances between the points oP is known. Given an ordering 1; ;pn) on the points of P,
let P; ;= fpy;:::;pig denote theith pre x, and de ne the ith geometric scalefori =1:::n as
" E'dy (P P):

Since the pre x P; grows asi increases, we have
S " =0

Given a choice of multipliers , Chazal and Oudot [9] proposed to do homological
inference fromP using the sequence of short ltrationsR-,(P;) | R« (P;). The invention of
zigzag persistence makes it possible to replace this sequence ofrelated short ltrations by a
single long zigzag lItration, a representative portion of which is depicted below.

R (P Rpo(Pisy (4)

Rea(Pid) R/ (P) R 1 (Prat)

The zigzag module induced at the homology level by this zigzag Itration & referred to as the
oscillating Rips zigzag(oR-ZZ for short) hereafter. Note that from a computational point of
view, the smaller the smaller the maximum complex size in the zigzag. In addition, the aser
to the fewer simplex additions and deletions during the zigzag calculadn. Therefore, as a
rule of thumb, one should try to make as small as possible while as close to as possible.
Before proceeding with the analysis of the oscillating Rips zigzag irBection[5.2 and of its
variants in the subsequent sections, we rst make a short detour and tsidy another zigzag over
the sequence of vertex set®;; ; P that will play a central role in our analysis.

5.1 The image Cech zigzag

Canonical inclusions betweenCech complexes give the following pair of horizontal zigzags con-
nected by vertical arrows, where each zigzag alternately adds one poirtb the vertex set and
reduces the geometric scale.

H(C: () ! H(C (Pu))  H(C(P)) !
H(C(P) ! H(C,(Pa)  H(C.Pn) !

This commutative diagram induces the following zigzag of images, refeed to as theimage Cech
zigzaghereatfter.
H(Coi(P))! H (Chi(Pis))  H (CLitt (Pisn)) ! ®)

i+1
Theorem 5.1. Given a choice of multipliers ; such that > 5and 3 < < 2, sup-
pose,P RY and there is sogne compact seX RY such that dy (P;X) < " with " <

3 2 wfs(X). Then, for any k <| such that

3. . 2.
mn <= 3% 8§ ) 3

3" 2" n . n H } mn, 1 " .
max 3 5 k" < min 6wfs(X) e (wfs(X) )
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the image Cech zigzag restricted toH (C.* (Py+1)) H (C.!(P)) contains only iso-
morphisms, and its spaces are isomorphic tdH (X ) for any 2 (0;wfs(X)). Therefore, its
persistence barcode is made only of full-length intervals, whoseumber equals the dimension of
H (X ).

Proof. By the triangle inequality, for any i 2 [1;n] we have d; (Pi; X) dy(Pi;P)+d gy (P;X) <
"i + ". Since the geometric scale'; decreases withi, we have " " " forall i 2 [k;lI],
and therefore our hypotheses imply that"; + " < %wfs(x), that "; and "; belong to the
interval [3("; + ");wfs(X) (" +")], and that " ; " 2("y + "). Thus, the hypotheses
of Theorem (i) are satis ed within the range [k;1], and so the result follows from that
theorem. O

5.2 Analysis of the oscillating Rips zigzag

The following result gives conditions on ; for the persistence barcode of the oR-ZZ to exhibit
the homology of the shape underlying the input point cloudP when the latter lies in Euclidean
spaceR? (d  1). The proof relies on Theorems 2.8 (i) anl, as well as on the fact thatech
and Rips complexes are interleaved as follows iR® | see [11] for a proofﬂ

s

d

8 0,C,(P) R (P) Gy (P); where#y= 2@+1)

(6)

Theorem 5.2. Let and be multipliers such that > 10and ;= < < Wj. Let X RY be

a compact set and letP  RY be such thatdy (P;X) <" with

#d 3_ 3:#d . Z#d 4_ Z#d 4
6#q 3+ T 6( 29 ) (4#4+1) 24y

Then, for any k <1 such that

"< min wis(X):

3" 4" 1 1
. n . n < H - f X ", f X n .
max =i 4 < min . Zwis(X) ry— (wis(X) ")
the oR-ZZ restricted to H (R~ , (Pk+1)) H (R-,(Py)) has a persistence barcode made

only of full-length intervals and ephemeral (length zero) intervals, theaumber of full-length in-
tervals being equal to the dimension oH (X ) for any 2 (0;wfs(X)).

Proof. Let = 5 and = #4 . Our hypotheses imply ;  #4 , SO we can use[]G) to factor the
inclusion maps in @) through Cech complexes with multipliers and as follows.

W P
P W

Cr\ By 1) 00—Co\ (By) —C By 00— C- (B) ——— - (Ry) 00— C- ., (Big1)

Cr\ ,(Pg1) 90—Cr (P 1) —E, ( i)oﬂ—c};.;Pi)%b-.(Pi ) 90— Cr (g (i)
% P P % P
W W W

Rei (Pi 1) R, (Pi) R+ . (Pis1)

30ur de nition of the Rips complex di ers from the one in [11][b_] y a factor of 2 in the parameter value. This
1

explains the slight discrepancy between our chain of inclus ions and the one in [LI]. Note that 5 #g4 < 91—5

RR n° 8141



24 Oudot & Sheehy

This commutative diagram induces the following interleaving between the oscillating Rips and
image Cech zigzags at the homology level (note that the triangles still commute).

. oo s | "
Ho(C.' 2(B, 1) Q0 H (c.) *(p, 1) —h (c. i 1Py Q0 1 (cii(P)) — T H (€L (Pys ) QO—H (C. ! (Pl ))
i 2 |>>1 i1 |>>| i |>ﬂ,
|
! ! 0
I I I

HO(R- 1 (P 1) H (R~ (P) H (R (Piaa )

This diagram has the same shape as the one iE](S). L&f be the oscillating zigzagH‘ (C. kP!

H(R- (Peor))  H (ClA(Pa))  H (Re oy (Praa)) ! H (CLKT(Pea)) 1 1 H o (Cl) LRy 1) !
H(R-, ,(P)) H (C.! Y(Py) H (R (P)! H (C.!(P)),andletW be the axis zigzag+ (c: ¥ (Py)) !
H (CiK(Ps ) H (Co K (P ) ! Ho(Col 2P )t H(C.l B(P)  H(CLI(P).

Our hypotheses involving and are clearly stronger than the ones in Theorenj 5]1, so we
can apply that theorem and deduce that the spaces i'W are isomorphic toH (X ), with all the
arrows in W being isomorphisms. One can also check that the hypotheses of Theor (i) are
satis ed for all i 2 [k;|] so we can apply that theorem and deduce that the inclusion€_-, (Pi) !
R+ (Pi) } C. (P) ! C- (Pi) compose into a map whose rank is equal to dirhl (X ) =
dimH (C.!(P;)) at the homology level. It follows that the map H (R~ (P;)) ! H (C.!(P))
in V is surjective. Similarly, C+ (Pi+1) ! C+ (Pi+1) ! R+, (Pisa) ! Gy, ,(Pi+1) compose
into a map whose rank is equal to dimH (X ) =dim H (C.'(Pi.1)) at the homology level, so
H (C.'(Pis1)) ! H (R+,(Pix1))in Visinjective. Thus are satis ed all of the hypotheses of the
Interleaving Theorem [4.3, which implies that the persistence batode ofV has only full-length
intervals and some intervals of length zero. The full intervals are in ame number as the ones in
the barcode of W, whose number is precisely dinH (X ).

To complete the proof of the theorem, we need to remove thé€Cech complexes from the
oscillating zigzag moduleV in order to recover the oR-ZZ. We rst restrict V to the subsequence
H (R, (Pks1)) H (Co¥(Pk+1)) H (C.| [(P)) H (R- (P)), thus removing the
Cech complexes standing at either ends of the zigzag. Sinde< |, the Restriction Theorem
tells us that the full-length intervals in the barcode of the thus shortened zigzagV are in bijection
with the ones in the barcode ofV, while the intervals of length zero can only be shortened. We
then compose the incoming and outgoing maps atCech complexes in the sequence, to obtain
the restriction of the oR-ZZto H (R~ , (Pk+1)) H (R-,(P))). By the Space Removal
Theorem , only the intervals starting or ending at a Cech complex can be a ected by this
operation, and these can only be shortened. Therefore, the full-lengtintervals remain in same
number as in the barcode ofV , while the intervals of length zero can only be shorten@ The
conclusion of the theorem follows. O

5.3 The Morozov zigzag

Following the intuition that ~ should be made as close to as possible to optimize for speed, the
following limit case of the oscillating Rips zigzag where the multigiers ; are equal has been
integrated into the Dionysus library [L3] since early 2009.

R- (P 1)! Ry ((P) R (P)! R (Pisa) Ry (Pig)! (@)

4In fact, the persistence barcode is left unchanged by this op eration, because as already observed, none of the
intervals start or end at a Cech complex.
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The zigzag module induced at the homology level by this zigzag Itration i referred to as the
Morozov zigzag(M-ZZ) hereafter. As reported by its author [21], it has given good results
in preliminary experiments, despite the fact that =  clearly violates the conditions of our
theoretical guarantees (Theorem[5.2). Below we provide some weaker guataes that may
explain its good behavior in practice so far.

We begin with a guarantee that the signal is present in the barcode of the zigzag throughout
a sweet rangewhose bounds are not as good as, yet of the same order of magnitude as, the ones
worked out in Theorem[5.2.

Theorem 5.3. Given a choice of multiplier > 10, supposeP  RY and there is some compact

setX RY such thatdy (P;X) <" with "< ﬁwfs(xy Then, for any k <1 such that
10 1 5
"< min Zwfs(X) "y ———————(wfs(X) ") ;
10 k< minawls(X) (1+5%,) s Wis(X) ")
the M-ZZ restricted to H (R, (Pk+1)) H (R~ ,(P)) has a number of full-length inter-

vals that is at least the dimension ofH (X ) for any 2 (0;wfs(X)).

Proof. Let V be the restriction of the M-ZZto H (R~ , (Px+1)) H (R-,(P)). Let also
U and W be the restrictions to the same indices of the image&ech zigzags of parameters (; 1)
and ( »; ») respectively, where

= - 21+ —
=5 215
1:5
2= #qg

2= #g +2(1+ )
|

Note that 4 1= 3 #qa = o >, So the canonical inclusions between thes€ech
complexes induce homomorphisms between the spaces dfand W of same index. Moreover,
by @ the inclusions C ;- (Q) ! C ,- (Q) factor through the Rips complexesR -, (Q), so the
homomorphisms fromU to W factor through V, thus giving a commutative diagram of the same
form as (2).

Observe now that 3< 1< ;1 2and 3< 5, < 5, 2. Moreover, basic calculations show
that the assumption on ";"; made in Theorem[5.] is satis ed both with (; ) =( 1; 1) and
with (; ) = ( 2; 2). Hence, PerqU) and PergW) contain only full-length intervals, and the
number of intervals in each barcode is exactly the dimension o (X ).

In addition, the assumptions of Theorem (ii) are satised for anyi 2 [k;I], with =

i, = 1", %= 2%, %= ,",P=Q=P orP = Q= Pi. Hence, the vertical
arrows in (2) compose into isomorphisms, and thus the Factorization Theoem[4.] implies that
PerqU) PergqV). The conclusion follows. O

Remark 5.4. As pointed out to us by Marc Glisse [[15], the approach adopted ithis proof
can be extended to work with the oscillating Rips zigzag, thereby prding an alternate proof
of Theorem|[5.3. However, the bounds on the sweet range and (more inrntly) on the Rips
parameters ; obtained this way are strictly worse than the ones derived in Theem[5.3.

According to Theorem[5.3, there is a sweet range throughout which the sigal persists in
the Morozov zigzag. The resilience of the noise within this range is not @il understood though.
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26 Oudot & Sheehy

Typically, if an index i in the sweet range is such that"; (2#q + %)"i+1 + 2", then the
canonical inclusionR- ., (Pi+1) ! R~ (Pi+1) factors through Gy, - ., (Pixa) ! C_+ (Pis1),
with 5" #3" 21 2("+ "j+1), SO Theorem (i) implies

rankH (R, (Pi+1)) ! H (R+;(Pi+1)) rankH (Gg» i (Piva)) ! H (CLv (Pisr)) =dim( H (X )):

In other words, only the signal can go through the linkH (R~ (Pi+1)) H (R~ ., (Pi+1)), and
the noise gets killed. Thus, such indices with large drops in the geometric scale are desireable,
however their existence within the sweet range remains questi@ble in full generality['ﬂ For now
we will tackle the noise issue from a di erent perspective and add drther restrictive conditions
(considered independently): on the one hand, we will focus only onhe 0-th and 1-st homology
groups; on the other hand, we will assume the shap& underlying the data points to have
positive -reach for some large enough value.

5.3.1 O0-th or 1-st homology

As far as only O0-th or 1-st homology is concerned, we can take advantage of the follavg simple
observation.

Lemma 5.5. Forany Q RY and any 0,

rankHo(R (Q)) !' Ho(R (Q)) =rank Ho(C,(Q))! Ho(C_(Q));
rankH1(R (Q)) ! Hi(R (Q)) rankH1(C, (Q))! Hi(C_(Q));

where the homomorphisms are induced at the homology level by cangaliinclusions between the
complexes.

Proof. Recall from [14] that for any nite simplicial complexes X Y, the rank of the homo-
morphism induced at the r-th homology level by the canonical inclusionX Y is given by

Z;(X)
Z.()\ B.(YV) ®
where Z; (X ) denotes the space of-cycles inX and B, (Y) denotes the space of -boundaries in
Y (both are subgroups of the space of-chains inY).

When Q RY, it follows from the de nitions of Cech and Rips complexes thatC_(Q)
and R (Q) have the same 1-skeleton, given any 0. Hence,Zo(C_(Q)) = Zo(R (Q)) and
BO(C?(Q)) = Bo(R (Q)), which implies by (@ that the maps Ho(R (Q)) ! Ho(R (Q)) and
Ho(C,(Q)) ! Ho(Ci(Q)) have same rank.

The de nitions of Cech and Rips complexes also imply that the 2-skeleton oR (Q) con-
tains the one of CT(Q), while their 1-skeleton is the same as mentioned previously. Hence
Z1(C,(Q)) = Z1(R (Q))and B1(C_(Q))  Ba(R (Q)), whichimplies by (E} thatrank Hi(R (Q)) !
Hi(R (Q)) rankH1(C,(Q)) ! Hi(C_(Q)). O

Letting now P; ;";" ;" follow the hypotheses of Theorenf 53, we have by Lemma 5.5 and
for every indexi 2 [k;I1]

rank H, (X)! H.(Y)=dim

rankHo(R» ., (Pi+1)) ! Ho(R+ (Pis1)) =rank Ho(C,- ,, (Pi+1)) ! Ho(C,+ (Pis1)) = dim( Ho(X ));
rankHy (R~ ,; (Pi+1)) ! Hi(R- (Pix1)) rankH1(C -, (Pis1)) ! H1(C » (Pis1)) =dim( H1(X )):

5Nevertheless, they inspired the discretization scheme pre sented in Section
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Hence, in 0-th or 1-st homology the noise in the Morozov zigzag is killed whegoing through the

link R+, (Pi+1) R~ ,,, (Pi+1). More precisely, givenr 2 f 0; 1g, call V the restriction of the Mo-
rozov zigzag toH, (R~ , (Px+1)) H: (R~ (Py)). On the one hand, the Restriction Theo-
rem implies that the total multiplicity of the intervals includ ing [H, (R, (Pi+1)); Hr (R~ .., (Pi+1))]
in Vis at most dim(H, (X )). On the other hand, Theorem implies that the multiplicity of t he
full-length interval in V is precisely dimH, (X )). It follows that among the intervals containing

Hi (R, (Pi+1)); Hi (R~ ., (Pi+1))], only the full-length one has non-zero multiplicity. Thus,
Pers (V) contains only full-length intervals and intervals of type [H; (R~ (P;)); H; (R~ (Pi+1))].
These are not ephemeral in the index scale of, however they become so once represented on
the scale of the geometric scales. Hence,

Theorem 5.6. Given a choice of multiplier > 10, supposeP RY and there is some compact
setX RY such thatdy (P;X) <" with "< —-—2_wfs(X). Then, for any k <| such that

(3+10 #q)
10 1 5
n Bl < H 7Wf X ", f X n .
the zigzag module induced by [7) at the-th homology level ¢ 2 f0;1g), once restricted to
H (R, (Pk+1)) H:(R-,(P))), has a persistence barcode made only of two types of
intervals:

full-length intervals (the signal), whose number is equal to the diemsion of H, (X ) for
any 2 (0;wfs(X)),

intervals of type [H, (R, (P;)); H/ (R~ (Pi:1))] (the noise), which are ephemeral (length
zero) on the scale of the geometric scales.

5.3.2 Sampled compact sets of positive -reach

Thus far, we have only considered the case of compact sexs for which wfs(X ) is positive. Now,
we consider the stronger assumption thatX has positive -reach. Recall that the -reach of a
compact setX is the in mum of distances from X to points outside of X where the gradient
of the distance to X is less than (see [6]). Attali et al. showed that for a compact setX

with -reach R and a sampleP of points with dy (P;X) ", if " is su ciently small and

su ciently large then for some values of , the Rips complexR(P; ) is homotopy equivalent to
X for 2 (0;R) (see [1, Theorem 14]). The immediate consequence of their result that for

a multiplier and an indexi, R+, (P;) and R, (Pi+1 ) are both homotopy equivalent to X for

2 (0; R) whenever

1+ @ ) 1 (@ ) @emne®
@ )

This condition depends on , the -reach of X, the multiplier , the Hausdor distance of the
sample"”, and the range of values'; for which the result holds. However, Attali et al. show that
there do exist values for which the condition is satis ed.

We do not derive the space of valid assignment of constants here, but mely note that
this result implies that for a su ciently close sample of a set with bounded -reach, there is
a multiplier and a range of scales for which the M-ZZ exhibits no noise. This holds lsause
Theorem[5.3 implies that the signal is present in the sweet range and # Attali et al. result
shows that every space in the strictly smaller range has the same homologs X . We call this
the sweeter range

R< 2", 2#¢"i 2("i+"):
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Since the sweeter range depends on the-reach rather than the weak feature size, it may be
arbitrarily smaller than the sweet range. However, when the input pemits a sweeter range, the
guarantees regarding the signal-to-noise ratio are correspondingly strongeThis will hold true
for all of the Rips Zigzags discussed in this paper.

5.4 Discretized Morozov zigzag

We now describe a discretization scheme for the Morozov zigzag that enres that the desired
large geometric scale droprondition mentioned in Section[5.3 is satis ed.

Given amap : R.o! Rsq, referred to as the scale drop function hereafter, we select
a subset of the indices 1  ;n in the ordered point cloud P = fp;; ;png by the following
iterative procedure:

let ng =1;
8i L letniyy =minfj>n; j " "n) "nO:

Note that n, = n for some indexr since", =0 <", 1. We then build the following discretized
version of the Morozov zigzag Itration (:

Re (Pn) ! Re (Pny) bR (P Ry (P 9)

whereP,, = P; = fppgand Py, = P, = P. The zigzag induced at the homology level is called
the discretized Morozov zigzagddM-ZZ) hereafter.

The proof of Theorem[5.3 applies verbatim to the dM-ZZ, with indices1;2; ;n replaced
by ni;ny; ;ne. Thus, for any ng <n, such that ", ;"n, lie within the sweet range de ned in
Theorem, the restriction V of the dM-ZZto H (R~ . ()] H (R~ 0 (Pn))) has
a persistence barcode with at least dimf (X )) full-length intervals.

Now, if we further assume that the scale drop function satis es the following condition:

2 n
My +4  #Hy +2 "

8i2[Lr 1] ("n) (10)
then, the large geometric scale drogondition mentioned in Section is satis ed for alli 2 [k; 1],

that is,

4 4
IIni (2#d + 7)"ni+1 + 7";

so we have
rankH (R-, (Pn.,)) H R+, (Pn.)) dim(H (X ));

and therefore by the Restriction Theorem[2.2 the total multiplicity of the intervals including

H (R, (Pn..)); H (R,  (Pn.))]in PergV) is at most dim(H (X )). It follows that
among these intervals only the full-length one has non-zero multipity. Thus, PergV) contains
only full-length intervals and intervals of type [H (R~ (Pn,)); H (R~ (Pn,, ))]. These are
not ephemeral in the index scale oV, however they become so once represented on the scale of
the geometric scales. Hence,

Theorem 5.7. Given a choice of multiplier > 10, supposeP ~ RY and there is some compact

set X  RY such thatdy (P;X) <" with " < ﬁwfs(x). Then, for any choice of scale

drop function :Rso! Rso that satis es (fLO), for any ny <n, such that

10 " . < mln éwfs(x ) ",

5 n .
= " SWis(X) ")

" (1+5#g) +
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the dM-ZZ restricted to H (R~ (Pn,., ) H (R, (Pn)), has a persistence barcode
made only of two types of intervals:
full-length intervals (the signal), whose number is equal to the diemsion of H (X ) for
any 2 (0;wfs(X)),
intervals of type [H (R~ (Pn)); H (R~ (Pn.,)) (the noise), which are ephemeral
(length zero) on the scale of the geometric scales.

Note that " usually remains unknown in practice, so the user cannot merely set(",,) to be
the quantity s—7 % =—. The bounds given in Theorem suggest to let be the
constant map

3 +20
= — 11
10#g +2)° (11)
so that ("n,) satis es the condition of (LO) as long as",,  1%5. Thus, the conclusion of

the theorem continues to hold within the Same sweet range. In fact, anysmaller value could be
chosen for (",,) without a ecting the sweet range. Nevertheless, the larger (“,,) the better
in general, since the smaller the geometric scale gap the more chancesth are that the set of
discretization values ", intersects the sweet range, and furthermore the smaller the geometr
scale gap the smaller the complexes involved in the discretized Morox zigzag ltration (EP].

5.5 Image Rips zigzag

We end this section with another variant of our Rips zigzag construction, called the image
Rips zigzag(iR-ZZ). It is the same as @) with Cech complexes replaced by Rips complexes.

Given two multipliers 0, canonical inclusions between Rips complexes give the following
commutative diagram where a pair of Morozov zigzags are connected together byextical arrows.

H (@R (P) ! H(R (Pix)) H (R, (Pis1)) !

H (R (P) ! H(R- (Pi)) H (R, (Pis1)) !

This commutative diagram induces the following image Rips zigzag, wherthe notationH (R (Q))
stands for the image of the homomorphismH (R (Q)) ! H (R (Q)) induced at the homology
level by the inclusionR (Q) ! R (Q).

HR-I(P)! HR(Ps) H (R (Piag)) ! (12)
Image Rips zigzags have been available in the Dionysus librariy [13] sin@®09, with no theoretical
guarantee on their behavior. Here we provide a guarantee on the output thats similar to (and
even slightly better than) the one obtained for the oscillating Rips Zgzag.

Theorem 5.8. Given a choice of multipliers ; such that > 10 and % < < Wj, sup-

pose,P R and there is some compact gei RY such that dy (P;X) < " with " <
#a 3 3=#q 244 4 244 4

min ST T B 2E ) GRS o wfs(X). Then, for any k <| such that
3 4" - . 1 " 1 oL
max y 3 Ty 2 k;"1 < min éwfs(x) CE A1 (wfs(X) ") ;
the iR-ZZ restricted to H (R" ¥ (Pys1)) H (R.!(Py)) contains only isomorphisms, and

its spaces are isomorphic toH (X ) for any 2 (0;wfs(X)). Therefore, its persistence barcode
is made only of full-length intervals, whose number equals the dimgion of H (X ).
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Proof. Our hypotheses imply 5 #4 , SO we can use[]G) to obtain the following diagram inter-
leaving Cech and Rips zigzags (all arrows are inclusions).

H (C#d"" i(Pi)) ! H (C#d :'Ii(PHl ) H (C#d ""i+1 (Pis1)) !
HR () | HR,(Pa)  H R (Pa) !

H(C,(P) ! HI(C(Pin)) H(Cpry (Pis)) !

H (C#d"" i (Pi)) ! H (C#d :I. i (Pi+1)) H (C#d ""i +1 (Pis1)) !
HR () | HR,(Pa)  HR L (Pa) !
H(C(P)) ' H(C(Pia)) H (C,-.,, (Pi+1)) !

This commutative diagram induces the following interleaving between the image Rips and image
Cech zigzags at the homology level (note that the quadrangles still commute)

H (Gl (P)) 1 H (G0 (Pa)) H (Cpo 1 (Pisa)) !
, " o (13)
H (RM(P) ! H (R (Pin)) H (R-5 (Pia)) !

The hypotheses of Theorenj 5]1 are satis ed with (; ) replaced by ¢4 ;# 4 ), SO we can apply
that theorem and deduce that the spaces in the image€ech zigzag restricted to the index range
[k; 1] are isomorphic toH (X ), and that all the arrows in this restricted zigzag are isomorphisms.

We will now show that the restriction of the iR-ZZ to the same range is isomorphic to
the restriction of the image Cech zigzag, which boils down to proving that the vertical arrows
H (RYVI(P)) ! H (G2 (P) and H (R (Pisg)) | H (G (Pisg)) in ( are isomor-
phisms for all'i 2 [k;1].

First, one can check that the hypotheses of Theore8 (i) are satis edor all i 2 [k;1] so
we can apply that theorem together with rank inequalities induced by @mposition, to obtain

dim(H (X ))=dim(H (C?!.i"‘(Pi))) dim(H (R-1(P))) dim(H (cgd"i..i(Pi))):dim( H (X )):

The same holds wherP; is replaced byP;.; . Thus, the spaces in the restriction of the iR-ZZ to
the index range k; 1] are isomorphic toH (X ).
Second, notice that

rankH (R (P))! H (Cie.'(P))=rank H (R~ (P))! H (G, (P));
which by composition is sandwiched between
rankH (C,-, (Pi) 1 H (G (P1)

and
rank H (C#d " i(Pi )) ' H (C#d " (Pi )),

which by Theorem (i) are both equal to dim(H (X )). The same holds whenP; is replaced
by Pi+1 . Hence, the vertical arrows in ) are isomorphisms when 2 [k;1], which concludes
the proof of the theorem. O

Inria



Zigzag Zoology 31

6 Discussion

6.1 Caveats regarding zigzags manipulations

A few technical comments on the Arrow Reversal Theorenj 3]1 and Space Reawval Theorem[3.2
are in order at this point, to help prevent potential misuses of theseresults.

The statement of Theorem[3.] claims the existence of a suitable revee mapg, not its unique-
ness. It clearly appears from our proof that many such maps may exist | see the construction
of the kernel of g in the proof of Lemma[3.4. Thus, Theorem 3.]L does not provide a canonical
way of reversing arrows in zigzags. Nevertheless, this freedom in ¢éhchoice ofg remains limited.
In particular, taking an arbitrary map g such that f  gjim¢ = Lims and g fjimg = Limg is
not su cient in general to guarantee the preservation of the persistence barcode. Consider the
following example

v=v!' v, " v

whereV; = V3 = F, V, = F2, f mapsF isomorphically to the rst coordinate space in F?, and h
maps F isomorphically to the second coordinate space ifF2. Suppose we takeg: Vo ! Vi such
that ker g is the diagonal in F? while gjint = f *. Then, both conditions f  gjint = 1im¢ and
g fjimg = 1img are satis ed, but it is not hard to see that the barcodes ofV and of V are
di erent, and in particular that mult([1 ;3]; V) = 0 while mult([1 ;3];V ) =1.

The same caveats apply to the statement of Theorenj 3]2. When the mapé and g are
oriented the same way (either forwards or backwards)h is de ned uniquely as their composition.
However, whenf and g are oriented di erently, there is some freedom in the choice oh, which
can be seen when the Arrow Reversal Theoreri 3.1 is invoked in our proofHowever, this
freedom remains limited, and taking an arbitrary map making the triangle in the statement of
Theorem commute is not su cient in general to make assertions (a) though (c) hold. This
is true even in very special cases such as whesx ;1 = Vk+1, f = g, and h is taken to be the
identity of Vi ;. Consider the following example

vt v v S v

V=V!
wherek =3, Vi = Va = Vs = F, Vb = V, = F?, f projects F? onto its rst coordinate space, r
maps F isomorphically to the rst coordinate space in F?, and s maps F isomorphically to the

diagonal in F2. Supposeh : V, !V, is chosen to be the identity of F2. Then, the triangle formed

by Vs \ Vs ' Vyand Vo 1" v, clearly commutes, but a calculation shows that mult([1; 5]; V) = 1

while mult([1;5];V ) = 0, thus contradicting assertion (c) of Theorem [3.2. Note that it also
contradicts the intuition from (non-zigzag) persistence theory that adding an intermediate space
Vi in-between Vi ; and Vi« cannot increase the number of topological features that persist
throughout the interval [k 1;k +1].

6.2 Discretized Morozov zigzag, pyramid and weak diamonds
Since discretizing the Morozov zigzag results in killing most of tke topological noise within

the sweet range (see Theorerh 57), it is tempting to try to relate theMorozov zigzag to its
discretization. A natural way to do so is through the following double pyramid of Rips complexes,
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which can be built for every consecutive discretization indicei;; nj.1 .

R %io(Pn‘:)l :
RN
L] . .9
o 2
- %
R"ni(Pni+ 1) R‘In|+1 1(Pn|+1)
27 2 2
O * . _'?7
. '),) o° -?,)
o -?7 . -?,)
.o. o2 .-. ?
2?7 2 2?7 2 2?7 2
o 2 o i o ’),)
o.. 77‘7 o.. 7?'? o.. ?7
o* ? o* a2 o* ?
R"ni(PﬂiJrl) R"ni+1 (Pni+2) R"niﬂ 1(Pni+1 1) R"nHl 1(Pni+1)
27 2 27 2 2? 2 ?2? 2
YK 2, Y 2, Yy X Y _'23
L] ")7 L] '9,) L] ")7 L] 79
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2 ?2? 2 ot _'23 ?27? 2 27
. 0?7 2, . %, 0?7 2, 0?7
ik o* i) o* ) o* ik o
) . 2, o > o 2, o
k) o 5 - % o b -
R"ni+1 (Pn;) R"ni+2 (Pn;+1) R"ni+1 (Pniy 2) R"niﬂ (Pni 1)
2 ?2? 2 ?27? 2 ?27?
2, RN RN
i) o ) . ) o*
")’) L] .?’) L] '?’) L]
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2 2?7 2 ?27?
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) . ) .
) . o) .
? o* a2 o*
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? 27
2 o
)
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Following an up-right arrow in this pyramid means adding one point to the vertex set, while
following an up-left arrow means increasing the Rips parameter. Gign indicesa; b within the
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range ;; nj+1 ), the diamond

R i)
o —,2?

is not Mayer-Vietoris in general sinceR- _(Pp+1) may be a strict superset of the unionU of
R-_(Pp) and R~ _,, (Pu+1). Nevertheless,R- _., (Pp) does coincide with the intersection, hence
we get the following commutative diagram with an exact diamond at the homology &vel.

H (R, (Pbs1))
W

|
)
Iy
H (U)
2? I
.... -7?’?’)///
H (R" a(lf;b)) H (R:?f\)ﬂ (Pb"'l ))
2, o
¢ 77 ..o

H (R~ ... (Po))

Intuition from classical persistence theory suggests that going througtthe supersetR -, (Pp+1)

rather than through U can only kill more topological features. Such a statement, if true, would
induce a weak version of the diamond principle[][3, Thm 5.6], and it could le used to travel up
and down the pyramid to show that the topological signal persists throughou the sweet range
while the topological noise does not in the Morozov zigzag. Unfortunately, as gpealing as it
may be, this approach does not work because the weak diamond principleitns out to be false.
Here is an example illustrating what may happen at the algebraic level. ©nsider the following

diagram

(14)
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whereV; = Vb, = V3 = F, Wy, = F2, the map W, ! V, projects F? onto its rst coordinate space,
the map Vo ! W, is an isomorphism onto the rst coordinate space inF?, the map V3 ! W,
is an isomorphism onto the diagonal inF?, and the mapsVi ! V, and V3 ! \, are obtained
by composition. Then, it is easily seen that the diamond is exact, whi¢ a quick calculation
shows that the interval [1; 3] has multiplicity 1 in the upper zigzag V» ! V., V3 and 0 in the
intermediate zigzagV, ! W,  Vs. As in Section[6.], the change in multiplicity occurs when
going fromV; ! Wy ! V., W, Vsto Vi ! W, !1 W, V3.

/A

7 /
NS

Figure 1: A diagram of simplicial complexes where all the maps are canonicah¢lusions.

Such scenarios at the algebraic level can derive from diagrams of simplédicomplexes at the
topological level. Take for instance the example of Figur¢]l, which inducethe same diagram as
in (fL4) at the 1-homology level. This example can easily be adapted so the cortgxes are Rips
complexes, and we leave the details as an exercise to the reader.

6.3 Zigzags recti cation, extrusion, and interleaving
The Arrow Reversal Theorem[3.] provides a way of turning zigzag modls into regular persis-

tence modules without a ecting their persistence barcode. We all this operation a recti cation .
More precisely,
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De nition 6.1.  Given a zigzag module/, a recti cation of V is a regular persistence module
composed of the same sequence of vector spaces and the same forwaaghs asV, and whose
persistence barcode is the same as the one éf

Theorem[3.] guarantees the existence of such recti cations for any zigzagodule V.

Now, a recti cation V of V is indexed over the same integer interval [1n], not over all of
R, which makes it unsuitable for interleavings with other persistence modules|[[5/ 7]. Turning
V into a module indexed overR can be done byextrusion, meaning that every spaceV; in the
sequence is replaced by the indexed familyVig ,i; +1) linked by identity maps, and that two
constant familiesfOg< ; and fOg ,+1 are appended at either ends of the module, the rest of
the maps being de ned by composition. More formally,

De nition 6.2.  Given a persistence module

n

3
VA CEEE BERVAE

the extrusion of V is the persistence module/ indexed overR such that

V. = V. if 1 <n +1
0 otherwise

v = 1y, . if 1 <n +landbc=bc
b c b c+1 .
Voo 1 Vo o if 1 <n +1andb c<bc
0 otherwise

Together, De nitions §.I]and give the following notion of interleaving between zigzags.

De nition 6.3.  Two zigzag modulesv and W are -interleaved for some 0 if there are
recti cations V of V and W of W whose extrusions are -interleaved in the sense of[[5[ ]7].

Once again, Theoren{ 3.]l guarantees the existence of recti cations for anyigzag module, so
two zigzag modulesV; W indexed respectively over [1n] and over [1; m] are always -interleaved
for some 3 maxf n; mg.

Extruding the recti cations of V and W has a predictable e ect on their persistence barcodes:
every interval [K; I] becomesk;+1). This operation corresponds to a mere switch from the closed
interval representation introduced speci cally for zigzag modules in [3], and the standard half-
open interval representation used in the literature on non-zigzag pesistence([14, 23]. De ning the
bottleneck distance betweenPergV) and PergW) to be the usual bottleneck distance between
the standard representations of these barcodes, we obtain the follow§y guarantee as a direct
corollary of the stability theorem from non-zigzag persistence theory3, [7,[10].

Theorem 6.4. If two zigzag modules are -interleaved in the sense of De nition[6.3, then their
persistence barcodes (in the half-open interval representation) are-close in the bottleneck dis-
tance.

One may rightfully ask two questions at this point:

1. Why use extrusion speci cally, and not another method, to turn the recti cations into
persistence modules oveR? Extrusion has two properties that are appealing in our context:
rst, it is transparent in the sense that it does not a ect the persi stence barcodes (up to
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a change in the representation); second, it is reversible in the sse that discretizing the
extrusion of a persistence module/ over its original integer index set givesV itself. Now,
any operation with these two properties (or equivalent ones) would do dr turning the
recti cations into persistence modules overR.

2. Why de ne the recti cation of a zigzag V as in De nition and not merely as an
arbitraty regular persistence module with the same persistence &rcode asV? Or on the
contrary, why not impose the additional constraint that the backward maps of V and
their corresponding forward maps in the recti cation satisfy all the properties stated in
Theorem[3.1? We do not have a nal answer to these questions. BasicallyDe nition §.1]
looks more canonical to us than the proposed variants. However, working outhe \right"
notion of interleaving between zigzag modules remains a wide open gstion at present,
and our only claim here is that the Arrow Reversal Theorem may shed newight on it by
suggesting a new approach via a reduction to standard persistence.

6.4 Riemannian manifolds and Alexandrov spaces

The analysis of the various Rips zigzags of Sectidn 5 assumes the vertex sein Euclidean space,
Hausdor -close to some compact set. This hypothesis is made for the sake abnvenience as it
allows us to refer to the sampling theory for compact sets developpetly Chazal and co-authors
| see [4]Ifor a survey | in the geometric part of our analysis. However, it d oes not re ect the
variety of scenarios in which Rips zigzags can be used.

Since their construction only requires a matrix of pairwise distan@s as input, Rips zigzags
are applicable in any metric space. Although they come with no theoretial guarantees in such
a generality, there are many contexts in which something can be said abauheir persistence
barcodes. Finite sampes of a compact subset d®% is but one example. Another important
example is whenP is sampled from a compact Riemannian manifold, or more generally from
a compact Alexandrov space with curvature bounded from above, or even mergenerally from
any compact length spaceX with positive convexity radius | see e.g. [2] for an introduction to
these spaces. It is beyond the scope of this paper to redo our analysis this context, however
for completeness we provide high-level directions on how to adapt it

Compact spaces with positive convexity radius admit nite covers with (small enough)
convex metric balls, so the Nerve Lemma and its persistent variant hal. One can then
reproduce the results of Sectiofi 2]2, and in particular Theorerf 2]8, wit X being the whole
space instead of some compact subset, and with the convexity radius &f playing the role
formerly played by the weak feature siz@ This settles most of the geometric aspects of
the analysis of Sectior] b.

The one part of the analysis that still remains to be adapted is when the esults by Attali,
Lieutier and Salinas [1] are invoked to bound the amplitude of the noise irthe barcode of
the Morozov zigzag. These results requird® to be sitting close to some compact set with
positive -reach in R%. However, it turns out that they follow previous work by Haus-
mann [18] and Latschev[[20], which focuses precisely on cases whérdies on Riemannian
manifolds or more general length spaces, and whose results apply diregtto the present
context.

Once these geometric aspects have been adapted, the rest of the anddysan be reproduced
and theorems similar to the ones of Sectiof]5 can be derived for the odeiling Rips, image
Rips, Morozov, and discretized Morozov zigzags. While the lower boursl of the sweet

6The analysis is even simpler in this case since Cech complexes of suitable parameter carry the same homolog ical
information as X, as opposed to the images of inclusions between Cech complexes.
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ranges still depend on the sampling density parametet, the upper bounds now depend on
the convexity radius rather than on the weak feature size.

6.5 Theoretical comparison between Rips zigzags

The results of Sectior[ 5 induce the following classi cation of the vaious Rips zigzags introduced
in the paper, in terms of the theoretical quality of the their output.

1. The iR-ZZ has the widest sweet range of all, and within this range the otput persistence
barcode has no topological noise at all.

2. The oR-ZZ has the same sweet range as the iR-ZZ, and the topological noisemains
ephemeral within this range.

3. The dM-ZZ has a somewhat smaller sweet range, although the di erence ith the other
ones is only by a constant factor. Within this range, the topological noise imot ephemeral,
but it appears so if the persistence barcode is represented on thecale of the geometric
scales.

4. Finally, the M-ZZ has the same sweet range as its discretized versi, except that it is only
proved that the signal persists throughout this range. Whether or not the noise can be
bounded in full generality remains an open question at present. For noywhat can be said
is that under stronger assumptions on the input ( nite sampling of a compact set with
positive -reach), and within a smaller (sweete) range, any topological noise disappears
from the barcode of the M-ZZ.

In light of the discussion about interval representations held in Setion 6.3] the reader should
keep in mind that the transience of the noise within the sweet range®f the oR-ZZ and dM-ZZ
depends on the use of the closed interval representation of persistee barcodes introduced in[[B].
Should the classical half-open interval representation be used instd, intervals corresponding to
the noise would not be ephemeral, and their length on the logarithmic sca& of geometric scales
could be up to constant.

The above classi cation must be compared against the requirements of ehczigzag in terms
of computing resources: runtime and memory usage.

Memory usage. The relevant parameter here is the multiplier , which conditions the size
of the biggest complex in the zigzag. Assuming that the ordering of the poits of P is by
furthest point samplingﬂ we have that every pre x P; is an"-sparse";-sample ofP (see e.g.[[17,
Lemma 4.1] for a proof), from which ensues the following guarantee.

Theorem 6.5. SupposeP is sitting in some metric space of doubling dimensiord. Then, for
any k 0, the number of k-simplices in the current complex at any time of the construction
of the M-ZZ of parameter is at most 2°(k4199 ) where n is the cardinality of P. The same
bound applies to the oR-ZZ and iR-ZZ of parameter , regardless of the value of parameter

Finally, given a scale drop function bounded from below by some quantityp > 0, the number

of k-simplices in the current complex at any time of the construction & the dM-ZZ is at most
ZO(kd log —O)n.

7 Arbitrary orderings may lead to local oversampling and thus  to an uncontrolled local growth of the complex,
regardless of the zigzag considered.
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Proof. We prove the result in the case of the dM-ZZ, the other cases followig by letting o = 1.

Letl1 = ny <njs< < n; 1 <n, = n be the discretization steps. Since each pre xPp,

is "n, -Sparse, a standard ball packing argument shows that every poinp 2 P,, is connected

to at most 2°(?'°6 ) neighbors in the Rips complexR-, (P,,). These neighbors can form at
20(d|og )

most K = 20(kdlog ) k_simplices with p. Thus, the total number of k-simplies in

R, (Pn,)is at most 20(kdlog ) 20(kdlog )py,
Let us now bound the size ofR~ . (Pn,,, ). It follows from the de nition of nj.; that Pn,, 1
is o"n, -sparse. Then, the same ball packing argument as above shows that eveppint p 2 P

has at most 2°(4'°9 %) points of P,,,, 1 within distance " ,,. Applying this result to every
p 2 Pn,,, , and observing that the set di erence P,,,, nPy,,,, 1 consists only of the pointpy,,, ,

we deduce that every vertex ofR-  (Pn ., ) has at most Pdleg ) neighbors, as previously.
The rest of the analysis follows. O

This result allows us to make the following observations:
Since the theoretical lower bounds on worked out in Section@ are all constant (> 10),
one is allowed to set to some constant value in practice and bene t from the guarantees on
the quality of the output. Meanwhile, Theorem ensures that the number of k-simplices
in the current complex remains at most 24 n throughout the construction of the M-ZZ,
o0R-ZZ, or iR-ZZ, where d is the doubling dimension of the ambient space. This bound is
as good as the ones achieved with other lightweight structures for homologinference, like
for instance the sparse Rips ltration [22].
The theoretical lower bounds on being the same for the M-ZZ, oR-ZZ and iR-ZZ, the
same value of parameter can be used in practice, resulting in the maximum complex sizes
being equal. Note however that the full data structure in the case of he iR-ZZ may be
twice as big due to the fact that it must maintain two Morozov zigzags: one ofparameter
, the other of parameter
When using the dM-ZZ, one can also set to be a constant map equal to some constant
value as in {13), thus beneting from the theoretical guarantees on the quality of the
output while maintaining the number of k-simplices in the current complex below 29 n
throughout the construction of the zigzag. Note however that the exact compéx size is
bigger than the one achieved with the other types of Rips zigzags when< 1.
In cases whereP is sitting Hausdor -close to some lower-dimensional subspac& , The-
orem[6.5 can be applied to bound the size of the current complex insidthe sweet range
corresponding to X . The bound thus obtained is 2*¢9n for the number of k-simplices,
whered®< d is the dimension ofX . Hence, ifP approximates a low-dimensional object in
high dimensions, then the size of the data structure scales up only ith the dimension of the
object within the corresponding sweet range. For this reason, Rips gzags are computed
backwards in practice, starting at i = n and ending ati = 0. This way, smaller scales
are considered rst, which makes the dimensionality of the data (and tus the size of the
current complex) scale up reasonably until the sweet ranges of all theolver-dimensional
structures underlying the data have been entirely spanned by tie algorithm.
Focusing back on our initial classi cation of the Rips zigzags, we can conalde that the M-ZZ and
0R-ZZ have the best performances in terms of memory usage. Then comdwtiR-ZZ, which may
require twice as big a data structure even though the maximum comple size is the same as for
the other two. Finally, the dM-ZZ incurs an overhead in terms of memory usage, which is kept
constant (depending exponentially on the doubling dimension though)when is lower-bounded
by a positive constant.
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Runtime.  Assuming again that the ordering of the points of P is by furthest point sampling,
we have the following guarantee.

Theorem 6.6. SupposeP is sitting in some metric space of doubling dimensiom. Then, for any
k 0, the total number ofk-simplices inserted in the current complex throughout the constretion
of the M-ZZ of parameter is at most 2°(kd109 )n wheren is the cardinality of P. The same
bound applies to the iR-ZZ of parameter , regardless of the value of parameter . For the
OR-ZZ of parameters ; , the bound becomeg®(kd'oa )n2  Finally, given a scale drop function
bounded from below by some quantity, > 0, the bound for the dM-zZ is2°®¢!°9 5)p,

Proof. We begin with the M-ZZ, for which we will use a simple charging argumet. Observe that
simplex insertions occur only when a forward arrow is encounteredni the zigzag. For any such
arrow, the current complex is enlarged by adding a new vertexp+; and connecting it to the
rest of the complex. By the same packing argument as in the proof of Theore 6.5, pi+1 forms
at most 2°(4109 ) edges with the points of P;, therefore the number ofk-simplices in its star in
R« (Pi+1) is at most 2°(kdleg ) This is also the number ofk-simplices created at this stage
of the algorithm. Hence, the total number of k-simplices inserted throughout the process is at
most 2°(kdleg ) This bound applies also to the iR-ZZ, which maintains two Morozov zgzags:
one of parameter , the other of parameter

The case of the dM-ZZ is similar, with the additional twist that more th an one vertex is
added to the current complex when going fromR-  (Pn) to R~ (Pn,., ). Nevertheless, as
observed in the proof of Theore@, the points oP,,,, 1 are o"n, -sparse, so the number of

edges in the star of any point ofPy,,, in R~ (Pn,, ) is at most 200100 ) "and the number of

k-simplices is bounded by S(kdlog ) Hence, the total number of k-simplices inserted at this
stage of the algorithm is at most 24 %)(n;,;  n;). The result follows.

Finally, the case of the oR-ZZ with parameters < s trickier. Due to the fact that both
the vertex set and the Rips parameter increase when a forward arrow igncountered in the
zigzag, we cannot simply charge the new simplex insertions to the newladded vertices: former
vertices also form new simplices together. In fact our bound is obtaing by a cruder argument:
for any forward arrow, the current complex contains at most 24109 )n k-simplices before and
after following the arrow. Hence, in the worst case the complex is tauilt entirely, which means
inserting at most 2°(kd 09 )n k-simplices in total. Since this is true for any one of then 1
forward arrows, the claimed quadratic bound follows. O

This result conrms the intuition stated at the beginning of Section [§ that the relevant
parameter for runtime is the multiplier : the closer it is to , the fewer simplex insertions and
deletions occur during the zigzag calculation. In this respect, tle M-ZZ and iR-ZZ o er the best
performances, with a slight advantage to the M-ZZ in practice due to the fact that it maintains
only one zigzag (and not a pair of zigzags) and does not need to compute image pistence.
Then comes the dM-ZZ, which makes a trade-o between enlarging the @amplexes and reducing
the number of steps in the zigzag. As observed for the maximum complex =&, the overhead
incured is kept constant (depending exponentially on the doublingdimension though) if the scale
drop function is lower-bounded by a positive constant. Finally comes the oR-ZZ, fowhich
the e ect of reducing is that many simplices are inserted then immediately deleted fromthe
complex when building the zigzag, thus inducing an overhead in terra of computation time.
The upper bound computed in Theoren] 6.6 suggests an overhead up to lieein n, however the
tightness of this bound needs to be assessed.

Wrap-up.  To conclude our discussion on the comparison of the various Rips zigzagsi les
mention that our bounds on space and time complexities suggest to use th®lorozov zigzag
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rst when dealing with a new data set. This is especially true if the data are supposed to
be sampled from \simple" shapes (i.e. ones with positive reach or -reach), in which case the
quality of the output should be comparable to the one achieved with the oher zigzags (albeit
with smaller sweet ranges). Then, in cases where the quality of theesult is not su cient and
one needs to obtain cleaner (less noisy) barcodes, one of the three afmentioned variants of the
Morozov zigzag may be considered: discretized Morozov, oscillatingips, or image Rips. Our
theorems guarantee that the corresponding barcodes should exhibit et ranges with ephemeral
noise or even no noise at all, a clear improvement in quality compared tohe M-ZZ but also to
the standard Rips lItration. Note however that our theoretical analysis d oes not designate one
variant of the M-ZZ as being clearly better than the others, so in pracice thorough experiments
will be required to decide which one is the best in a given scenani
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7 Experiments

The Rips package of the C++ library Dionysus [13] provides e cient imp lementations of the M-
ZZ and iR-ZZ. We built our implementations of the dM-ZZ and oR-ZZ around this package. We
also slightly modi ed the code for the M-ZZ and iR-ZZ so that it outpu ts barcodes with closed
intervals on a log base 2 scale. Our code and input data are available dtttp://geometrica.
saclay.inria.fr/data/Steve.Oudot/Rips-ZZ/Rips-ZZ.tgz

We have only conducted preliminary experiments with arti cial dat a; nevertheless we observe
some noteworthy phenomena. These call for further experimental validtion, which we intend
to carry out in the near future. For now, we will comment on some expennents using a repre-
sentative example taken from [17]. This data set and its variants have ben used several times
in subsequent work, so it serves as a benchmark for us. It is composed 10,000 points spread
out uniformly along a helicoidal curve drawn on a torus in 3-space. The nderlying space varies
with the geometric scale at which the data is considered. Among other stictures, one hopes to
nd both the curve and the torus from the data. For reference, the major and minor radii of
the torus are 4 and 1 respectively, so its diameter is 10 and its reactsil. The helicoid has 100
periods in total, so its reach is roughly 3;5  0:094.

In our experiments it was not possible to choose parameters that fullysatisfy the hypotheses
stated in our theorems. In particular, > 10 was too large for the simplicial complexes to t
within the computer memory, whatever the choice of Rips zigzag amongte ones of Sectiof|5.
The M-ZZ was run with parameter = 3, the dM-ZZ with parameters =3 and = F% the
or-ZZ and iR-ZZ with parameters =3 and =4.

The obtained barcodes are shown in Figurg]2 | from top to bottom: M-ZZ, dM -ZZ, oR-ZZ,
iR-ZZ. The barcodes are plotted against the log base 2 of the geometric seal The left column
shows the genuine barcodes, the right column shows the same barcadwith all their intervals
of length at most 10 ? removed. Each barcode has three parts, corresponding to the 0-th (tgp
1-st (center) and 2-nd (bottom) homology generators. Note that every input pont is inserted as
a vertex in the zigzag at geometric scale 0, so the corresponding inteavin the barcode starts at
1 onlog, scale. This interval needs to be cut before being plotted, and we @se arbitrarily to
cut it at the stage where the rst edge appears in the zigzag. This introduces an artifact in the
0-th homology part of the barcodes, where all the intervals but one appear asplhemeral whereas
they actually extend to 1

Commentary on the results. Since the geometric structures underlying the point cloud all
have positive reach, one would expect from the discussion of SectipnF7J that sweeter ranges
appear in the persistence barcode of the Morozov zigzag, one for each of teestructures. This is
indeed what happens in practice, where fairly long intervals withou noise reveal the homology
of the curve and that of the torus. Thus, the M-ZZ already does a pretty good job at revealing
the homology of the spaces underlying the data set.

The main aw in the barcode is that the boundaries of the sweeter rangesare plagued with
a signi cant amount of noise that degrades the signal-over-noise (SNR) rat. The worth of each
of the variants of the Morozov zigzag can be measured by its cleaning e eobn these parts of
the barcode, or equivalently by the amount by which it increases thesignal to noise ratio. Note
that we cannot ask for the noise to be completely removed since the hygheses of our theorems
are not quite satis ed by the choice of parameters. Nevertheless, iteems reasonable to expect
a signi cant noise reduction. In this respect, the dM-ZZ performs best. Its barcode shown in
Figure [J looks clean, and the noise appears as ephemeral. This rst impssion is con rmed by
a quantitative analysis, reported in Table [T, which shows that the noi® is indeed ephemeral so
the SNR of the torus is in nte, both in 1-st and in 2-nd homology. The SNR of the curve has
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also been increased compared to the M-ZZ.

zigzag | curve SNR (1) | transition SNR ( ;) | torus SNR ( 1/ )
M-zz 1:78 N/A 3771185
dM-zz 2:26 N/A 1/1

oR-ZzZ 1:86 220 10:60 / 1868
iR-ZZ 1:59 220 10:60 / 22:7

Table 1: Signal-over-noise ratios obtained with the Rips zigzags ofSection [E For the curve, the SNR is
measured by the ratio between the lengths of the rst and secod longest intervals in the ; barcode. For
the torus, the SNR is measured by the ratio between the length of the second and third longest intervals
in the ; barcode, as well as the rst and second longest intervals in he » barcode. For the transition,
the SNR is measured by the ratio between the lengths of the thil (counted with multiplicity) and fourth
intervals in the 1 barcode.

According to Table [I], the second best variant of the M-ZZ in terms of SNR isthe oR-ZZ,
while the third place goes to the iR-ZZ. This trend is con rmed by the qualitative study of the
barcodes of Figurd 2, which reveals that the one of the iR-ZZ has no sweeange corresponding
to the curve along an anomaly that makes the barcode of the iR-ZZ qualitatively worse than
the one of the oR-ZZ. Compared to the dM-ZZ, these two barcodes do exbit the transition
phase that occurs between the curve and the torus, whereas the dMZZmisses it completely due
to the discretization. This can be viewed either as a feature or as a @wback, depending on the
context and on the type of structural information sought by the user.

These observations somewhat contradict the theoretical classi cation écussed in Sectiof 65,
however they are moderated by two facts: rst, as mentioned previowsly, the hypotheses of our
theorems are not quite satis ed by the choice of parameters; second, thworst-case bounds on
the sweet(er) ranges given in the theorems of Sectign| 5 are not relevafiere since the data set
admits underlying structures with fairly simple geometry (positive reach) and thus clearly does
not correspond to a worst-case scenario.

Comparison with the standard Rips lItration. For completeness we show in Figurg]3 the
persistence barcode obtained using the standard Rips ltration. The latter had to be truncated
at a parameter value of Q5, since beyond that limit the total memory usage reached 6.5 GB and
forced the computer to begin disk-swapping. For comparison, the M-ZZ wth = 3 used only
a couple hundred MB, the oR-ZZ and iR-ZZ with = 4 used barely more than 1 GB, and the
dM-ZZwith =3 and = e% used less than 1.5 GB.

Within therange [0;0:5]([1 ; 1] onalog, scale), the barcode of the standard Rips Itration
exhibits the homology of the curve and of the torus as expected. Howeverthe sweet range
corresponding to the torus remains fairly small and comparable in lengthto the range showing
the transition between the curve and the torus. This makes the SNR petty poor, and it is fair
to say that under such circumstances the presence of a torus undging the data may remain
questionable in the user's mind. Using a larger truncation value wouldde nitely improve the
SNR. Nevertheless, the barcode would remain pretty noisy in the rangeorresponding to the
transition between the curve and the torus, and therefore much lesslean than the ones obtained
with the variants of the Morozov zigzag. This provides experimental ewdence for our claim that
Rips zigzags may produce cleaner results than the standard Rips ltation itself.

8We currently do not have a nal explanation to this surprisin g fact. It may be due to the use of image
persistence in a zigzag context, or simply to a bug in the code of the Dionysus Rips package. This question will
be investigated further.
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Another point to make is that, due to the truncation, only the spaces underlying the input
data at small scales are visible in the barcode of the standard Rips Itation. For instance, the
doughnut corresponding to the inside of the torus is not visible, wheeas it clearly appears in the
barcodes of Figure[ 2 right after the end of the sweet range of the torus, wén the second 1-st
homology generator and the 2-nd homology die, leaving only the main 1-st homology gerator
and the 0-th homology generator. This doughnut is one of the candidate underlyng spaces for
the point cloud, whose presence is captured by the barcodes of the B zigzags but not by the
one of the Rips lItration because of memory constraints.

zigzag parameters add time (s) | remove time (s) | total time (s)
= 17 109 185

M-zz =4 155 759 1277
=3, =1= 2 53 305 535

dM-22 =3, =1= 214 2282 3430
OR-Z7 =3, =33 8229 4167 16383
=3, = 58756 37983 121988

. =3, =33 95 277 516
IR-22 =3, = 734 13289 14481

Table 2: Timings (in seconds) achieved for the curve-torus data set an an eight-core Intel Xeon CPU
@2.40GHz | only one core was used at a time.

zigzag parameters max complex size| # insertions
M-77 = 132932 899188
= n 759880 5282607

dM-ZZ =3, =1= 2 1001168 3324320
=3, =1=2 8177204 17206098

OR-ZZ =3, =33 249016 275054345
=3, =4 759880 1678134869

iR-77 =3, =33 249016 2775503
=3, =4 759880 8965889

Table 3: Maximum complex size (in number of simplices) and total number of inserted simplices on the
curve-torus data set.

Computing resources consumption. Table [ shows the timings achieved by the four types
of Rips zigzags on the curve-torus data. For each zigzag type we reported theintime with
two di erent sets of parameters, including the one used to produe the results of Figure[2. As
expected, the basic Morozov zigzag is the most e cient, but the strking fact here is that the
runtime of the oR-ZZ is slower than the ones of the other zigzags by an ordesf magnitude or even
more. Actually, this is not so surprising in light of Theorem[6.6, which claims a quadratic runtime
in the number of data points for the oR-ZZ, versus only a linear runtime for the other zigzags.
This trend is con rmed in Table E,] where the total number of inserted (and deleted) simplices
in the oR-ZZ is orders of magnitude higher than the one achieved with theother zigzags. The
interpretation is straightforward: to go from the geometric scale"; to "; 1, the oR-ZZ increases
the Rips parameter from " ; to "; 1 and then decreases it immediately to" ; ;. Hence, most of
the time is spent inserting simplices and removing them immetdhtely from the current complex.

RR n° 8141



44 Oudot & Sheehy

Concerning the memory usage, Tabl€¢]3 corroborates the claim made in Thearef6.5 that the
M-ZZ, oR-ZZ and iR-ZZ are roughly equivalent, while dM-ZZ uses more nemory. In practice
the di erence is an order of magnitude, which can make the use of thd dMZZ problematic in
cases where most of the main memory is already in use with the basic Morozaigzag.
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8 Conclusion

In this paper, we explored several Rips-like zigzags that achieve botkmall size and bounded
noise for homology inference. The proofs relied on general new technigsi for manipulating and
comparing zigzag modules. We hope that these techniques will nd frcther use and stimulate
new research and applications of zigzag persistence.
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Figure 2: Persistence barcodes computed by the Rips zigzags of SecticE] on the curve-torus data set,
and plotted by the px_homology function of the PLEX 2.5 library. Intervals are plotted agai nst the log
base?2 of the geometric scale. The left column shows the genuine pesistence barcodes, the right column
shows the same barcodes after removing the intervals of lerth at most 10 2. From top to bottom: M-ZZ,
dM-ZZ, oR-ZZ, iR-ZZ.
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48 Oudot & Sheehy

Figure 3: Persistence barcode obtained from the standard Rips ltration truncated at parameter value
0:5. The barcode is plotted on a logarithmic scale. Intervals of length at most 10 ? have been removed,
and intervals in 0-th homology that start at 1  have been cut to start at the stage where the rst edge

appears in the lItration.
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