
HAL Id: hal-00780805
https://hal.inria.fr/hal-00780805v2

Submitted on 27 Mar 2013 (v2), last revised 1 Jul 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Unit Graphs Mathematical Framework
Maxime Lefrançois, Fabien Gandon

To cite this version:
Maxime Lefrançois, Fabien Gandon. The Unit Graphs Mathematical Framework. [Research Report]
RR-8212, 2013, pp.60. <hal-00780805v2>

https://hal.inria.fr/hal-00780805v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
82

12
--

FR
+E

N
G

RESEARCH
REPORT
N° 8212
March 2013

Project-Team Wimmics

The Unit Graphs
Mathematical
Framework
Maxime Lefrançois, Fabien Gandon

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

The Unit Graphs Mathematical Framework

Maxime Lefrançois, Fabien Gandon

Project-Team Wimmics

Research Report n° 8212 — March 2013 — 57 pages

Abstract: In this paper we are interested in the choice of a knowledge representation formalism
that enables the representation, manipulation, query, and reasoning over linguistic knowledge of
the Explanatory and Combinatorial Dictionary (ECD) of the Meaning-Text Theory. We show that
neither the semantic web formalisms nor the Conceptual Graphs (CGs) Formalism suit our needs,
and justify the introduction of a new formalism denoted Unit Graphs (UGs). We thus introduce
the fundamental concepts of the UGs mathematical framework: the Unit Types hierarchy and the
Unit Graphs. We then show how one one may use them to represent specific aspects of the ECD.

Key-words: Linguistic Knowledge Representation, Meaning-Text Theory, Explanatory and
Combinatorial Dictionary, Conceptual Graphs, Unit Graphs

Le formalisme mathématique des graphes d’unités
Résumé : Dans cet article nous nous intéressons au choix d’un formalisme de représentation
des connaissances qui nous permette de représenter, manipuler, interroger et raisonner sur des
connaissances linguistiques du Dictionnaire Explicatif et Combinatoire (DEC) de la Théorie Sens-
Texte. Nous montrons que ni les formalismes du web sémantique ni le formalisme des Graphes
conceptuels (GC) n’est adapté pour cela, et justifions l’introduction d’un nouveau formalisme
dit des Graphes d’Unités. Nous introduisons donc les concepts fondamentaux du formalisme des
Graphes d’Unités: la hiérarchie des Types d’Unités et les Graphes d’Unités. Nous montrons
ensuite comment on peut les utiliser pour représenter certains aspects du DEC.

Mots-clés : Représentation de Connaissances Linguistiques, Théorie Sens-Texte, Dictionnaire
Explicatif et Combinatoire, Graphes Conceptuels, Graphes d’Unités

The Unit Graphs Mathematical Framework 3

Contents

I Introduction 6

1 Motivations to Introduce a New Knowledge Representation Formalism 8
1.1 Semantic Web Formalisms . 8
1.2 The Conceptual Graphs (CGs) Formalism . 9
1.3 The new Unit Graphs Formalism . 10

II Unit Types 11

2 Primitive Unit Types (PUTs) 11
2.1 Definition of PUTs . 11
2.2 PUT Participant Slots (PSlots) . 12
2.3 PUT Hidden Slots (HSlots) . 15
2.4 PUT Actant Slots (ASlots) . 17
2.5 PUT Signatures . 18

3 Conjunctive Unit Types (CUTs) 20
3.1 Definition of CUTs . 20
3.2 CUT Slots and Signatures . 20
3.3 Pre-order over CUTs . 22
3.4 CUTs Hierarchy . 25

4 Characterizing CUTs 26
4.1 Necessary Conditions to Compare Two CUTs . 26
4.2 Properties of CUT Slots and Signatures . 27
4.3 CUT Equivalence Class Sets . 31
4.4 Maximal CUTs . 32
4.5 Concise CUTs . 35

III Unit Graphs 36

5 Unit Graphs (UGs) 36
5.1 Circumstantial Dependency Symbols Hierarchy 36
5.2 Definition of UGs . 37
5.3 Graphical Representation . 40
5.4 Explicit Support Compliance . 41
5.5 Semantics of UGs: Reasoning using First-Order Implications 42

5.5.1 Saturation . 42
5.5.2 Closure . 44

6 Mappings of UGs 45
6.1 Weak Homomorphism . 45
6.2 Weak Hom-Equivalence . 46
6.3 Weak Isomorphism . 47
6.4 Strong Homomorphism: Inclusion . 47

RR n° 8212

4 Maxime Lefrançois, Fabien Gandon

6.5 Strong Isomorphism: Equality . 49

7 Elementary Operations 50
7.1 Explicitation Operations . 50
7.2 Specialization Operations . 51

8 Rules 52
8.1 �-UG . 52
8.2 Definition and Logical Semantics of Rules . 52
8.3 PUTs Prints and Definitions . 52
8.4 UG Support with PUTs Definitions and GDefs 54

IV Conclusion 55

Inria

The Unit Graphs Mathematical Framework 5

Glossary
ASlot Actant Slot 8, 12–15, 23, 29, 31

CG Conceptual Graph 5, 6, 8

CUT Conjunctive Unit Type 7, 14–31

DepG Dependency Grammar 5

DSymbol Dependency Symbol 7, 31, 32

ECD Explanatory Combinatorial Dictionary 5, 32

FLN French Lexical Network 5

HSlot Hidden Slot 8, 11, 12, 14, 15, 23, 31

MTT Meaning-Text Theory 5, 6, 31, 32

NL-expressible expressible in a natural language utterance 10–12, 15, 31

PSlot Participant Slot 8–12, 14–17, 19, 21, 22, 24, 30, 31

PSymbol Participation Symbol 9–13, 31

PUT Primitive Unit Type 7–16, 19–21, 24–28, 31, 32

UG Unit Graph 5–9, 19, 29–32

RR n° 8212

6 Maxime Lefrançois, Fabien Gandon

Part I

Introduction
In this research report we are interested in the choice of a knowledge representation formalism
that enables to represent, manipulate, query, and reason with linguistic knowledge of the the
Explanatory Combinatorial Dictionary (ECD), which is the lexicon at the core of the Meaning-
Text Theory (MTT) (c.f. for instance Mel’čuk and Arbatchewsky-Jumarie, 1999; Mel’čuk, 2006).

We envision two validation scenarios of such a formalization:

• In a ECD lexicographic edition oriented project, we could enable the semi-automation of
some of the lexicographers tasks. For instance we could check that a set of constraints is
satisfied, or we could suggest preliminary drafts of article (e.g., lexical function key-value
pairs, lexicographic definition sketches, government pattern).

• We could propose a syntax based on knowledge engineering standards. Thus the linguistic
knowledge written with that syntax could be published to the web of linked data1, as is
WordNet today. This would support their use as a highly structured lexical resource by
consumers of the linked data cloud.

Most past or current projects that consisted in implementing the ECD did it in a lexicographic
perspective. For instance projects NADIA-DEC Sérasset (1997), Dicouèbe Polguère (2000),
DicoInfo and DicoEnviro L’Homme (2008), DiCE Alonso Ramos (2003) for Spanish.

The RELIEF project Lux-Pogodalla and Polguère (2011) aims at representing a lexical sys-
tem graph named RLF Polguère (2009) where lexical units are interlinked by paradigmatic and
syntagmatic links of lexical functions (e.g., Mel’čuk, 1996). In the RELIEF project, the descrip-
tion of Lexical Functions is based on a formalization proposed by Kahane and Polguère (2001).
Moreover, lexicographic definitions start to be partially formalized using the markup type that
has been developed in the Definiens project Barque and Polguère (2008); Barque et al. (2010)
which aims at formalizing lexicographic definitions with genus and specific differences for the
TLFi2.

In addition to these formalization works, our objective here is to propose a formalization
from a knowledge engineering perspective, and compatible with standard formalisms. The term
formalization here means not only make non-ambiguous, but also make operational, i.e., make
adapted to logic and rational operations (e.g., knowledge manipulation, query, reasoning). We
thus adopt a knowledge engineering approach applied to the domain of the MTT, and our
research question here is What knowledge representation formalism would be adapted to represent
knowledge of the ECD ?

We are interested in two existing knowledge representation formalisms:

• the semantic web formalisms (RDF/S, OWL, SPARQL), because the linked data is built
on them;

• the Conceptual Graphs (CGs) formalism Sowa (1984); Chein and Mugnier (2008), as we
will lead logic reasoning on graphs.

Our research question may thus be decomposed in two sub-questions that we adress in this
research report:

1The web of data is a W3C initiative, highly active today, http://linkeddata.org
2Trésor de la Langue Française informatisé, http://atilf.atilf.fr

Inria

http://linkeddata.org
http://atilf.atilf.fr

The Unit Graphs Mathematical Framework 7

• Is one of these knowledge representation formalism adapted to represent knowledge of the
ECD ?

• If one need to, how shall we modify them so that they are adapted ?

The rest of this research report is organized as follows.
We will first see that neither the semantic web formalisms nor the CGs are adapted to

represent the knowledge of the ECD, and will justify the following choice: We modify the CGs
formalism basis, and keep in mind the idea to use RDF as a syntax for sharing knowledge and
publishing over the web of data.

As we will represent linguistic units of different nature (e.g., sense units, lexical units, gram-
matical units, words), we choose to use term unit in a generic manner, and name the result of
this adaptation the Unit Graph (UG) mathematical framework.

Figure 1 below illustrates a UGs that corresponds to the semantic representations of the
utterances Peter tries to push the cat.

pPeterq ptryq

ppushq pcatq

agt obj

agt
obj

Figure 1: Illustration of the duality concept/relation of sense units in the MTT, semantic repre-
sentation of utterance Peter tries to push the cat.

We will first introduce and study Primitive Unit Types (PUTs) (§2), then we will extend
their definitions and results to Conjunctive Unit Types (CUTs), and will introduce a hierarchy
of CUTs (§3) and characterize it (§4). Section 5 will be devoted to the UGs per se.

RR n° 8212

8 Maxime Lefrançois, Fabien Gandon

1 Motivations to Introduce a New Knowledge Representa-
tion Formalism

Knowledge representation formalisms use the notion of types. Objects of the represented do-
main are named instances (or objects, or individuals), and are typed (or classified). They are
interlinked through relations that are themselves typed. In this section we answer the following
question: What makes the semantic web formalisms and the CGs formalisms not directly adapted
to the representation of knowledge of the ECD ?

1.1 Semantic Web Formalisms
There is a world wide enthusiasm for the semantic web formalisms, and the RDF syntax is
the standard for structured data exchange over the web of linked data. The expressivity of
RDF would be sufficient to represent the knowledge of the ECD. Yet, the semantics of RDF,
in the logic sense, is limited to that of oriented labelled graphs, and we wish also to enable the
manipulation and reasoning with linguistic knowledge of the ECD. We thus need to introduce
more semantics thanks to RDFS or OWL, while keeping the expressivity as low as possible
to keep good complexity properties. OWL introduces semantics with axioms3 and classes and
relation constructors4.

The ULiS project Lefrançois and Gandon (2011a) did envision an architecture for a multilin-
gual knowledge base compatible with the MTT and based on OWL. In the ULiS project, axioms
and class constructors are used in order to make each lexical unit support the projection of its
lexicographic definition over itself. We identified three major problems with the usage of OWL
for that.

• For each lexical unit definition, one need to introduce as much new semantic relations as
there exists nodes in the definition graph of the lexical unit. This implies an overload of
useless relations.

• These relations must be combined using the sub relation chains axioms SubObjectPropertyOf(
ObjectPropertyChain(OPE1 ...OPEn) OPE), in order to project little by little the lex-
ical unit definition graph on the lexical unit itself. The OWL2 DL roughly corresponds
to the SROIQ description logics fragment. In this fragment, the hierarchy of roles (=
primary relations) must be regular5 (c.f., Rudolph, 2011, ,§2.1) in order to guarantee de-
cidability of basic reasoning problems. We will show that this regularity is not ensured in
the small example ontology given by Lefrançois and Gandon (2011a). We defined the lexi-
cal unit rdiesL, and wanted to define the lexical unit rkillsL roughly as follows: Causing
ones death. We then wanted to model that the time of an event kill is the same as the
time of the event die of the person killed. For that we defined a new role hasKillTime,
and used two relation axioms: SubObjectPropertyOf(ObjectPropertyChain(hasEvent
hasTime) hasKillTime), and SubObjectPropertyOf(hasKillTime hasTime). The
first axiom implies that hasKillTime is a non-simple role, and this combined with the sec-
ond axiom implies that hasTime is also a non-simple role. One needs to have a strict partial
order over the set of non-simple roles. First axiom implies that hasTime hasKillTime,
and second axiom implies that hasKillTime hasTime. Thus as is required to be strict,
the role hierarchy is not regular and this example ontology slips into OWL Full and unde-
cidability. The intuitive meaning of this is that hasKillTime is defined using hasTime in

3e.g., Sub-class SubClassOf(CE1 CE2); Functional Relation: FunctionalObjectProperty(OPE)
4e.g., Exact cardinality ObjectExactCardinality(n OPE); Inverse relation ObjectInverseOf(OPE)
5c.f. for instance, http://www.w3.org/TR/owl2-syntax#The_Restrictions_on_the_Axiom_Closure

Inria

http://www.w3.org/TR/owl2-syntax#The_Restrictions_on_the_Axiom_Closure

The Unit Graphs Mathematical Framework 9

the first axiom, and vice versa in the second axiom. This restriction is thus too important
to represent definitions of the ECD.

• Finally, the semantics of the Sub Property Chains axiom makes that inference is anyways
possible only in one direction (sub property and not equivalence). This means that when
ther is the definition of the lexical unit in the graph one may infer that ther is the lexical
unit, but not the other way around.

One alternative to represent lexicographic definitions of lexical units would be to use two
reciprocal construct SPARQL rules. We then face the problem of rule languages and their
compatibility with OWL (c.f., Krisnadhi et al., 2011), that led to no consensus nor standard
today.

These different problems led us to consider another formalism to represent knowledge of the
ECD. We nevertheless want to be able to export these knowledge in RDF to exchange them over
the web of linked data.

1.2 The Conceptual Graphs (CGs) Formalism

The CGs formalism Sowa (1984); Chein and Mugnier (2008) has many similarities with the MTT.
In their basic version, CGs represent typed instances interconnected by typed n-ary relations.
Actually, the main goal of Sowa was natural language processing, and he originally inspired from
the same works than MTT founders: Tesnière (1959). Two of the most important similarities
are the following:

• Sowa (1989) early suggested to introduce type definition of concepts and relations that do
look similar to lexical units definitions in the ECD. Later on Leclère (1998) also worked on
the possibility to reason with type and concept definitions.

• The MTT massively uses rules, for instance to declare correspondences between utterances
at different representation levels. Rules and their semantics, in the logical sense, have been
thoroughly studied in the CGs literature.

One more asset of CGs is the fact that there exists transformations between CGs and RDF/S
(c.f., Corby et al., 2000; Baget et al., 2010). One could use these transformations to rewrite CGs
in RDF for publication over the web of linked data. Moreover, one could adapt the architec-
ture described in the ULiS (Lefrançois and Gandon, 2011b) project to CGs, that envisioned a
MTT-compliant pivot-based multilingual knowledge base architecture, using the semantic web
formalisms, hence:

Through the [Universal Linguistic System (ULiS)], a user could interact with
an interlingual knowledge base (IKB) in controlled natural language. Linguistic re-
sources themselves [would be] part of a specific IKB: The Universal Lexical Knowledge
base (ULK), so that actors may enhance their controlled natural language, through
requests in controlled natural language.

Yet it is also not natural to represent the knowledge of the ECD using the CGs. Here are
two reasons for that:

• A sense-unit may be represented as a concept type as it is instantiated in utterance semantic
representations. On the other hand, if the associated lexical unit is predicative and has
Semantic Actant Slots (SemASlots), then the semanteme may dually be represented as a

RR n° 8212

10 Maxime Lefrançois, Fabien Gandon

n-ary relation, so that its instances link other sense units. The CGs don’t offer a natural
representation of this duality. In fact, in CGs, one must alternate concepts and relations,
and a semantic representation of an utterance such as the one on figure 1 can’t be directly
represented by a CG.

• SemASlots of a lexical unit may differ from those of the lexical unit from which its sense
derives6 (c.f., Mel’čuk, 2004a,b). Yet in the CGs, the inheritance mechanism of relation
types, that models the fact that a relation type is more specific than another, is constrained
so that two relations with different arities must be incomparable. One thus cannot use this
natural inheritance mechanism to model the sense units specialization.

Unfortunately, one cannot formalize the MTT with CGs in a natural manner, here are two
reasons for that:

• A unit type in the MTT is formalizable à priori as a concept type as it is instanciated in
linguistic situations. On the other hand, if this unit type is predicative (i.e., has actant
slots) it may in a dual manner be formalized as a n-ary relation, such that one of its
instances is linked to its actants. CGs thus don’t allow to naturally represent this duality
and hence the notion of linguistic predicate.

• In the theory of actants (c.f., Mel’čuk, 2004a,b) developed with the MTT, it is possible
that the set of actant slots of a predicative unit type differ from that of another unit type
from which it is derived. 7. Yet, the specification of concept types and relation types in
the CGs formalism (i.e., the support) imposes that two relations with different arity are
incomparable. One thus cannot use the natural inheritance mechanism in the context of a
predicative unit type.

1.3 The new Unit Graphs Formalism
To sum up, neither the semantic web formalisms nor the CGs formalism enable the natural
representation of knowledge of the ECD. As the CG formalism is the closest from the MTT, we
decide to use it as a starting point for designing a new formalism adapted to the representation
of knowledge of the ECD.

As we are to represent linguistic units of different nature (e.g., sense units, lexical units,
grammatical units, words), we choose to use the term unit in a generic manner and name the
result of this adaptation Unit Graphs (UGs) mathematical framework.

We will also provide the UGs with a RDF syntax so as to be able to exchange linguistic
knowledge and publish them over the web of linked data.

In the rest of this paper we will answer the following research question: How shall we revisit
the CGs formalism so as to make it adapted to represent knowledge of the ECD ? This question
may be decomposed in two sub-questions:

• What mathematical structure for a hierarchy of unit types that may have actant slots (part
II)?

• What is a UG, and how to use them to represent advanced concepts of the TST (part III)
?

6For instance, sense unit prainq is more specific than pfallq but the meaning of what falls and where it falls
from is fixed to pwater dropsq and psky/cloudq Mel’čuk (2004a).

7For instance, the predicative meaning unit type pto rainq may be defined from pto fallq but its actant slots
pwhat fallsq and pfrom where it fallsq are freezed to pwater dropsq and psky/cloudq.

Inria

The Unit Graphs Mathematical Framework 11

Part II

Unit Types
In the Unit Graphs (UGs) mathematical formalism, the objects of the represented domain are
named units, and are typed. We do establish a distinction between:

• Unit types (e.g., sense unit type, lexical unit type), described in the ECD;

• Units (e.g., sense unit, lexical unit), represented in the UGs.

This distinction corresponds to that of classes vs. instances in RDFS and OWL, and concept
type vs. individual in CGs.

Unlike the CGs formalism, every type may be considered bot as a concept (i.e., it has in-
stances), and as a n-ary relation (i.e., it links instances). As described in this research report,
unit types enable units categorization, and also the specification of how units must be linked in
a UG.

2 Primitive Unit Types (PUTs)
This section first introduces atomic types which are called Primitive Unit Types (PUTs), and
then introduces notions used to characterize glsplput as n-ary relation: Participant Slots (PSlots)
(§2.2), Hidden Slots (HSlots) (§2.3), Actant Slots (ASlots) (§2.4), and signatures (§2.5).

2.1 Definition of PUTs
We introduce a finite set of Primitive Unit Types (PUTs) denoted T and defined as follows.

Definition 2.1 (PUT Set). A PUT Set is a disjoint union denoted T def
� Tdeclared �YtJu �YtKu,

where Tdeclared is a finite set of declared PUTs, J is the prime universal PUT, and K is the prime
absurd PUT.

We introduce an inheritance mechanism for PUTs which models a specialization relation.
This takes the form of a pre-order À over the set T , e.g., pto rainq À pto fallq means that
pto rainq is more specific than pto fallq (more specific semantically here). The pre-order over the
set of PUTs is induced by a set CT of comparisons of PUTs.

Definition 2.2 (Pre-order over T). The PUT set is pre-ordered by a relation À, which is
induced by a set CT

def
� Casserted Y CJ Y CK � T2 where Casserted � T2 is the set of asserted

comparisons, CJ
def
� tpJ; tqutPT, and CK

def
� tpt;KqutPT. pT;CTq is a directed graph on T. Let

C�Tbe the reflexo-transitive closure of CT, i.e., pt; t1q P C�T iif t1 is a descendant of t in CT. The
pre-order relation À is equal to C�T, i.e., @t; t1 P T; t1 À t iif pt; t1q P C�T.

By construction, the set of PUTs is bounded by J, a maximal element of T, and K, a minimal
element of T:

Proposition 2.1. J and K are respectively a maximal and a minimal element of T.

Proof. Let us prove that 1) J is a maximal element of T, and 2) K is a minimal element of T.
1) Let t P T. From definition 2.2, pJ; tq P CJ.

CJ � CT � C�T, so pJ; tq P C�T. So t À J (def. 2.2) and J is a maximal element of T.
2) Conversely, let t P T. From definition 2.2, pt;Kq P CK.

CK � CT � C�T, so pt;Kq P C�T, so K À t (def. 2.2) and K is a maximal element of T.

RR n° 8212

12 Maxime Lefrançois, Fabien Gandon

Let � be the natural equivalence relation over PUTs defined by t � t1 ô t À t1 and t1 À t.
The set of equivalence classes defines a partition of T. Let t P T, we denote rts the equivalence
class to which t belongs, i.e., rts def

� tt1 P T | t1 � tu.

Definition 2.3 (Equivalence PUTs class set). The equivalence PUTs class set T� is the quotient
set of T by �, i.e., T� def

� T{� � trts | t P Tu. We denote t� a generic equivalence PUTs class
set. We define a partial order

�

⁄ over T{� with t�1
�

⁄ t�2 if and only if Dt1 P t�1 ; t2 P t�2 ; t1 À t2.

For instance, figures 2, 3, and 4 visualize equivalence classes using circles. In a same circle,
all the PUTs are equivalent. In the illustrated examples, PUTs pdrizzleq and pScotch mistq are
equivalent.
K is the prime absurd PUT and should by definition have no unit that has it as a type. Thus,

any PUT that is more specific than K should also be absurd. As K is also a minimal element of
T, any PUT which is more specific than K is actually equivalent to K. The equivalence class to
which K belongs is thus called the set of absurd PUTs and denoted K�. Any t P K� is said to
be absurd and no unit should have this PUT as a type.

Definition 2.4 (Absurd PUT set). The set of absurd PUTs is denoted K� and is the set:
K�

def
� rKs.

PUTs may both be considered as a concept (i.e., they have instances), and as a n-ary relation
(i.e., they link instances). Next sections are devoted to PUTs seen as relations.

2.2 PUT Participant Slots (PSlots)
Unlike the CGs formalism, every type may be considered bot as a concept (i.e., it has instances),
and as a n-ary relation (i.e., it links instances). We will now detail our approach to define unit
types and represent how they may be interconnected.

Mel’čuk (2004a) distinguishes three kind of actant slots for a lexical unit. The SemASlots,
the Deep Syntactic Actant Slots (DSynASlots), and the Surface Syntactic Actant Slots (SSy-
nASlots). Yet the nodes of semantic representations are sense units, unlike the nodes of deep
syntactic representations, surface syntactic representations, and deep morphologic representa-
tions, which are lexical units. As we adopt a knowledge engineering approach, whose formalisms
offer primitives that enable to represent and reason over sense units as a whole, we propose to
distinguish the lexical unit and its sense. We thus propose the following model:

• In a general manner, every unit type has Actant Slots (ASlots).

• ASlots of a sense unit type corresponds to the SemASlots of its associated lexical unit type.

• ASlots of a lexical unit type corresponds to its DSynASlots and SSynASlots.

A problem we face with semantic representations is the following. Predicate-argument re-
lations that link a sense-unit to another are numbered from 1 to n, and correspond to the
SemASlots of its corresponding lexical unit (this numbering system is also used for the CGs
n-ary relations). Yet, this numbering cannot be coherent in the hierarchy of sense unit types.
To fully understand why, let us go beck to the theory of semantic actants (c.f., Mel’čuk, 2004a).
The SemASlots of a semantic unit type pLq correspond roughly to participants of the linguistic
situation SIT(L) denoted by pLq that may be expressed in the sentence in a favoured manner
by the lexical unit L. Thus as one specialize L (i.e., the meaning of the new lexical unit is more
specific than the meaning of L), the SemASlots may change. If the number 1 disappears, then

Inria

The Unit Graphs Mathematical Framework 13

the new number 1 does not correspond to the old one. In a general manner, The SemASlot i of
a lexical unit does not necessarily corresponds to the SemASlot i of other lexical units, and may
correspond to the SemASlot j of another type of lexical unit.

We wish to enforce a strong coherence in the unit types hierarchy, and for that we use
the following remark: unlike the SemASlots, all participants of the SIT(L) are inherited as
we specialize the meaning of lexical unit L. We thus introduce the notion of PSlots8 of a unit
type. As we shall see, PSlots of a semantic unit type pLq is roughly : the union of pLq’s ASlots
and of every semantic unit type more generic than pLq ’s. Participant positions of pLq thus
correspond to a subset of participants of SIT(L) that is preserved by inheritance. We then
abandon the numbering system of predicate-argument relation in favour of a naming system.
We thus introduce a finite set of so-called Participation Symbols (PSymbols), that are binary
relation symbols of type predicate-argument. Every PUT t has thus zero or more so-called
PSlot, which represents slots that instances of t have and which may be filled by other units.
Each PSlots of a PUT has a symbol that is chosen among the set of PSymbols.

Definition 2.5 (set of PSymbols, PSlots of a PUT, and !-valency of a PUT). A Participation
Symbol (PSymbol) set is a finite set denoted ST . Any PUT has a set of PSlots which is defined
through a mapping !!! from T to 2ST . For every t P T, s P !!!ptq means that t has a PSlot with
PSymbol s. The number of PSlots of a PUT t is denoted the !!!-valency of t, i.e., valency!ptq

def
�

|!!!ptq|.

For instance, in our example illustrated on figure 2 it is assumed that there is a PSymbol
obj P ST to carry the participation meaning what moves. Moreover, it is assumed and illustrated
that the PUT pfallq has a PSlot having symbol obj, i.e., obj P !!!ppfallqq.
Note. Let s be a PSymbols. As a shortcut, instead of "PSlot having symbol s", we simply write:
"PSlot s".

We also introduce the notion the root of a PSymbol. Every PSymbol s has a so-called root
in T denoted rootpsq that introduces a PSlot with symbol s. We define the set of PSlots of a
PUT t P T as being the set of PSlots whose root is more general or equivalent to t:

Definition 2.6 (Root of a PSlot). The root of PSlots is defined through a mapping root from ST
to T that links a PSlot s to the PUT that introduces s. The set of PSlots of a PUT t P T is defined
as the set of PSlots whose root is more general than t, i.e., @t P T;!!!ptq def

� ts P ST | t À rootpsqu.

For instance, so that pfallq has a PSlot obj, it must be more specific or equivalent than the
root of obj. In our example we chose rootpobjq � pfactq.

In the following, we use "more general" and "more specific" in their weak sense, i.e., respec-
tively "more general or equivalent" and "more specific or equivalent", unless otherwise stated.

If we were to define a PUT more specific than pfallq such as ptumbleq, then it would inherit
the PSlot obj. Actually, every PUT more specific than rootpobjq, and only those PUTs more
specific than rootpobjq will have a PSlot with symbol obj. The following property thus holds:

Proposition 2.2. Let Ó rootpsq be the smallest lower set of T containing rootpsq, i.e., Ó rootpsq def
�

tt P T | t À rootpsqu. For any s P ST , tt P T | s P !!!ptqu � Ó rootpsq.

Proof. Let s P ST .
�: Let t P tt P T | s P !!!ptqu. s P !!!ptq, by definition 2.6, t À rootpsq, so t P Ó rootpsq.
�: Let t P Ó rootpsq. t À rootpsq, and by definition 2.6, s P !!!ptq, so t P tt P T | s P !!!ptqu.

8Despite the fact that the Moscow Semantic School likes to distinguish the notions of participants of a situation
vs. semantic actants, we chose to use term participant slot instead of a neologism such that actanciable slot for
instance.

RR n° 8212

14 Maxime Lefrançois, Fabien Gandon

In our example illustrated on figure 2, the root of PSymbol obj is illustrated by symbol �,
and the green zone represents the set of PUTs that have a PSlot obj, i.e., the principal lower set
of T generated by rootpobjq.

K�

J�

�

pfactq � rootpobjq

pfallq

ptumbleq

prainq

prain cats and dogsq

pdrizzleq

pScotch mistq

ppushq

ppaddleq

tt P T | obj P !!!ptqu � Ó rootpobjq

Figure 2: Illustration of the set of PUTs that have a PSlot obj.

As a direct consequence, as units get more and more specific (i.e., as we go down the hierarchy
of PUTs), the set of PSlots may only increase. We say that PSlots are inherited:

Proposition 2.3. PSlots are inherited, i.e.,

@tx; ty P T such that tx À ty;!!!ptyq � !!!ptxq (1)

Moreover, if tx � ty, then !!!ptyq � !!!ptxq.

Proof. Let tx; ty P T such that tx À ty, and s P !!!ptyq.
Definition 2.6 implies ty À rootpsq. So tx À ty À rootpsq and s P !!!ptxq.
The second result is obtained using twice this first result.

Moreover, as root is a mapping, every PSymbol has a root. Any minimal element of Twill
inherit all the PSlots:

Proposition 2.4. @t P K�, !!!ptq � ST .

Proof. As K is a minimal element in T, then @s P ST ;K À rootpsq. So s P !!!pKq. Thus
!!!pKq � ST . Now, for all t P K� we know that t À K, and using proposition 2.3 ST � !!!ptq. So
!!!ptq � ST .

Inria

The Unit Graphs Mathematical Framework 15

2.3 PUT Hidden Slots (HSlots)
Although the set of PSlots increases as we go down the hierarchy of units due to the introduction
of the new PSlots, the set of ASlots of a unit type remains in the range of one to approximately
six according to the MTT Mel’čuk (2004a,b). Others are still part of the linguistic situation, but
somehow hidden and no-longer expressible in a favoured manner in the natural language utterance
representation. We thus say that those positions among the PSlots that are not actantial are
hidden, and we hence introduce the notion of Hidden Slots (HSlots) of a PUT.

For instance when it drizzles, what moves, i.e., water, is not expressible in a favoured manner
by the lexical unit of type ptypeq anymore. obj is thus a HSlot for pdrizzleq.

Like for the root, we consider that every PSymbol s has a set of so-called hiders in T denoted
Hiderspsq that hide a PSlot s, and that the set of HSlots of a PUT t P T is the set of PSlots
that have a hider more general or equivalent to t:

Definition 2.7 (Hiders of a PSymbol, and HSlots of a PUT). The hiders of a PSlot is defined
through a mapping Hiders from ST to 2Ó rootpsqz? that links a participation symbol s to the
PUTs that have their PSlot s hidden. The set of HSlots of PUTs is defined through a mapping
��� from T to 2ST such that @t P T;���ptq def

� ts P ST | Dth P Hiderspsq; t À thu

In our example, so that the PSlot obj cannot be expressed for pdrizzleq, this PUTs must be
more specific than one of the hiders of obj. For instance, prainq P Hiderspobjq. Furthermore,
if we were to define another PUT more specific than prainq such as prain cats and dogsq, then
in every utterance in which a linguistic unit of type prain cats and dogsq would be involved, the
PSlot obj is not actantial neither and is thus hidden. The hidden state of the PSlot obj will
actually be inherited by every PUT more specific than any PUT in Hiderspobjq, and only those
PUTs more specific than one PUT of Hiderspobjq will have PSlot obj hidden 9. The following
property thus holds:

Proposition 2.5. Let ÓHiderspsq be the smallest lower set of T that contains Hiderspsq, i.e.,
ÓHiderspsq

def
� tt P T | Dth P Hiderspsq : t À thu. For any s P ST , tt P T | s P ���ptqu �

ÓHiderspsq.

Proof. Let s P ST .
�: Let t P tt P T | s P ���ptqu. s P ���ptq.
By definition 2.7, Dth P Hiderspsq; t À th. Thus t P ÓHiderspsq.
�: Let t P ÓHiderspsq. Dth P Hiderspsq; t À th
By definition 2.7, s P ���ptq. Thus t P tt P T | s P ���ptqu.

In our example illustrated on figure 3, the root of PSymbol obj is illustrated by symbol �,
circles represent equivalence classes, and the hiders of obj are illustrated by symbol �. The gray
zone represents the set of PUTs that have a HSlot obj, i.e., the lower set of T generated by
Hiderspobjq.

As a direct consequence, as units get more and more specific (i.e., as we go down the hierarchy
of PUTs), the set of HSlots may only increase. We say that HSlots are inherited:

Proposition 2.6. Hidden slots are inherited, i.e.,

@tx; ty P T such that tx À ty;���ptyq � ���ptxq (2)

Moreover, if tx � ty, then ���ptyq � ���ptxq.
9The good mathematical properties that this default behaviour brings do not limit the expressivity of our

formalism. Indeed, we shall see later using unit type definitions that it is possible contravene this rule by inserting
a new PSlot that corresponds to the PSlot hidden otherwise.

RR n° 8212

16 Maxime Lefrançois, Fabien Gandon

K�

J�

�

�

�

pfactq � rootpobjq

pfallq

ptumbleq

prainq

prain cats and dogsq

pdrizzleq

pScotch mistq

ppushq

ppaddleq

tt P T | obj P ���ptqu � ÓHiderspobjq

Figure 3: Illustration of the set of PUTs that have a HSlot obj.

Proof. Let tx; ty P T such that tx À ty, and s P ���ptyq.
Definition 2.7 implies Dth P Hidersptxq; ty À th. So tx À ty À th and s P ���ptxq.
The second result is obtained using twice this first result.

Second, as Hiders is taken in the lower set generated by rootpsq, i.e., 2Ó rootpsqz?, any hiders
is lower than rootpsq. So the set of HSlots is always a subset of the set of PSlots:

Proposition 2.7. For any PUT t P T, ���ptq is a subset of !!!ptq.

Proof. Let t P T, and s P ���ptq.
From definition 2.7, Dth P Hiderspsq; t À th.
Then as Hiderspsq P 2Ó rootpsqz?, we know that t À th À rootpsq.
So by definition 2.6, s P !!!ptq and ���ptq � !!!ptq.

Finally, as Hiders is a mapping and cannot take value ?, every PSymbol has at least one
hider. Any minimal element of Twill hence inherit all of the HSlots:

Proposition 2.8. @t P K�, ���ptq � ST .

Proof. Let s P ST .
From definition 2.7 we know that Hiderspsq is not empty and thus Dth P Hiderspsq.
As K À th, then K P ÓHiderspsq and s P ���pKq.
Now, let t P K�, t À K and using proposition 2.6, ST � ���ptq.
So for all t P K�, ST � ���ptq, and thus ST � ���ptq.

Inria

The Unit Graphs Mathematical Framework 17

2.4 PUT Actant Slots (ASlots)

The set of Actant Slots (ASlots) of a PUT is defined as the set of its participant slots that are
not hidden:

Definition 2.8 (ASlots and ���-valency of a PUT). The set of ASlots of PUTs is defined through
a mapping ��� from T to 2ST such that @t P T;���ptq def

� !!!ptq � ���ptq. The number of ASlots of a
PUT t is denoted the ���-valency of t, i.e., valency�ptq

def
� |���ptq|.

For instance, ppaddleq inherits PSlots who and obj from ppushq, but as PSlots obj is hidden
for ppaddleq, then it only has ASlots who.

The following proposition directly derives from definition 2.8:

Proposition 2.9. @t P T;!!!ptq � ���ptq �Y���ptq, i.e., !!!ptq is the disjoint union of ���ptq and ���ptq.

Proof. From definition 2.8: @t P T;���ptq � !!!ptq ����ptq ô @t P T;!!!ptq � ���ptq �Y���ptq

Furthermore, due to propositions 2.2 and 2.5, we know that any PUT with ASlot obj is in
lower set Ó rootpobjq and is not in lower set ÓHiderspobjq. So the following proposition holds:

Proposition 2.10. For any s P ST ,

tt P T | s P ���ptqu � Ó rootpsq � ÓHiderspsq � tt P T | t À rootpsq and @th P Hiderspsq; t ´ thu
(3)

Proof. Let s P ST .
�: Let t P tt P T | s P ���ptqu. s P ���ptq.
By definition 2.8, s P !!!ptq ����ptq.
By definition 2.6 and proposition 2.7, s À rootpsq and @th P Hiderspsq; t ´ th.
So t P Ó rootpsq � ÓHiderspsq.
�: Let t P Ó rootpsq � ÓHiderspsq.
s À rootpsq and @th P Hiderspsq; t ´ th.
By definition 2.6 and proposition 2.7, s P !!!ptq and s R ���ptq.
So s P ���ptq, and t P tt P T | s P ���ptqu.

In our example illustrated on figure 4, the root of PSymbol obj is illustrated by symbol �,
circles represent equivalence classes, and the hiders of obj are illustrated by symbol �. The yellow
zone represents the set of PUTs that have a ASlot obj, i.e., the difference between the lower set
of T generated by rootpobjq, and the lower set of T generated by Hiderspobjq.

RR n° 8212

18 Maxime Lefrançois, Fabien Gandon

K�

J�

�

�

�

pfactq � rootpobjq

pfallq

ptumbleq

prainq

prain cats and dogsq

pdrizzleq

pScotch mistq

ppushq

ppaddleq

tt P T | obj P ���ptqu � Ó rootpobjq � ÓHiderspobjq

Figure 4: Illustration of the set of PUT that have ASlots obj.

Thus in accordance with the MTT, ASlots are not always inherited by PUTs: they may be
introduced, be inherited for a while, and disappear. Now from propositions 2.3 and 2.6, one
concludes that two equivalent PUTs share the same set of ASlots:

Proposition 2.11. @t; t1 P T such that t � t1, ���ptq � ���pt1q.

Proof. From definition 2.8, ���ptq � !!!ptq ����ptq.
Moreover, from propositions 2.3 and 2.6, !!!pt1q � !!!ptq and ���pt1q � ���ptq.
So !!!pt1q � !!!ptq.

Finally, from propositions 2.4 and 2.8, one concludes that any absurd PUT has no ASlot:

Proposition 2.12. @t P K�;���ptq � ?.

Proof. Let t P K�. From definition 2.8 and propositions 2.4 and 2.8, ���ptq � ST � ST � ?.

2.5 PUT Signatures
For any PUT, not any unit may fill one of its specific ASlot. For instance, any unit that fills
ASlot obj of a unit with type pmoveq should be of type pobjectq, and absolutely not of type pideaq

nor peatq. Signatures enable the assertion of what type fillers of PSlots are.
As PUTs get more and more specific, the signature of a given common ASlot may only become

more and more specific. For instance, any unit that fills ASlot obj of a unit with type pmoveq
should be of type pobjectq, but only units with type pweighing objectq may fill ASlots obj of a
unit with type pfallq.

Moreover, when a PSlot becomes hidden, its signature still is relevant and may be further
restricted. For instance, although PSlot obj is hidden for prainq, any unit that fills that HSlot
should be of type pwater dropsq. And for pdrizzleq it becomes psmall water dropsq.

Definition 2.9 (Signatures of PUTs). The set of signatures of PUTs t&&&tutPT is a set of functions
from ST to 2T. For every PUT t, &&&t is a function with domainp&&&tq � !!!ptq that associates to each
PSlot s of t a set of PUT &&&tpsq that characterize the type units that may fill this slot should be.

Inria

The Unit Graphs Mathematical Framework 19

The set of signatures t&&&tutPT must be such that for all t1; t2 P T, and s P ST such that t1 À t2
and s P !!!pt2q, @t12 P &&&t2psq; Dt11 P &&&t1psq : t11 À t12.

The above definition is complex due to the fact that important notions will be introduced in
next section. We will see that 2T is the set of so-called CUTs, and thus the signature &&&t of t is
a CUT. Moreover, when the pre-order relation

X

À over the set of CUTs will be introduced, we
will see that @t12 P &&&t2psq; Dt11 P &&&t1psq : t11 À t12 implies &&&t1psq

X

À &&&t2psq. Thus the set of signatures
t&&&tutPT must be such that for all t1; t2 P T, and s P ST such that s P !!!pt2q,

t1 À t2 æ &&&t1psq
X

À &&&t2psq (4)

RR n° 8212

20 Maxime Lefrançois, Fabien Gandon

3 Conjunctive Unit Types (CUTs)

In the Meaning-Text Theory (MTT), a unit may actually have multiple types. For instance, a
unit may have a have a lexical unit type and multiple grammatical unit types for instance, like
trdefsG; rUSAsL

u for "the USA".
In section 3.1 we hence introduce the set of Conjunctive Unit Type (CUT) as the set of all

subsets of T, and will define the set of asserted absurd CUT set, which is a set of combinations
of PUTs that may not have instances.

Any CUT may also be seen both as a concept and as a n-ary relation, inheriting as such its
constituting PUTs Participant Slots (PSlots), and Hidden Slots (HSlots) (but not their Actant
Slots (ASlots) !). Section 3.2 introduces slots and signatures for CUTs.

Then, section 3.3 introduces a specialization pre-order over CUTs, which is build from the pre-
order over constituent PUTs, asserted absurd CUTs and absurd signatures. A natural definition
of absurd CUTs is then given.

Finally, a first definition of the hierarchy of CUTs is introduced in 3.4.

3.1 Definition of CUTs

A unit has multiple types. For instance trdefsG; rUSAsL
u for "the USA" is composed of a lexical

unit type rUSAsL and a grammatical unit type rdefsG. We hence introduce the set of possible
Conjunctive Unit Type (CUT) which is the powerset of T, i.e., the set of all subsets of T:

Definition 3.1 (CUT set over T). The CUT set over T is the set of all subsets of T, i.e.,
TX def

� 2T. Every element in TX is denoted both CUT and by the set itself. JX � tJu is denoted
the prime universal CUT, and KX � tKu the prime absurd CUT. Any singleton CUT ttu is said
to be primitive, i.e., a primitive CUT.

Some CUTs such as trdefsG; rindefsGu are said to be absurd. This means there is no unit that
has both types rdefsG and rindefsG. Asserted absurd CUT set is defined as follows:

Definition 3.2 (Asserted absurd CUT set). The set of asserted absurd CUTs is a set of CUTs
that is denoted K[asserted. And K

[
asserted � TX.

3.2 CUT Slots and Signatures

PSlots, HSlots, ASlots and signatures are naturally extended to CUTs.
For instance, consider a CUT tX � tpmoveq; pquickqu. tX contains the PUT pmoveq, and

as obj P !!!ppmoveqq, obj corresponds to a participant of SIT(move). As SIT(move,quick) is a
specialization of SIT(move), we consider that obj is also a PSlot of tX:

Definition 3.3 (Participant Slots of CUTs, and !!!-valency of a CUT). The set of PSlots of CUTs
is defined through a mapping !!!X from TX to 2ST Such that @tX P TX;!!!XptXq def

�
�

tPtX !!!ptq.
The number of PSlots of a CUT tX is denoted the !!!-valency of tX, i.e., valency!ptXq

def
� |!!!XptXq|.

Now, consider CUT tX � tpmoveq; prainqu. PSlot obj is hidden for prainq, but is not for
pmoveq. PSlot obj is a PSlot for tX and we consider that being hidden has priority over being an
actant:

Definition 3.4 (Hidden Slots of a CUTs). The set of HSlots of CUTs is defined through a
mapping ���X from TX to 2ST Such that @tX P TX;���XptXq def

�
�

tPtX ���ptq.

Inria

The Unit Graphs Mathematical Framework 21

Naturally, a HSlot is a hidden PSlot, so it is a PSlot. The following proposition underlines
the fact that the previous definitions are coherent with this natural thought:

Proposition 3.1. For any CUT tX P TX, ���XptXq is a subset of !!!XptXq.

Proof. Let tX P TX and s P ���XptXq.
By definition 3.4, Dt P tX; s P ���ptq.
From proposition 2.7, s P !!!ptq.
By definition 3.3, s P !!!XptXq.

Finally, similarly as for PUTs, the ASlots of a CUT is defined as the difference between the
set of PSlots and the set of HSlots:

Definition 3.5 (Actant Slots of a CUTs, and ���-valency of a CUT). The set of ASlots of CUTs is
defined through a mapping ���X from TX to 2ST Such that @tX P TX;���XptXq def

� !!!XptXq����XptXq.
The number of ASlots of a CUT tX is denoted the ���-valency of tX, i.e., valency�ptXq

def
� |���XptXq|.

Just like for PUTs, any PSlot is either an actant, or hidden:

Proposition 3.2. @tX P TX;!!!XptXq � ���XptXq �Y���XptXq, i.e., !!!XptXq is the disjoint union of
���XptXq and ���XptXq.

Proof. From proposition 4.6,
@tX P TX;���XptXq � !!!XptXq ����XptXq ô @tX P TX;!!!XptXq � ���XptXq �Y���XptXq.

Signatures are also naturally extended to CUTs, but for the PSlot obj for instance, we must
take the union of signatures of PUTs constituents over a more complex set: the set of PUTs that
have the PSlot obj: tt P tX | obj P !!!ptqu:

Definition 3.6 (Signature of a CUT). The set of signatures of CUTs t&&&XtXutXPTX is a set of
functions from ST to TX. For every CUT tX, &&&XtX is a function with domainp&&&XtXq � !!!XptXq such
that for all s in !!!XptXq, &&&XtXpsq

def
�

�

tPtX|sP!!!ptq &&&tpsq.

Straightforwardly, the only PSlots of a singleton CUT are the PSlots of its single PUT element:

Proposition 3.3. For all t P T, all of the following is true:

• !!!Xpttuq � !!!ptq.

• ���Xpttuq � ���ptq.

• ���Xpttuq � ���ptq.

• for all s P !!!ptq, &&&X
ttupsq � &&&tpsq

Proof. Let t P T.
1) !!!Xpttuq �

�

tPttu!!!ptq � !!!ptq;
2) ���Xpttuq �

�

tPttu���ptq � ���ptq;
3) ���Xpttuq � !!!Xpttuq ����Xpttuq � !!!ptq ����ptq � ���ptq.
4) let s P !!!ptq. t P tt P tX | s P !!!ptqu, so &&&X

ttupsq �
�

tPttu|sP!!!ptq &&&tpsq � &&&tpsq.

RR n° 8212

22 Maxime Lefrançois, Fabien Gandon

3.3 Pre-order over CUTs
In this section we define a Pre-order over TX which models a specialization relation, e.g.,
tphappyq; pcatqu

X

À tphasMoodq; panimalqu means that tphappyq; pcatqu is more specific (seman-
tically) than tphasMoodq; panimalqu.

Let us first introduce the definition of an iterative construction process of a comparisons set
over TX, and we will describe the intuitive meaning of every element of this definition just after:

Definition 3.7 (Comparisons set over TX). Let pCXn qnPN be a sequence of comparisons sets over
TX, i.e., for all n P N, CXn � TX2, defined by

• for i � 0, CX0
def
� CXÀ YCXJ YCXK , where:

CXÀ
def
� tptXy ; t

X
x q P TX2

| @ty P t
X
y ; Dtx P t

X
x : tx À tyu (5)

CXJ
def
� tpJX;?qu (6)

CXK
def
� tpKX; tXq P TX2

| tX P K[assertedu (7)

• for all i ¡ 0, CXi
def
� CXi�1 YCX&&& i YCX�i where:

CX&&& i
def
� tpKX; tXq P TX2

| Ds P !!!XptXq; pKX; &&&XtXpsqq P CXi�1u (8)

CX�i
def
� tptXz ; t

X
x q P TX2

| DtXy P TX; ptXz ; t
X
y q P CXi�1 and ptXy ; t

X
x q P CXi�1u (9)

The sequence pCXn q is a bounded monotonic increasing sequence, i.e., for all n P N, CXn � CXn�1 �

TX2, so it is convergent. The least upper bound of the sequence pCXn qnPN is denoted CX: the
comparisons set over TX.

The intuitive meaning of the iterative construction process is the following:

• CXÀ represents the natural extension of a pre-order over a set to a pre-order over its powerset;

• CXJ is introduced to flatten the top of the powerset so that JX is the most generic CUT;

• CXK is introduced to flatten the bottom of the powerset so that any asserted absurd CUT
is considered as a minimal CUT (a most specific CUT);

• CX&&& i represents the fact that if a signature of a CUT for a given PSlot is absurd, then that
CUT is absurd;

• CX�i transitively closes the set of comparisons CX.

It is a well know result that CXÀ defines a pre-order over 2T (i.e., it is reflexive and transitive),
let us recall how this result is obtained:

Proposition 3.4. CXÀ is reflexive and transitive.

Proof. Reflexivity: Let tX P TX.
@t P tX; Dt1p� tq P tX : t1 À t.
So ptX; tXq P CXÀ.
Transitivity: Let tXx ; tXy ; tXz P TX such that ptXz ; tXy q P CXÀ, and ptXy ; tXx q P CXÀ.
@tz P t

X
z ; Dty P t

X
y : ty À tz, and @t1y P tXy ; Dtx P tXx : tx À t1y.

Let t1y � ty, then @tz P tXz ; Dtx P tXx : tx À tz,
and thus ptXz ; tXx q P CXÀ.

Inria

The Unit Graphs Mathematical Framework 23

Now from that result and the construction process of CX, we may prove the reflexivity and
the transitivity of CX:

Proposition 3.5. CX is reflexive and transitive.

Proof. As CXÀ � CX and CXÀ is reflexive, then CX is reflexive.
Transitivity is obtained from CX� in the construction process of CX.

Now that we know CX is reflexive and transitive, it defines a pre-order relation over TX:

Definition 3.8 (Pre-order relation over TX). CX is a binary relation over TXwhich is transitive
and reflexive. So it defines a pre-order relation

X

À over TX, i.e., tXx
X

À tXy if and only if ptXy ; tXx q P
CX.

The following proposition underlines sufficient conditions so that a CUT is more specific than
another CUT. Each of these conditions is the expression of one of the intuitive meaning of the
elements in the construction process of the comparisons set over TX:

Proposition 3.6. The pre-order relation
X

À is such that:

• Extension of À For all tXx ; tXy P T
X, if @ty P tXy ; Dtx P tXx : tx À ty, then tXx

X

À tXy ;

• Top CUT ?
X

À JX;

• Asserted absurd types For all tX P K[asserted, t
X

X

À KX;

• Absurd signatures For all tX P TX, if there exists s P !!!XptXq such that &&&XtXpsq
X

À KX,
then tX

X

À KX;

Proof. Extension of À: For all tXx ; tXy P TX, if @ty P tXy ; Dtx P tXx : tx À ty, then ptXy ; tXx q P CXÀ �
CX, so tXx

X

À tXy .
Top CUT: We know that pJX;?q P CX, so ?

X

À JX.
Asserted absurd types: For all tX P K[asserted, pK

X; tXq P CXK � CX, so tX
X

À KX.
Absurd signatures: For all tX P TX, if there exists s P !!!XptXq such that &&&XtXpsq

X

À KX, then
pKX; &&&XtXpsqq P CX. There exists n P N such that pKX; &&&XtXpsqq P CXn , and thus for n � 1,
pKX; tXq P CX&&& n�1

� CX. So tX
X

À KX.

In the mathematical theory of categories, pre-ordered sets has category denoted Ord with
monotonic functions as homomorphisms. In our case here, we have two pre-ordered sets: the
powerset of TX with the inclusion relation pTX;�q and the powerset of TX with the specialization
relation pTX;

X

Àq. The morphism f that maps one onto the other and such that fptXq � tX is
anti-monotonic:

Proposition 3.7. The function f : pTX;�q Ñ pTX;
X

Àq such that fptXq � tX is an anti-
monotonic pre-order homomorphism, i.e., for all tXx ; tXy P T

X, tXx � tXy æ tXy
X

À tXx .

Proof. Let tXx ; tXy P TX such that tXx � tXy . Then @tx P tXx ; tx P tXy .
Thus @tx P tXx ; Dtyp� txq P t

X
y : ty À tx, so by proposition 3.6, tXy

X

À tXx .

The set of comparisons CX is constructed such that the top (the less specific CUTs) and
the bottom (the most specific CUTs) of the pre-ordered set pTX;

X

Àq is flattened. The following
proposition underlines the important maximal and minimal elements of pTX;

X

Àq.

Proposition 3.8. JX and ? are maximal elements in TX, and T, KX, and K� are minimal
elements in pTX;

X

Àq.

RR n° 8212

24 Maxime Lefrançois, Fabien Gandon

Proof. Let tX P TX.
?: ? � tX, so using proposition 3.7: tX

X

À ?.
JX: Let tX � ?. We know that for all t P T, t À J, so for J in JX, Dt P tX : t À J.
So using proposition 3.6, tX

X

À JX.
As we moreover know that ?

X

À JX, then for all tX P TX, tX
X

À JX.
T: tX � T, so using proposition 3.7: T

X

À tX.
KX: Let tX � ?. We know that for all t P T, K À t, so for all t P tX;K À t.
So using proposition 3.6, KX

X

À tX.
As we moreover know that ? is a maximal element, KX

X

À ?, then for all tX P TX, KX
X

À tX.
K�: We know that K P K�, so item above also applies for K�, i.e.,
for tX � ?, @t P tX; Dt1p� Kq P K� : t1 À t, and K�

X

À ?
So for all tX P TX, K�

X

À tX.

We introduce the natural equivalence relation X
� defined by tXx

X
� tXy ô tXx

X

À tXy and tXy
X

À tXx .
Elements in the flattened bottom of the pre-ordered set pTX;

X

Àq are not only the most specific
CUTs, but they all are considered absurd, and may not have instances.

Definition 3.9 (Absurd CUT set). The set of absurd CUTs is denoted K[and is the set:
K[

def
� ttX P TX | tX X

� KXu.

Naturally, the prime absurd CUT, KX, is absurd.
The property of being absurd is hereditary: if a CUT tX is absurd, all conjunctive types lesser

than tX are also absurd. For instance if trdefsG, rindefsGu is asserted to be absurd and rUSAsL

À rdefsG, then trUSAsL, rindefsGu is absurd.
What is not automatic for PUT, is the fact that if a PUT has an absurd signature, then it

is absurd. Consider for instance that one wants to define prain-hailq as being a specialization of
both prainq and phailq. From definition 2.9, prain-hailq has a PSlot obj, whose signature is the
union of those of prainq and phailq:

&&&prain-hailqpobjq � &&&prainqpobjq Y &&&phailqpobjq

� tpwaterq; pliquidqu Y tpwaterq; psolidqu

� tpwaterq; pliquidq; psolidqu

If one asserted that tpliquidq; psolidqu is absurd and as being absurd is hereditary, the signature
of PUT prain-hailq is absurd. Yet, PUT is not automatically absurd. Equation 8 in the definition
of the pre-order

X

À enables PUT tprain-hailqu to be absurd as it should be.
Finally, if one asserts that JX P K[asserted, then the whole hierarchy collapses and K[� TX.

Same goes if tX P TX such that JX
X

À tX, and s P !!!XptXq such that &&&XtXpsq
X

À KX. Then from
proposition 3.6, tX

X

À KX, and by the pre-order transitivity, K[� TX. Such situations must
absolutely be avoided.

Inria

The Unit Graphs Mathematical Framework 25

3.4 CUTs Hierarchy
We are now ready to introduce the CUT hierarchy, core of the UGs mathematical framework.

Definition 3.10 (CUT hierarchy). A CUT hierarchy
T X � pTdeclared; Casserted;K[asserted;ST ; root;Hiders; t&&&tutPTq, is composed of:

• Tdeclared a set of declared PUTs;

• Casserted a set of asserted comparisons;

• K[asserted a set of asserted absurd CUTs;

• ST a set of participation symbols;

• root a mapping that associates to each PSlot its root PUT;

• Hiders a mapping that associates to each PSlot the set of its hider PUTs;

• t&&&tutPT the set of signatures of PUTs;

The CUTs hierarchy is the minimal set of mathematical objects that is necessary to form the
consistent core of the UG formalism.

RR n° 8212

26 Maxime Lefrançois, Fabien Gandon

4 Characterizing CUTs
This section introduces remarkable aspects of the CUTs.

First, for two CUTs tXx ; tXy P TX and according to the construction of the pre-order over
CUTs, we introduce in §4.1 the necessary condition to have tXx

X

À tXy .
Second, now that the pre-order

X

À is introduced, we will see in §4.2 that most properties of
PUTs slots and signatures are valid for CUTs slots and signatures, except for some deteriorated
cases.

Next, §4.3 introduces a natural equivalence relation over the set of CUTs, and the partially
ordered set of equivalent classes of CUTs.

Finally, §4.4 and 4.5 are devoted to the introduction of remarkable subsets of CUTs that will
be important later on for the UGs mathematical framework.

4.1 Necessary Conditions to Compare Two CUTs
The pre-order

X

À over CUTs is slightly more complex than the simple natural extension of a
pre-order over a set to a pre-order over its powerset. The necessary condition to have two CUTs
tXx ; t

X
y P TX comparable may be stated as follows:
If tXx

X

À tXy , then at least one of the following is true:

• tXx is absurd;

• tXx is the empty set (and thus tXy is a maximal element of TX);

• tXx is naturally more specific than tXy , i.e., according to the natural extension of a pre-order
over a set to a pre-order over its powerset.

Or more formally:

Proposition 4.1. Let tXx ; tXy P T
X. if tXx

X

À tXy , then at least one of the following is true:

• tXx
X
� KX;

• tXx � ? (and thus JX X
� tXy);

• @ty P tXy ; Dtx P tXx : tx À ty (i.e., ptXy ; tXx q P C
X
À).

Proof. Let tXx ; tXy P TX.
As JX (resp. KX) is a maximal (resp. minimal) element of TX,
JX

X

À tXy implies JX X
� tXy (resp. tXx

X

À KX implies tXx
X
� KX).

So it is sufficient to prove that one of the following is true:
i) tXx

X

À KX, ii) tXx � ? (and thus JX
X

À tXy), or iii) ptXy ; tXx q P CXÀ.

CX is the limit the sequence pCXn q, so let n P N be such that ptXy ; tXx q P CXn and ptXy ; tXx q R CXn�1.
We assume that tXx

X

´ KX, ptXy ; tXx q R CXÀ, and that either JX
X

´ tXy or tXx � ?.

1) If ptXy ; tXx q P CX&&& n, then t
X
x

X

À KX.
This is impossible, so ptXy ; tXx q P CX�n and there exists tX P TX such that ptXy ; tXq P CXn�1 and ptX; tXx q P
CXn�1.
As CXn�1 � CX, tXx

X

À tX.
If tX

X

À KX, then tXx
X

À KX which is impossible.
So we know that tX

X

´ KX.

Inria

The Unit Graphs Mathematical Framework 27

2) From proposition 3.4, we know that CXÀ is transitive. So either 2a) ptX; tXx q R CXÀ, or 2b)
ptXy ; t

Xq R CXÀ.
2a) In this case, consider m ⁄ n� 1 such that ptX; tXx q P CXm and ptX; tXx q R CXm�1.

We still have tXx
X

´ KX and we have now ptX; tXx q R CXÀ.
2b) In this case, consider m ⁄ n� 1 such that ptXy ; tXq P CXm and ptXy ; tXq R CXm�1.

We just showed in 1) that tX
X

´ KX and we have now ptXy ; tXq R CXÀ.

3) In both cases 2a) and 2b), the possibility of our hypothesis depend on the possibility of our
hypothesis with different CUTs, and with a strictly lower natural number m n.
Thus for each exploratory branch, at some point we will reach the case where (for instance for
tXa and tXb): pt

X
b ; t

X
a q P CX0 , tXa

X

´ KX so pKX; tXa q R CXK , and ptXb ; t
X
a q R CXÀ. So ptXb ; t

X
a q P CXJ .

Neither JX
X

´ tXb nor tXb � ? is compatible with this last statement, so we highlighted a contra-
diction.

As a conclusion, if tXx
X

À tXy , it is impossible that all of the following is false :
i) tXx

X

À KX, ii) tXx � ?, iii) ptXy ; tXx q P CXÀ.

4.2 Properties of CUT Slots and Signatures
Now that the pre-order

X

À is introduced, we will see how the properties of PUTs slots and
signatures are valid for CUTs slots and signatures except for specific deteriorated cases: the void
CUT and absurd CUTs.

Participant Slots First, remember proposition 2.2 and the fact that the PSlot obj is inherited
by every PUT more specific than rootpobjq, and only those PUTs more specific than rootpobjq
have a PSlot with symbol obj. From the definition of PSlots of CUTs, this property is also valid
for CUTs:

If tXx � tpfall
q; ppastqu and tXy � tpmovequ, then tXx

X

À tXy , and in every linguistic situation in
which a linguistic unit of type tXx would be involved, there would still be something that moves.
Apart for some deteriorated cases, the PSlot obj is inherited by every CUT more specific than
the CUT trootpobjqu, and only those CUTs more specific than trootpobjqu will have a PSlot with
symbol obj. The following property thus holds:

Proposition 4.2. Let ÓX rootpsq be the smallest lower set of TX that contains trootpsqu:

ÓX rootpsq
def
� ttX P TX | tX

X

À trootpsquu (10)

For any s P ST , the following holds:

ttX P TX | s P !!!XptXqu Y K[z? � ÓX rootpsqz? (11)

Proof. Let s P ST .
�1: Let tX P ttX P TX | s P !!!XptXqu.
By definition 3.3, Dt P tX; s P !!!ptq. So tX � ?.
On the other hand, from definition 2.6, t À rootpsq.
By proposition 3.6, tX

X

À trootpsqu so tX P ÓX rootpsq.
So tX P ÓX rootpsqz?, and ttX P TX | s P !!!XptXqu � ÓX rootpsqz?.
�2: Let tX P K[z?. tX

X

À KX which is a minimum element in TX.
So tX

X

À trootpsqu and tX P ÓX rootpsq and tX P ÓX rootpsqz?.
So K[z? � ÓX rootpsqz?.

RR n° 8212

28 Maxime Lefrançois, Fabien Gandon

�: Let tX P ÓX rootpsqz?. tX
X

À trootpsqu.
We use proposition 4.1, so at least one of the following is true:

i) tX
X

À KX: then tX P K[. And as tX � ?, tX P K[z?.
ii) tX � ?: impossible case.
iii) Dt P tX : t À rootpsq: then using definition 2.6, Dt P tX : s P !!!ptq, and by definition 3.3,

s P !!!XptXq. So tX P ttX P TX | s P !!!XptXqu.

One may have noticed that two kinds of CUTs are not considered here: the CUT ?, and any
absurd CUT tX P K[:

• the CUT ?: a problem would arise for instance with s P ST such that rootpsq � J. By
construction of the pre-order

X

À, ?
X

À JX, yet ? has no PSlot (!!!Xp?q �
�

tP?!!!ptq � ?).
So s R !!!Xp?q and some PSlots may not be inherited from the CUT ?;

• any absurd CUT tX P K[: problems arise for any s P ST such that s R !!!XtX. By
construction of the pre-order

X

À, tX
X

À KX, yet, from propositions 2.4 and 3.3, !!!XpKXq � ST .
So some PSlots are not inherited among absurd CUTs.

In fact, these two deteriorated cases are not considered in all of the following properties of
this section.

As CUTs get more and more specific (i.e., as we go down the hierarchy of CUTs), the set of
PSlots may only increase. PSlots are inherited also for CUTs, as long as they are not the empty
conjunctive unit type, or absurd types.

Proposition 4.3. PSlots are inherited as long as CUTs are not absurd and are not ?, i.e.,
@tXx P T

X
z?�K[, and tXy P T

X,

tXx
X

À tXy æ !!!XptXy q � !!!XptXx q (12)

Proof. Let tXx P TXz?�K[and tXy P TX such that tXx
X

À tXy .
Let s P !!!XptXy q. By definition 3.3, Dt P tXy ; s P !!!ptq.
We use proposition 4.1, but as tXx R K[and tXx � ?, tXx

X

À tXy simply implies: @ty P tXy ; Dtx P tXx :

tx À t. So Dtx P tXx : tx À ty.
Using proposition 2.3, s P !!!ptxq, and using definition 3.3, s P !!!XptXx q.

Hidden Slots Next, consider the CUT tprainqu. PSlot obj is hidden for prainq, so is it for
tprainqu.

Consider any CUT more specific than tprainqu such as tprainq; ppastqu. tprainq; ppastqu does
not have obj as an actant slot. The hidden state of the PSlot obj will hence be inherited by every
CUT more specific than any CUT in the set of singletons ttHiderspobjquu, and only those CUTs
more specific than one CUT of ttHiderspobjquu will have PSlot obj hidden. With the exception,
of course, of the CUT ?, and any absurd CUT tX P K[. The following property thus holds:

Proposition 4.4. Let ÓXHiderspsq be the lower set of TX generated by ttthuuthPHiderspsq, i.e.,

ÓXHiderspsq
def
� ttX P TX | Dth P Hiderspsq : tX

X

À tthuu (13)

For any s P ST , the following holds:

ttX P TX | s P ���XptXqu Y K[z? � ÓXHiderspsqz? (14)

Inria

The Unit Graphs Mathematical Framework 29

Proof. Let s P ST .

�1: Let tX P ttX P TX | s P ���XptXqu.
a) By definition 3.4, Dt P tX; s P ���ptq. So tX � ?.
b) On the other hand, from definition 2.7, Dth P Hiderspsq; t À th. Thus using proposition 3.6
tX

X

À tthu, and tX P ÓXHiderspsq.
So tX P ÓXHiderspsqz?, and ttX P TX | s P ���XptXqu � ÓXHiderspsqz?.

�2: Let tX P K[z?.
tX

X

À KX which is a minimum element in TX.
So @th P Hiderspsq; tX

X

À tthu, i.e., tX P ÓXHiderspsq.
As we chose that tX can’t be ?, then tX P ÓXHiderspsqz?.
So K[z? � ÓXHiderspsqz?.

�: Let tX P ÓXHiderspsqz?.
Dth P Hiderspsq; t

X
X

À tthu.
We use proposition 4.1, so at least one of the following is true:

i) tX X
� KX: then tX P K[and tX P K[z?.

ii) tX � ?: impossible case.
iii) Dt P tX : t À th: then by definition 2.7 Dt P tX : s P ���ptq, and by definition 3.4, s P ���XptXq.

So tX P ttX P TX | s P ���XptXqu
So tX P ttX P TX | s P ���XptXqu Y K[z?.

As a direct consequence, as CUTs get more and more specific (i.e., as we go down the hierarchy
of CUTs), the set of HSlots may only increase. HSlots are thus inherited also for CUTs, as long
as they are not the empty conjunctive unit type, or absurd types:

Proposition 4.5. Hidden slots are inherited as long as CUTs are not absurd and are not ?,
i.e., @tXx P T

X
z?�K[and tXy P T

X,

tXx
X

À tXy æ ���XptXx q � ���XptXy q (15)

Proof. Let tXx P TXz?�K[and tXy P TX such that tXx
X

À tXy .
Let s P ���XptXy q. By definition 3.4, Dt P tXy ; s P ���ptq.
From proposition 4.1 and the facts that tXx R K[and tXx � ?, we know that tXx

X

À tXy simply
implies @ty P tXy ; Dtx P tXx : tx À ty. So Dtx P tXx : tx À t.
Using proposition 2.6, s P ���ptxq, and using definition 3.4, s P ���XptXx q.

Actant Slots Furthermore, due to propositions 4.2 and 4.4, we know that apart from absurd
CUTs and ?, any CUT with ASlot obj is in lower set ÓX rootpobjq and is not in lower set
ÓXHiderspobjq. So the following proposition holds:

Proposition 4.6. For any s P ST ,

ttX P TX | s P ���XptXqu Y K[z?
� pÓX rootpsqz?� ÓXHiderspsqz?q Y K[z?

�

!

tX P TX | tX
X

À trootpsqu and @th P Hiderspsq; tX
X

´ tthu
)

YK[z?

RR n° 8212

30 Maxime Lefrançois, Fabien Gandon

Proof. We use propositions 2.10, 4.2 and 4.4:

ttX P TX | s P ���XptXqu Y K[z?
� ttX P TX | s P !!!XptXq ����XptXqu Y K[z?
� pttX P TX | s P !!!XptXqu � ttX P TX | s P ���XptXquq Y K[z?
� ppttX P TX | s P !!!XptXqu Y K[z?q � pttX P TX | s P ���XptXqu Y K[z?qq Y K[z?
� pÓX rootpsqz?� ÓXHiderspsqz?q Y K[z?

Signatures Just like for PUTs, as CUTs get more and more specific, the signature of a given
common PSlot may only become more and more specific:

Proposition 4.7. For all tXx P T
X
z?�K[, tXy P T

X and s P ST such that s P !!!XptXy q,

tXx
X

À tXy æ &&&XtXx psq
X

À &&&XtXy psq (16)

Proof. Let tXx P TXz?�K[and tXy P TX and s P ST such that tXx
X

À tXy and s P !!!XptXy q.
1) Let ta P &&&XtXy psq. Using definition 3.6, Dtb P tXy : s P !!!ptbq and ta P &&&tbpsq.
2) We use tXx

X

À tXy and proposition 4.1.
As tXx R K[and tXx � ?, we know that @ty P tXy ; Dtx P tXx : tx À ty.
We restrict those ty to be such that s P !!!ptyq.
We use definitions 2.9 and proposition 3.6: @ty P tXy such that s P !!!ptyq, there exists tx P tXx such
that @t1 P &&&ty psq; Dt P &&&txpsq : t À t1

3) This is rewritten as: @ty P tXy such that s P !!!ptyq;@t1 P &&&ty psq; Dtx; t such that tx P tXx ; t P
&&&txpsq and t À t1

4) combining 1) and 3) with ty � tb, and t1 � ta, one obtains:
Dtb P t

X
y such that s P !!!ptbq and ta P &&&tbpsq; Dtx; t such that tx P tXx ; t P &&&txpsq and t À ta

5) So there exists t and tx such that tx P tXx and t P &&&txpsq and t À ta,
6) using definition 3.6, t P &&&XtXx psq. So @ta P &&&

X
tXy
psq; Dt P &&&XtXx psq : t À ta, and using proposition 3.6,

&&&XtXx psq
X

À &&&XtXy psq.

Inria

The Unit Graphs Mathematical Framework 31

4.3 CUT Equivalence Class Sets

Let X
� be the natural equivalence relation defined by tXx

X
� tXy ô

�

tXx
X

À tXy ^ t
X
y

X

À tXx

	

. The set of

equivalence classes defines a partition of TX. Let tX P TX, we denote rtXs def
� ttXx P TX | tXx

X
� tXu

the equivalence class to which tX belongs. We will usually use the notation t[for an unknown
equivalence class.

Definition 4.1 (CUTs equivalence class set). The CUTs equivalence class set T[is the quotient
set of TX by X

�, i.e., T[def
� TX{X� � trtXs | tX P TXu. We define a partial order

[

⁄ over T[with
rtXx s

[

⁄ rtXy s if and only if tXx
X

À tXy .

We define J[def
� rJXs the top (less specific) CUTs equivalence class set, and K[def

� rKXs the
absurd (most specific) CUTs equivalence class set.

Proposition 4.8. J[and K[are respectively the greatest element and the least element of T[.

Proof. J[: From proposition 3.8, JX is a maximal element for
X

À.
So @tX P TX; tX

X

À JX. So @t[P T[; t[
[

⁄ J[, and J[is the greatest element of T[.
K[: From proposition 3.8, KX is a minimal element for

X

À. So @tX P TX;KX
X

À tX.
So @t[P T[;K[

[

⁄ t[, so K[is the least element of T[.

A set of equivalence class CUTs is closed under the union operation:

Proposition 4.9. Let t[P T[, and tXx ; tXy P t[. Then tXx Y tXy P t[.

Proof. Let t[P T[, and tXx ; tXy P t[. We will prove that tXx Y tXy
X
� tXx .

X

À: We know from proposition 3.7 that tXx � tXx Y t
X
y implies tXx Y tXy

X

À tXx .
X

`: We know that tXx
X

À tXy . From proposition 3.6, at least one of the followings holds:
i) tXx

X

À KX: then tXx Y tXy
X
� tXx

X
� KX;

ii) tXx � ?: then tXx Y tXy � tXy
X
� tXx ;

iii) @ty P tXy , Dtx P tXx : tx À ty: So @t P tXx Y tXy , Dtx P tXx : tx À t, and tXx
X

À tXx Y t
X
y .

The following lemma is useful to prove upcoming propositions. It states that adding a PUT
t to a CUT tX does not make it change its equivalence class, provided that t is greater than at
least one PUT in tX:

Lemma 4.10. Let tX P TX and t P T such that Dt1 P tX; t1 À t. Then tX Y ttu X
� tX.

Proof. Let tX P TX and t P T such that @t1 P tX; t1 À t.
X

À: tXy � tXy Y ttu so tX Y ttu
X

À tX;
X

`: tX � ?. Let t1 P tX Y ttu.
If t1 P tX, then there exists t2p� t1q P tX : t2 À t1.
If t1 � t, then there exists t2 P tXt2 À t1.
So @t1 P tX Y ttu; Dt2 P tX : t2 À t1, and tX Y ttu

X

` tX.

RR n° 8212

32 Maxime Lefrançois, Fabien Gandon

4.4 Maximal CUTs
CUTs enable a first inference mechanism, which is type inference. If a CUT tXx is lower than tXy ,
then any instance of tXx is also an instance of every PUT in tXy . In this section we consider a
remarkable subset of CUTs that we call the set of maximal CUTs.

Let us first introduce a maximization operator ò that associates to any CUT tX the union of
all CUTs in rtXs:

Definition 4.2 (Maximization operator). The maximization operator ò defined on TX associates
to every CUT tX the CUT ò tX def

�
�

tXPrtXs t
X.

The set of maximal CUTs TXmax is then denoted TXmax, and defined as follows:

TXmax � tò t
X | tX P TXu (17)

In the rest of this section we will list useful facts about the maximization operator ò and the
set of maximal CUTs TXmax.

First, the maximization operator preserves the equivalence class. This means that a CUT tX

and its maximized CUT ò tX are both in the same equivalence class set.

Proposition 4.11. The restriction of the closure operator ò to any CUTs equivalence class set is
an endomorphism of this class, i.e., for all t[P T[, if tX P t[, then ò tX P t[. Or equivalently,
@tX P TX;ò tX X

� tX.

Proof. Let t[P T[, and tX P t[. By definition, ò tX is the union of all CUT in t[.
We know from proposition 4.9 that t[is closed under the union operation, so ò tX P t[.

Next, all CUTs of a given equivalence class set have the same maximized CUTs.

Proposition 4.12. The kernel of the closure operator ò on T is the equivalence relation X
�, i.e.,

if tXx
X
� tXy , then ò tXx � ò tXy

Proof. By definition, if tXx
X
� tXy , then rtXx s � rtXy s, and ò tXx � ò tXy

Thus, there is a one-to-one correspondence between the set of a set of equivalence CUTs class
sets T[and the set of maximal CUTs TXmax. Moreover, PUTs is a maximal CUT in the sense
that among its equivalence class set, it is the unique CUT that has the maximal cardinality.

Proposition 4.13. The closure operator ò is order-embedding, i.e.,

tXx
X

À tXy ô ò tXx
X

À ò tXy (18)

Proof. Let tXx ; tXy P TX. From proposition 4.11 we know that tXx
X
� ò tXx and tXy

X
� ò tXy .

æ: If tXx
X

À tXy , then tXx
X
� ò tXx

X

À ò tXy
X
� tXy . So ò tXx

X

À ò tXy .
ð: If ò tXx

X

À ò tXy , then ò tXx
X
� tXx

X

À tXy
X
� ò tXy . So tXx

X

À tXy .

Let tX P TX, we denote Ò tX the upper-set of T generated by PUTs in tX, i.e.,

Ò tX
def
� tt P T | Dt1 P tX; t1 À tu (19)

Proposition 4.14. The maximization operator ò is such that all of the following is true:

• if tX P TXz?�K[, then ò tX � Ò tX;

• if tX P K[, then ò tX � T;

Inria

The Unit Graphs Mathematical Framework 33

• ò? � òJX;

Proof. Let tX P TX:
1) if tX P TXz?�K[:
�: Let t P ò tX. By definition, DtXx P rtXs; t P tXx . So tX

X
� tXx and tX

X

À tXx .
From proposition 3.6, at least one of the followings holds:

i) tX
X

À KX (impossible from our hypothesis);
ii) tX � ? (impossible from our hypothesis);
iii) @tx P tXx ; Dt1 P tX : t1 À tx. So for t P tXx , Dt1 P tX : t1 À t. And thus t P Ò tX.

�: Let t P Ò tX. Then Dt1 P tX; t1 À t. From lemma 4.10, tX Y ttu X
� tX, and thus tX Y ttu P rtXs,

and thus t P ò tX.
2) if tX P K[, then T P rtXs and ò tX � T;
3) if ? X

� JX, then from proposition 4.12, ò? � òJX.

Figure 5 illustrates the most interesting case in proposition 4.14 which is the case where
tX R K[and tX � ?: black dots represent PUTs of tX P TX, and the fact that a dot is lower
than another dot roughly means that the former is more specific than the latter. Circles represent
equivalence classes. If tX is a CUT consisting of all the black dots, then the gray zone represents
the set of PUTs that belong to ò tX.

K�

J�

ò tX

Figure 5: Illustration of a maximal CUT ò tX with tX P TXz?�K[.

A CUT is thus maximal if and only if: either it is the whole set of PUTs, or it is a non-absurd
non-empty upper set of PUTs:

Proposition 4.15. A CUT tX is maximal if and only if one of the following is true:

• tX � T,

• tX P TXz?�K[, and tX is a upper set of T.

Proof. Let us prove both implications:
æ: If tX is maximal, then there exists tX1 P TX; tX � ò tX1.

i) if tX1 P K[, then tX � T;
ii) if tX1 � ?, then tX � òKX, and òKX is either T or a non-empty upper set of T;
iii) if tX1 P TXz?�K[, then tX is an non-empty upper set of T.

RR n° 8212

34 Maxime Lefrançois, Fabien Gandon

ð:
i) if tX � T, then for all tX1 P K[, tX � ò tX1 so tX is maximal;
ii) if tX R K[, and tX is a non-empty upper set of T, then using propositions 4.12 and 4.11,

ò tX � tX, so tX is maximal.

Remark. Anyways, as T is an upper set of T, every maximal CUT is an upper set of T.

The last result of this section is the fact the operator ò defines a closure operator on T.

Proposition 4.16. ò is a closure operator on T, i.e., it satisfies the following conditions for all
CUTs tXx ; tXy P T

X:

• tXx � ò t
X
x , (ò is extensive);

• tXx � tXy øæ ò tXx � ò t
X
y , (ò is increasing with respect to �);

• òò tXx � ò tXx , (ò is idempotent);

Proof. 1) Extensive: Let tX P TX. tX P rtXs so from definition 4.2, tX � ò tX, and ò is extensive.

2) Increasing w.r.t. �: Let tXx ; tXy P TX such that tXx � tXy .
First, we know from proposition 3.7 that tXy

X

À tXx .
i) If tXy P K[, then ò tXy � T (prop. 4.14) and ò tXx � ò tXy .
ii) If tXx P K[, then so is tXy , and ò tXx � ò tXy � T (prop. 4.14).
iii) If tXy � ?, then tXx � tXy � ?, and ò tXx � ò tXy .
iv) If tXy R K[, tXy � ?, tXx R K[, and tXx � ?: Let t P ò tXx � Ò tXx . We know that Dt1 P tXx ; t1 À t.
As tXx � tXy , then Dt1 P tXy ; t1 À t, and t1 P Ò tXy � ò tXy .
v) If tXx � ?, then ò tXx � òJX. J is a maximal element of T, so using lemma 4.10, tXy

X
� tXy YJ

X,
and from definition 4.2, ò tXy � ò tXy Y JX. Using items i) to iv), we know that ò tXx � òJX �
ò tXy YJ

X � ò tXy .
So ò tXx � ò tXy , and ò is increasing.

3) Idempotent: Let tX P TX.
i) if tX P K[, then ò tX � T, and as we know that T P K[, òò tX � ò tX � T.
ii) if tX R K[and tX � ?, then:
�: We know from extensivity of ò that ò tX � òò tX.
�: Let t P òò tX. ò tX X

� tX so (prop: 4.9 ò tX R K[, and we also know that tX � ò tX so
ò tX � ?. Using upper-set properties: òò tX � Òò tX � ÒÒ tX � Ò tX � ò tX.
iii) if tX � ?, then ò tX � òKX, and using ii), ò tX � òKX � òòKX � òò tX.

Thus a maximal CUTs tXò is also maximal in the sense that any CUT of its equivalence class
is contained in tXò .

Inria

The Unit Graphs Mathematical Framework 35

4.5 Concise CUTs
Concise CUTs will be of special interest in the following of this work. They are those (non-unique)
CUTs that have a minimal cardinality in a given equivalence class:

Definition 4.3 (Concise CUT). Let tX be a CUT. tX is said to be concise if and only if:

• if tX is absurd, then tX � KX.

• else, @t P tX; Et1 P tX such that t1 t and @t; t1 P tX, t � t1.

Figure 6 below illustrates definition 4.3: black and white dots represent PUTs, and the fact
that a dot is lower than another dot roughly means that the former is more specific than the
latter. Circles represent equivalence classes. If tX is a CUT consisting of all the black and white
dots, then the set of black dots represents a concise CUT that is a subset of tX. In the illustrated
case, there are 2� 1� 2� 1 such concise CUT that are subsets of tX.

K�

J�

�

�

�

�

�

�

Figure 6: Let the union of black and white dots represent a CUT tX. The set of black dots
represents a concise CUT that is a subset of tX.

RR n° 8212

36 Maxime Lefrançois, Fabien Gandon

Part III

Unit Graphs
In the previous part we introduced the types that nodes of any Unit Graph (UG) have, and that
specify through slots and signatures how these nodes must be linked to other nodes in the graph.
Now is time to introduce the main objects of the Unit Graphs mathematical framework: the
Unit Graphs, such as illustrated in figures 1 and 7.

5 Unit Graphs (UGs)

Unit types specify how units must be linked to other nodes in the UGs, but units may also be
linked to other units through circumstantial dependencies. Circumstantial dependency symbols
are first introduced in section 5.1.

Then section 8.3 introduce the UG support and the UGs themselves in section 8.3.

5.1 Circumstantial Dependency Symbols Hierarchy

Unit types specify how units are linked to other nodes in the Unit Graphs (UGs). As for any
slot in a predicate, one ASlot of a unit may be filled by only one unit at a time. Now, one may
also encounter dependencies of another type in some utterance representations: circumstantial
dependencies (Mel’čuk, 2004a). Circumstantial dependency relations are instance-instance rela-
tion contrary to participation relations that are predicate-argument relations. Such dependencies
may be optional or multiple (i.e., a unit may govern zero or more other units through relations
of a same type). Example of such relations are the deep syntactic representation relations attr,
coord, append such as in figure 7. But we may also use such relations to represent the link
between a lexical unit and its sense for instance.

We use symbols to distinguish the different kinds of circumstantial dependencies, and thus
introduce a finite set of Circumstantial Dependency Symbols (CSymbols).

Definition 5.1 (Circumstantial Dependency Symbols Set). A CSymbols set is a set of binary
relation symbols denoted SC .

CSymbols are often classified in sets and subsets, we thus take into account this need classi-
fication and hierarchy, and introduce a partial order over the set of CSymbols.

Definition 5.2 (Pre-order over SC). The CSymbols set is pre-ordered by a relation
C
À, which

is induced by a set of asserted comparisons CSC � TX. pSC ;CSC q is a directed graph on SC .
The pre-order

C
À is equal to C�SC

the reflexo-transitive closure of CSC , i.e., @s; s1 P SC ; s
1 C
À s iif

ps; s1q P C�SC
, i.e., s1 is a descendant of s, and s is an ascendant of s1.

Every CSymbol is assigned a signature that specifies what kind of units may be linked trough
a relation having this symbol.

Definition 5.3 (Signature of CSymbols). The set of signatures of CSymbols t���susPSC is a set
of couples in TX2. For every dependency relation symbol s, ���s

def
� pdomainpsq; rangepsqq. The

set of signatures t���susPSC must be such that for all s1; s2 P SC such that s1
C
À s2, domainps1q

X

À

domainps2q and rangeps1q
X

À rangeps2q.

We finally introduce the full hierarchy of CSymbols.

Inria

The Unit Graphs Mathematical Framework 37

Definition 5.4 (CSymbols hierarchy). A Circumstantial Dependency Symbols (CSymbols) hier-
archy C def

� pSC ;CSC ; T X; t���susPSC q, is composed of:

• SC a set of Circumstantial Dependency Symbols (CSymbols);

• CSC a set of asserted comparisons;

• T X � pTdeclared; Casserted;K
[
asserted;ST ; root;Hiders; t&&&tutPTq a Conjunctive Unit Types

(CUTs) hierarchy;

• t���susPSC a set of signatures of the CSymbols;

5.2 Definition of UGs
The Unit Graphs (UGs) will enable the description of utterance representation at different rep-
resentation levels. Parallel with the Conceptual Graphs (CGs), UGs are defined over a so-called
support, which is composed of a CUTs hierarchy, a CSymbols hierarchy, and a set of unit markers.

Definition 5.5 (Support). A Support is a tuple S def
� pT X; C;Mq where:

• T X is a Conjunctive Unit Types (CUTs) hierarchy ;

• C is a Circumstantial Dependency Symbols (CSymbols) hierarchy ;

• M is the set of so-called unit markers. MX
� 2M is the set of unit node markers, with ?

the generic unit node marker.

Let us precise what we mean by unit markers. We establish a distinction between:

• units, that are the objects of the represented domain;

• unit markers, that are chosen in the set M, and that each identify a specific unit;

• unit nodes, that are interconnected in UGs and that each represent a unit;

• unit nodes markers, that are chosen in the powerset of M which is denoted MX: MX def
� 2M,

and that label unit nodes so as to specify what unit each unit node represents.

This may seem a little bit complex on first sight, but it is actually an extension for the MTT
that enable to be close to the CGs, and a simple articulation with the semantic web formalisms.
In fact, to every marker will correspond a URI. If a unit node is labeled by the generic unit node
marker ? (we say it is a generic unit node), then the represented unit is unknown, it will be
written as a blank node in RDF. In the literature of MTT, we consider that every unit nodes of
utterance representations is generic. On the other hand, if a unit node is marked tm1;m2u, then
the unit markers m1 and m2 actually identify the same unit, their corresponding RDF resource
will be linked by a relation owl:sameas. This slightly differs from the CGs because the set of unit
node markers is the powerset of unit markers, and we do not introduce the classic generic marker
� from the CGs. We chose to do so because we want to define semantic preserving operations
over the set of UGs, hence when we will merge two asserted equivalent individual unit nodes, we
need to keep record that their unit markers are all equivalent in the UG. This is only possible if
a unit node may have multiple markers.

In their simple version, the CGs have an equivalence relation over concept nodes named
coreference. As this relation does not correspond to the linguistic term and that we will rep-
resent linguistic coreference differently, we deactivate ambiguity and use term declare unit node

RR n° 8212

38 Maxime Lefrançois, Fabien Gandon

equivalence relation, denoted Eq. Two unit nodes declared equivalent represent the same unit.
Moreover, unlike the CGs coref relation, the Eq relation is not an equivalence relation over
unit nodes, i.e., it is not a reflexive, symmetric, and transitive relation. This enables to distin-
guish between explicit and implicit knowledge, thus easing the articulation with semantic web
formalisms.

trpushsL,rpresentsGu

rmansL:http : {{exemple:org{Peter trcatsL,rdefsGu rgentlysL

i ii attr

Figure 7: Example of a UG: Deep syntactic representation of sentence Peter gently pushes the
cat.

The UGs enable to represent utterances at different representation levels. We already met
a semantic representation on figure 1, and figure 7 illustrates a deep syntactic representation.
The natural graph representation we use is a finite oriented labelled multigraph, composed of
unit nodes, participations, and circumstantial dependencies, plus a set of asserted unit node
equivalences. A unit node is labelled by a couple composed of a CUT that specifies the nature
of the unit that is represented, and a unit node marker that enables to identify the represented
unit. If the represented unit is unknown, then the unit node may have the generic unit node
marker ?. Every dependency arc is labelled by a symbol in ST YSC that specifies the nature of
the link that exists between the unit nodes that this arc connects. Dependency arcs and their
symbols are defined in terms of so-called triples. A UG is thus a combination of interconnected
unit nodes defined over a given support.

Definition 5.6 (UG). The set of UGs defined over a support S is denoted GpSq, and each UG
G P GpSq is a tuple G def

� pU; l; P; C;Eqq where:

• U is the set of unit nodes. They are illustrated by rectangles as on figure 7.

• l is a labelling mapping over U that assigns to each unit node u P U a couple lpuq �
ptX;mXq P TX �MX. u is thus a unit node that has type tX and marker mX. We denote
tX � typepuq and mX � markerpuq. On figure 7, unit nodes are all typed by singletons,
except on that is typed trpushsL,rpresentsGu. Moreover, unit nodes are all generic, except
one marked thttp : {{exemple:org{Peteru.

• P is the set of participation triples pu; r; vq P U �ST �U . For all p � pu; r; vq P P , the unit
represented by v fills the PSlot r of the unit represented by u. We denote u � governorppq,
r � symbolppq and v � participantppq. We also denote arcppq � pu; vq. They are illustrated
by double arrows on figure 7.

• C is the set of circumstantial dependency triples pu; r; vq P U � SC � U . For all c �
pu; r; vq P C, the unit represented by u governs the unit represented by v with respect to r.

Inria

The Unit Graphs Mathematical Framework 39

Conversely, the unit represented by v depends on the unit represented by u with respect
to r. We denote u � governorpcq, r � symbolpcq and v � circumstantpcq. We also denote
arcpcq � pu; vq. They are illustrated by simple arrows on figure 7.

• Eq � U2 is the set of so-called asserted unit node equivalences. For all pu1; u2q P U
2,

pu1; u2q P Eq means that u1 and u2 represent the same unit. They are illustrated by
dashed arrows on figure 7.

• The underlying graph of G denoted graphpGq is a finite, oriented, labelled multigraph
where:

for all u P U , u is a node of graphpGq labelled by lpuq;

for all p P P , arcppq is an arc of graphpGq labelled by symbolppq;

for all c P C, arcpcq is an arc of graphpGq labelled by symbolpcq;

for all pu1; u2q P Eq, pu1; u2q is an arc of graphpGq labelled �;

Again, we draw the attention of the reader on the fact that we distinguish units, unit markers,
and unit nodes. Several mechanisms may imply that two unit nodes u1; u2 represent the same
unit, or that two unit markers m1;m2 identify the same unit. For UGs as defined above, we
identify the following mechanisms:

• u1; u2 are asserted to be equivalent, i.e., pu1; u2q P Eq. Thus all of the markers in
markerpu1q Ymarkerpu2q identify the same unit.

• as a unit represents a predicate, only one unit may fill each of its PSlot. Hence if pu; r; v1q

and pu; r; v2q both are in P , then v1 and v2 represent the same unit.

• after merging unit nodes that represent the same unit, new couple of unit nodes may appear
to represent the same unit according to previous item.

UGs so defined are base objects of the UGs mathematical framework, with which one may
formalize among others:

• utterance representations at different representation levels;

• semantic decompositions of lexical units (for lexicographic definitions);

• premises and conclusions of linguistic and grammatical rules;

RR n° 8212

40 Maxime Lefrançois, Fabien Gandon

5.3 Graphical Representation
The graphical representation of a UG is a drawing of the underlying finite, oriented, labelled
multigraph. A unit node is represented by a rectangle with its label written inside in the form:
type":"marker", with the following supplementary rules chosen to ease the reading:

• if the type or the maker is a singleton, brackets may be avoided;

• if the marker is the generic marker (the empty set), it may be avoided along with its
semi-column;

• if the type is the empty set, it may be avoided, but the semi-column must be written;

• if the type and the marker are the empty sets, there may be nothing written in the nodes.

Figure 8 below illustrates these rules. All the unit nodes of each line share the same label.

tt1; t2u:tm;nu

ttu:? t:? ttu t

?:tmu ?:m :tmu :m

Figure 8: Graphical Representation of unit nodes and their labels:
All the unit nodes of each line share the same label.

We also use the following conventions to distinguish the different relations:

• participation dependencies are drawn with a double arrow. If a participation dependency
is know to be hidden, then it may be drawn with a double dashed arrow.

• circumstantial dependencies are drawn with a single arrow.

• Eq relations are drawn with a dashed line. The label may not be written. If the relation
is symmetric, then the arc is non-oriented.

Figure 9 below illustrates these conventions.

rp rp

rc

Figure 9: Graphical Representation of arcs and their labels. Top left: a participation; right: a
hidden participation. Bottom left: a circumstantial dependency; right: an asserted unit nodes
equivalence.

Inria

The Unit Graphs Mathematical Framework 41

5.4 Explicit Support Compliance
In a UG G, dependency relations and unit nodes may be explicitly compliant with the support
over which G is defined, by respecting PSlots or signatures for instance.

Let us underline that if a unit node or a dependency relation is not explicitly compliant with
the support, this is not necessarily wrong: it only means that some knowledge is not explicit. We
thus make the open-world assumption, which means that a UG along with the support on which
it is defined represents explicit knowledge, and that additional knowledge may be inferred. As
we shall see, this assumption eases the compatibility between the UGs mathematical framework
and the Semantic Web Formalisms (SWFs).

First, any participation relation incident from a unit node should represent a PSlot of the
type of this unit node.

Definition 5.7 (Explicit support compliance of a unit node). In a UG pU; l; P; C;Eqq P GpSq, a
unit node u is said to explicitly comply with the support S if and only if: for all p P P such that
governorppq � u, symbolppq P !!!Xptypepuqq.

Then, for a participation relation triple, the participation symbol must be a PSlot of the
governor’s type, and the participant’s type should explicitly comply with the signature.

Definition 5.8 (Explicit support compliance of a participation triple). In a UG pU; l; P; C;Eqq P
GpSq, a participation triple pu; r; vq P P is said to explicitly comply with the support S if and only
if: r P !!!Xptypepuqq and &&&Xtypepuqprq � typepvq.

Finally for a circumstantial dependency relation, the type of the governor and the dependent
should explicitly comply with the signature of the symbol.

Definition 5.9 (Explicit support compliance of a circumstantial dependency triple). In a UG
pU; l; P; C;Eqq P GpSq, a circumstantial dependency triple pu; r; vq P P is said to explicitly comply
with the support S if and only if: domainprq � typepuq and rangeprq � typepvq.

A UG is thus explicitly compliant with the support on which it is defined if and only if all
its dependency arcs are explicitly compliant on the support.

Definition 5.10 (Explicit support compliance of a UG). A UG G P GpSq is said to explicitly
comply with the support S if and only if all of its dependency arcs d P PYC is explicitly compliant
with the S.

RR n° 8212

42 Maxime Lefrançois, Fabien Gandon

5.5 Semantics of UGs: Reasoning using First-Order Implications
More generally, a UG G defined on a support S represents explicit knowledge, and other knowl-
edge is contained in S. In this section, we will define how one can explicit in G all the knowledge
that may be inferred from G and S, thus defining the semantics of UGs.

5.5.1 Saturation

We first present an axiomatization of the UGs Semantics in the form of first-order implications.
These rules are to be used to add inferable knowledge to a UG in the following way: apply a rule
each time you can until you can’t apply any more.

For all Ensure that
u-typ u P U ò typepuq � typepuq
eq-ref u P U pu; uq P Eq
eq-sym pu1; u2q P Eq pu2; u1q P Eq
eq-trans pu1; u2q and pu2; u3q P Eq pu1; u3q P Eq
eq-typ pu1; u2q P Eq typepu1q � typepu2q

eq-mrk-1 pu1; u2q P Eq markerpu1q � markerpu2q

eq-mrk-2 u1; u2 P U such that markerpu1q Xmarkerpu2q � ? pu1; u2q P Eq
p-eq-s pu1; r; vq P P and pu1; u2q P Eq pu2; r; vq P P
p-eq-o pu; r; v1q P P and pv1; v2q P Eq pu; r; v2q P P
p-root pu; r; vq P P rootpuq P typepuq
p-sig pu; r; vq P P &&&typepuqprq � typepvq
p-fp pu; r; v1q and pu; r; v2q P P pv1; v2q P Eq
c-eq-s pu1; r; vq P C and pu1; u2q P Eq pu2; r; vq P C
c-eq-o pu; r; v1q P C and pv1; v2q P Eq pu; r; v2q P C
c-dom pu; r; vq P C domainprq � typepuq
c-rng pu; r; vq P C rangeprq � typepvq

c-sop pu; r1; vq P C and r1
C
À r2 pu; r2; vq P C

Table 1: Semantics of the UGs.

The fact of applying all of the entailment rules on a UG G until none of them has any effect
on G is called saturating G, which results in G being saturated.

Definition 5.11 (Saturating a UG, Saturated UG). Let G P GpSq. The operation of saturating
G consists in applying sequentially all of the entailment rules of table 1 over and over, until none
of them has any effect on G.
A UG for which none of the entailment rules of table 1 have effect is said to be saturated.

Consider a simple support S made of a CUTs hierarchy T X with t; t2 P Tdeclared, rp P ST ,
a CSymbols hierarchy with rc; r

1
c P SC and pr1c; rcq P CSC , and m;n P M. Consider the UG

G P GpSq illustrated on figure 10a. The saturation of G is illustrated on figure 10b.
When G is saturated, it is clear that some informations are redundant, for instance, the three

central nodes in figure 10b hold the same information about the entity they commonly represent.

Inria

The Unit Graphs Mathematical Framework 43

:m :tm;nu

t

t2

rp

rc

(a) G

tJ; t; rootprpqu Y domainprcq:tm;nu tJ; t; rootprpqu Y domainprcq:tm;nu

tJ; t; rootprpqu Y domainprcq:tm;nu

&&&X
tJ;t;rootprpquYdomainprcq

prpq Y tt2u:?

rp rp

rp

rangeprcq:?

rcrc
rc

r1c
r1c

r1c

(b) satpGq

Figure 10: Saturation of a simple UG.

RR n° 8212

44 Maxime Lefrançois, Fabien Gandon

5.5.2 Closure

The set of first-order implications of table 1 are non-expansive, i.e., their application adds no unit
nodes. Let us precise that this set of entailment rules does not imply decidability of entailment.
Indeed, as a unit has participants, which themselves have participants, the closure UGs may be
infinite for finite UGs. In the knowledge representation terminology, the PSlots have a minimal
cardinality of 1. This defines the difference between saturation (i.e., add all inferable knowledge
without adding unit nodes), and closure (i.e., add all inferable knowledge).

To properly close a UG, one needs also to take into account the fact that every unit node
represents a unit, and that a unit is potentially a predicate that do have other units that fill
each of its PSlots. So for every unit node u, and for PSlot s of typepuq, if there is no unit node
v such that pu; s; vq P P , then one could add v and pu; s; vq in G. This is problematic even for
the following basic example:

Consider a simple support S made of a simple CUTs hierarchy T X such that t P Tdeclared
and s P ST such that rootpsq � t and &&&tpsq � t, a void CSymbols hierarchy, and a void set of
unit markers. Consider the UG G � ptuu; l;?;?; tpu; uquq P GpSq, such that markerpuq � ?
and typepuq � tJ; tu. G is already saturated, yet one knows that there is a unit that fills PSlot
s of the unit represented by u. So one could add a unit node v to represent that argument,
with pu; s; vq P P . The saturation of that new graph will make v be of type tJ; tu, and thus the
closure of G is an infinite chain of unit nodes having type tJ; tu and that fill the s PSlot of one
another. This is illustrated on figure 11.

tJ; tu tJ; tu tJ; tu tJ; tu tJ; tu
s s s

Figure 11: Illustration of an infinite closure of a simple UG

Inria

The Unit Graphs Mathematical Framework 45

6 Mappings of UGs

A UGs mapping corresponds to a mapping of their underlying graphs.

Definition 6.1 (UGMapping). LetG � pUg; lg; P g; Cg; Eqgq P GpSGq andH � pUh; lh; Ph; Ch; Eqhq P
GpSHq be two UGs. A mapping f from H to G, written f : H Ñ G, is a mapping f : Uh Ñ Ug

from the unit nodes of H to the unit nodes of G.

In the rest of this section will define useful different mappings that preserve some informations,
such as arcs and labels.

6.1 Weak Homomorphism

There is a homomorphism of UGs if there is a homomorphism on their underlying oriented
labelled multigraph. To define such a homomorphism, one needs to choose pre-orders over labels
for unit nodes and arcs. We define the weak homomorphism using the following set of pre-orders:

• inclusion for markers;

• pre-order
X

À for types;

• equality for participation triples;

• pre-order
C
À for circumstantial dependency relations;

• equality for asserted equivalence relations.

Then the definition of a weak homomorphism is straightforward.

Definition 6.2 (UG Homomorphism). LetG � pUg; lg; P g; Cg; Eqgq P GpSq andH � pUh; lh; Ph; Ch; Eqhq P
GpSq be two UGs defined on the same support S. A mapping � : H Ñ G is a homomorphism if
and only if all of the following is true:

• @u P Uh, markerpuq � markerp�puqq;

• @u P Uh, typep�puqq
X

À typepuq;

• pu; r; vq P Ph æ p�puq; r; �pvqq P P g

• pu; r; vq P Ch æ Dc P Cg; arcpcq � p�puq; �pvqq and symbolpcq
C
À r

• pu; vq P Eqh æ p�puq; �pvqq P Eqg;

For example, figure 12 illustrates a weak homomorphism from H to G.

RR n° 8212

46 Maxime Lefrançois, Fabien Gandon

H rmovesLranimalsL rtimesG
i circ_rel

G trfallsL,rpresentsGurcatsL:Felis

rblanketsL

rsoftlysL
i

ii

attr

Figure 12: Illustration of a weak homomorphism from H to G.

6.2 Weak Hom-Equivalence
Two UGs are weakly hom-equivalent if there exists a homomorphism from one to the other and
vice versa.

Definition 6.3 (Weak Hom-Equivalence). Let G � pUg; lg; P g; Cg; Eqgq P GpSq and H �

pUh; lh; Ph; Ch; Eqhq P GpSq be two UGs defined on the same support. G and H are Weakly
Hom-Equivalent if there exists a weak homomorphism from G to H and a weak homomorphism
from H to G.

Figure 13 below illustrates two weakly hom-equivalent UGs that are different.

H trfallsL; rpresentsGurcatsL:Felis rtimesG rsoftlysL
i circ_rel

G trfallsL; rpresentsGutranimalsL; rcatsLu:Felis rsoftlysL
i

circ_rel

attr

Figure 13: Illustration of a weak hom-equivalence between H and G.

Inria

The Unit Graphs Mathematical Framework 47

6.3 Weak Isomorphism
A weak hom-equivalence is an isomorphism if the two mappings are the inverse one of another.

Definition 6.4 (Weak Isomorphism). LetG � pUg; lg; P g; Cg; Eqgq P GpSq andH � pUh; lh; Ph; Ch; Eqhq P
GpSq be two UGs defined on the same support. A mapping � : G Ñ H is a isomomorphism if
and only if it is a bijective weak homomorphism.

Figure 14 below illustrates two weakly isomorphic UGs that are different.

H trfallsL; rpresentsGurcatsL:Felis rsoftlysL
i circ_rel

G trfallsL; rpresentsGutranimalsL; rcatsLu:Felis rsoftlysL
i

circ_rel

attr

Figure 14: Illustration of a weak isomorphism between H and G.

6.4 Strong Homomorphism: Inclusion
We also define another type of homomorphism of UGs using stronger selection of pre-orders over
labels for unit nodes and arcs: only inclusion or equality.

• inclusion for markers;

• inclusion for types;

• equality for participation triples;

• equality for circumstantial dependency relations;

• equality for asserted equivalence relations.

We say that there is a strong homomorphism from two UG H and G, or equivalently that H
is included in a UG G, or that H is a sub-UG of G.

Definition 6.5 (UG Inclusion). LetG � pUg; lg; P g; Cg; Eqgq P GpSq andH � pUh; lh; Ph; Ch; Eqhq P
GpSq be two UGs defined on the same support S. There is a strong homomorphism from H to
G (H is included in G, H is a sub-UG of G) if and only if there exists a mapping � : H Ñ G
such that all of the following is true:

• @u P Uh, markerpuq � markerp�puqq;

• @u P Uh, typepuq � typep�puqq;

• pu; r; vq P Ph æ p�puq; r; �pvqq P P g

RR n° 8212

48 Maxime Lefrançois, Fabien Gandon

• pu; r; vq P Ch æ p�puq; r; �pvqq P Ch

• pu; vq P Eqh æ p�puq; �pvqq P Eqg;

For example, figure 15 illustrates a strong homomorphism from H to G.

H rmovesLrcatsL rtimesG
i circ_rel

G trmovesL,rfallsL,
rtimesG,rpresentsG,u

rcatsL:Felis

rblanketsL

rsoftlysL
i

ii

circ_rel

attr

Figure 15: Illustration of a strong homomorphism from H to G.

Inria

The Unit Graphs Mathematical Framework 49

6.5 Strong Isomorphism: Equality
Then two UG are equal if there is a strong isomorphism between them.

Definition 6.6 (UG Equality). LetG � pUg; lg; P g; Cg; Eqgq P GpSq andH � pUh; lh; Ph; Ch; Eqhq P
GpSq be two UGs defined on the same support. H is equal to G if and only if there exists a a
bijective inclusion mapping � : GÑ H.

Figure 16 summarizes the different mappings we introduced in this section.

UG Mapping

Weak Homomorphism

Weak Hom-Equivalence

Weak Hom-Isomorphism

Inclusion
Strong Homomorphism

Equality
Strong Isomorphism

Figure 16: Illustration of the links between the different UGs mappings.

RR n° 8212

50 Maxime Lefrançois, Fabien Gandon

7 Elementary Operations
Now that we defined UGs, we are interested in this section in elementary operations that may
be applied over UGs.

7.1 Explicitation Operations
A UG G defined on a support S represents explicit knowledge, and other knowledge is contained
in S.

Let G � pU; l; P; C;Eqq P GpSq. The following operations explicit knowledge of S in G. They
are either partial saturation operations, or partial closure operations from section 5.5.

• Copy create a disjoint copy of G. copypGq is disjoint from G and equal to G.

• u-typ-top Let u P U . Add J to typepuq;

• u-typ Let u P U , and t; t1 P T such that t P typepuq and t À t1. Add t1 to typepuq;

• eq-ref Let u P U . Add pu; uq in Eq;

• eq-sym Let pu1; u2q P Eq. Add pu2; u1q in Eq;

• eq-trans Let pu1; u2q; pu2; u3q P Eq. Add pu1; u3q in Eq;

• eq-typ Let pu1; u2q P Eq, and t P typepu1q. Add t in typepu2q;

• eq-mrk-1 Let pu1; u2q P Eq, and m P typepu1q. Add m in markerpu2q;

• eq-mrk-2 Let u1; u2 P U such that markerpu1q Xmarkerpu2q � ?. Add pu1; u2q in Eq;

• p-eq-s Let pu1; r; vq P P and pu1; u2q P Eq. Add pu2; r; vq in P ;

• p-eq-o Let pu; r; v1q P P and pv1; v2q P Eq. Add pu; r; v2q in P ;

• p-root Let pu; r; vq P P . Add rootpuq in typepuq;

• p-sig Let pu; r; vq P P , and t P &&&Xtypepuqprq. Add t in typepvq;

• p-fp Let pu; r; v1q; pu; r; v2q P P . Add pv1; v2q in Eq;

• c-eq-s Let pu1; r; vq P C and pu1; u2q P Eq. Add pu2; r; vq in C;

• c-eq-o Let pu; r; v1q P C and pv1; v2q P Eq. Add pu; r; v2q in C;

• c-dom Let pu; r; vq P C, and t P domainprq. Add t in typepuq;

• c-rng Let pu; r; vq P C, and t P rangeprq. Add t in typepvq;

• c-sop Let pu; r1; vq P C and r1
C
À r2. Add pu; r2; vq in C.

• p-expl Let u P U and s P !!!puq. Add v in U with typepvq � ? and markerpvq � ?, and
add pu; s; vq in P .

• u-mrg Let pu; vq P Eq. Merge u and v as follows:
add a new node u, with typepuq � typepu1qYtypepu2q andmarkerpuq � markerpu1qY

markerpu2q;
replace u1 and u2 by u in any dependency arc in P Y C;
replace u1 and u2 by u in any element of Eq.

Inria

The Unit Graphs Mathematical Framework 51

7.2 Specialization Operations
In this section we will only list two specialization operations that will be used later on in this
report: Addition of two UGs, and merge of two unit nodes in a UG.

Addition of two UGs The disjoint addition of twoUGs is a specialization operation defined
by:

Definition 7.1 (Addition of two UGs). Let two UGs G � pUg; lg; P g; Cg; Eqgq and C �

pU c; lc; P c; Cc; Eqcq be defined over a support S, the addition of G and C is a UG G � C
such that:

G� C � pUg Y U c; lg Y lc; P g Y P c; Cg Y Cc; Eqg Y Eqcq

Merge of unit nodes One simple specialization operation is to merge pairs of unit nodes u1,
u2 of G, as defined by:

Definition 7.2 (Merge two unit nodes in a UG). Let a UG G � pU; l; P; C;Eqq be defined over
a support S, and u1; u2 P U . The merge of u1 and u2 in G is denoted mergepG; u1; u2q P GpSq
and is defined by:

1. add a new node u, with typepuq � typepu1q Y typepu2q and markerpuq � markerpu1q Y

markerpu2q;

2. replace u1 and u2 by u in any dependency arc in P Y C;

3. replace u1 and u2 by u in any element of Eq.

Associated with this operation we also define a mapping � from U to unit nodes ofmergepG; u1; u2q

such that �pvq � u if v � u1 or v � u2, and �pvq � v otherwise.

RR n° 8212

52 Maxime Lefrançois, Fabien Gandon

8 Rules

8.1 �-UG
It is useful to be able to distinguish some unit nodes of a UG, in particular for definitions of
PUTs and rules. For this purpose we define generic unit nodes and �-UGs.

Definition 8.1 (Genericity). In a UG G P GpSq, a unit node u is said to be generic if and only
if markerpuq � ?. G is said to be generic if and only if all of its unit nodes are generic.

Definition 8.2 (�-UG and Freedom). A �-UG L � tu1; : : : ; unuG defined over a support S, is
composed of a UG G � pU; l; P; C;Eqq P GpSq, and a set of generic unit nodes of G, tu1; : : : ; unu,
denoted the free nodes of L. A unit node u P U is said to be free if and only if u P tu1; : : : ; unu.
G is said to be free if and only if all of its unit nodes are free, i.e., if tu1; : : : ; unu � U .

A UG may be considered as a �-UG with tu1; : : : ; unu � ?.

Definition 8.3 (Merge a �-UG in a UG with respect to a mapping). Let a �-UG C � tuc1; : : : ; u
c
nuC

1

and a UG G � pU; l; P; C;Eqq be defined over a support S. Let � be a mapping from tuc1; : : : ; u
c
nu

to U . The merge of C in G with respect to � is denotedmergepG;C; �q and is obtained as follows:

1. add C 1 to G;

2. for all uc P tuc1; : : : ; ucnu, merge uc and �pucq in G.

8.2 Definition and Logical Semantics of Rules

Definition 8.4 (Rule). A Rule defined over a support S is a triple R def
� pH;C; �q where:

• H � tuh1 ; : : : ; u
h
nuH

1 is a �-UG defined over S called the hypothesis;

• C � tuc1; : : : ; u
c
nuC

1 is a �-UG defined over S called the conclusion;

• � is a bijection from tuh1 ; : : : ; u
h
nu to tuc1; : : : ; ucnu.

Definition 8.5 (Applicable Rule). Let a rule R � pH;C; �q and a UG G be defined over a
support S. R is applicable to G if and only if there exists a homomorphism from H to G.

Definition 8.6 (Applying a Rule). Let R � pH;C; �q be a rule applicable to a UG G, and let
� be a homomorphism from H to G. The application of R on G with respect to � is the graph
obtained by merging C in G with respect to � � ��1.

8.3 PUTs Prints and Definitions
We will now formalize the notion of definition of a PUT to include a set of PUT definitions in
the definition of the support. Intuitively, a definition corresponds to two reciprocal rules. First,
let us introduce a kind of small UG that conveniently represents some informations about a PUT
in T: the print of a PUT.

Definition 8.7 (PUT print). Let S be a support. The print of a PUT t is a �-UG D�t �

tut; v1; : : : ; vvalency�ptqupU
�; l�; P�;?;?q such that:

• U� � tut; v1; : : : ; vvalency�ptqu (i.e., D
�
t is free);

• typeputq � ttu;

Inria

The Unit Graphs Mathematical Framework 53

• there is a bijection v from ���ptq to tv1; : : : ; vvalency�ptqu;

• P� � tput; s;vpsqqusP���ptq (i.e., ut is explicit and any other unit node is implicit);

• for all s P ���ptq, typepvpsqq � &&&tpsq;

• ut is called the central unit node of D�t .

For instance, figures 18 on the left and 17 represent prints of ppushq and K respectively.

tKu

Figure 17: print of the PUT K. We know from proposition 2.12 that in S, ���pKq � ?.

The print of a PUT t conveniently represents its ASlots and associated signatures, but it
cannot represent the signatures of its HSlots, nor comparisons with other PUTs. Finally, we
want to be able to specify how exactly the PUT t is different from more generic PUTs.

We will hence introduce the notion of definition of a PUT t. Informally, a definition defines
an equivalence between two �-UG defined over the same support. One of the �-UG is the print
of t, while the other �-UG is called the expansion of t (or the expansion of the print).

Definition 8.8 (Primitive Unit Type Definition). A definition Dt of a PUT t is a triple Dt
def
�

pD�t ; D
�
t ; �q where:

• D�t � tu�t ; v
�
1 ; : : : ; v

�

valency�ptq
upU�; l�; P�;?;?q is the print of t with central node ut,

and bijection v from ���ptq to tv1; : : : ; vvalency�ptqu;

• D�t � tu
�
t ; v

�
1 ; : : : ; v

�

valency�ptq
upU�; l�; P�; C�; Eq�q is a �-UG defined over S, called the

expansion of t;

• � is a bijection from tu�t ; v
�
1 ; : : : ; v

�

valency�ptq
u to tu�t ; v

�
1 ; : : : ; v

�

valency�ptq
u, such that �pu�t q �

u�t , and for all i, �pv�i q � v�i ;

• typepu�t q � tt
1 P T|pt1; tq P Cassertedu is called the genus of t and is denoted genusptq;

• for all s P ���ptq X���Xpgenusptqq, pu�t ; s; � � vpsqq P P�;

• for all s P !!!Xpgenusptqq, @v P U�; put; s; vq P P� æ typepvq � &&&tpsq;

• ���ptq ����Xpgenusptqq � ts P ST |rootpsq � tu;

• ���Xpgenusptqq ����ptq � ts P ST |t P Hiderspsqu;

pD�t ; D
�
t ; �q and pD

�
t ; D

�
t ; �

�1q are respectively called the EÑP (expansion Ñ print) and the
PÑE (print Ñ expansion) rules of t.

Consider a set of definitions D. If a definition explicitly or implicitly refers to the type of
unit it defines, then there is a circularity in D.

Definition 8.9 (Circularity). A set of definitions D has a circularity if and only if there exists
a series t1; : : : ; tn of PUTs such that t1 � tn and for each PUT ti; i P r1::n � 1s, there exists a
definition of ti such that the expansion of t contains a unit node u with ti�1 P typepuq.

RR n° 8212

54 Maxime Lefrançois, Fabien Gandon

ppushq

tpagentq,panimatedqu

pentityq
agt

obj

papply physical pressureq

tpagentq,panimatedqu

pentityq
pgoalq

pmoveq

agt obj
aoj

obj

agt

obj

Figure 18: Definition of rpushsL. On the left, the print of ppushq.

8.4 UG Support with PUTs Definitions and GDefs
With this definition tool, we may now update the definition of support to take into account a
set of definitions. support is now composed of a CUTs hierarchy, a CSymbols hierarchy, a set of
unit markers, and a non-circular set of definitions.

Definition 8.10 (support). A support is a tuple S def
� pT X; C;M;Dq where:

• T X is a Conjunctive Unit Types (CUTs) hierarchy ;

• C is a Circumstantial Dependency Symbols (CSymbols) hierarchy ;

• M is the set of so-called unit markers. MX
� 2M is the set of unit node markers, with ?

the generic unit node marker.

• D a non-circular set of PUT definitions.

This new definition of a support does not invalidate the previously introduced notions. From
now on and otherwise specified, any use of the term support will refer to this definition with a
non-circular set of definitions.

Inria

The Unit Graphs Mathematical Framework 55

Part IV

Conclusion
We thus studied how to formalize, in the sense of knowledge engineering, the ECD, in order to
represent, manipulate, query, and reason linguistic knowledge. We may now answer the different
questions asked trough this report.

What makes the semantic web formalisms and the CGs formalisms not directly adapted to
the representation of knowledge of the ECD ? The semantics, in the logical sense, of RDF is
insufficient to represent knowledge of the ECD, and we showed that there are serious problems
in using OWL. The CGs formalism has strong similarities with the MTT, but does not enable to
represent the concept/relation duality of a sense unit. As the CG formalism is the closest from
the MTT, we proposed to use it as a starting point for designing the new Unit Graphs (UGs)
formalism adapted to the representation of knowledge of the ECD.

What mathematical structure for a hierarchy of unit types that may have actant slots ? To
take into account the concept/relation duality of sense units, the predicate-argument relations
are symbolized by Participation Symbols (PSymbols), and we associate to each PSymbols s a
root Primitive Unit Type (PUT) rootpsq and a set of hiders Hiderspsq. Thus, in the pre-ordered
set of PUTs, a PSlot having s as PSymbol is introduced by rootpsq, and first defines a ASlot
for any PUT more specific than rootpsq as long as that PUT is not more specific than one of
the elements in Hiderspsq. If that happens, then the PSlot becomes non-actancial and defines
a HSlot. Any PUT that possesses ASlots thus also models a relation type, that may link every
instance of that type to the set of its actants in the utterance representation. Finally, to every
PUT is assigned a signature that specifies the type of participants of its instances. We extended
the hierarchy of unit types to their conjunctive version and introduced the Conjunctive Unit
Types (CUTs) hierarchy.

What is a UG, and how to use them to represent advanced concepts of the TST ? We first
introduced a hierarchy of Circumstantial Dependency Symbols (CSymbols) We then illustrated
the definition of UGs, that represent unit nodes interconnected by dependency relations and
declared equivalence relations. We then introduced advanced concepts in the UGs framework
that we are currently working on:

• We defined the semantics of UGs, that enable reasoning with utterance representations.

• We defined rules that will enable us to represent sense-lexical unit associations, and corre-
spondences between different representation levels (government patterns)

• We showed how to represent lexicographic definitions of the ECD using two reciprocal
rules.

We are also currently working on a new version of this research report in which we introduce
factorization of rules that will enable us to represent lexical functions links, and on a syntax
based on semantic web formalisms standards to enable the standardized exchange of knowledge
of the ECD.

Thanks We would like to warmly thank S. Kahane for his comments that led to radical changes
in the presentation of this work.

RR n° 8212

56 Maxime Lefrançois, Fabien Gandon

References
Alonso Ramos, M. (2003). Hacia un diccionario de colocaciones del español y su codificación.
Lexicografía computacional y semántica, page 11–34.

Baget, J. F., Croitoru, M., Gutierrez, A., Leclere, M., and Mugnier, M. L. (2010). Transla-
tions between RDF (S) and conceptual graphs. Conceptual Structures: From Information to
Intelligence, page 28–41.

Barque, L., Nasr, A., and Polguère, A. (2010). From the Definitions of the ’Trésor de la Langue
Française’ To a Semantic Database of the French Language. In Proceedings of the XIV Eu-
ralex International Congress, Fryske Akademy, page 245–252, Leeuwarden (Pays-Bas). Anne
Dykstra et Tanneke Schoonheim, dir.

Barque, L. and Polguère, A. (2008). Enrichissement formel des définitions du Trésor de la Langue
Française informatisé (TLFi) dans une perspective lexicographique. 22.

Chein, M. and Mugnier, M. L. (2008). Graph-based Knowledge Representation: Computational
Foundations of Conceptual Graphs. Springer.

Corby, O., Dieng, R., and Hébert, C. (2000). A conceptual graph model for W3C resource
description framework. In Ganter, B. and Mineau, G. W., editors, Conceptual Structures:
Logical, Linguistic, and Computational Issues, number 1867 in Lecture Notes in Computer
Science, pages 468–482. Springer Berlin Heidelberg.

Kahane, S. and Polguère, A. (2001). Formal foundation of lexical functions. In Proceedings of
ACL/EACL 2001 Workshop on Collocation, page 8–15.

Krisnadhi, A., Maier, F., and Hitzler, P. (2011). OWL and Rules. Reasoning Web. Semantic
Technologies for the Web of Data, page 382–415.

Leclère, M. (1998). Raisonner avec des définitions de types dans le modèle des graphes con-
ceptuels. (12):243—278.

Lefrançois, M. and Gandon, F. (2011a). ILexicOn: Toward an ECD-Compliant Interlingual
Lexical Ontology Described with Semantic Web Formalisms. In Proc. of the 5th International
Conference on Meaning-Text Theory (MTT 2011), page 155–164, Barcelona, Spain. INALCO.

Lefrançois, M. and Gandon, F. (2011b). ULiS: An Expert System on Linguistics to Support
Multilingual Management of Interlingual Knowledge bases. In Kageura, K. and Zweigenbaum,
P., editors, Proc. of the 9th International Conference on Terminology and Artificial Intelligence
(TIA 2011), page 108–114, Paris, France. INALCO.

L’Homme, M. C. (2008). Le DiCoInfo: méthodologie pour une nouvelle génération de diction-
naires spécialisés. Traduire, (217):78–103.

Lux-Pogodalla, V. and Polguère, A. (2011). Construction of a French Lexical Network: Method-
ological Issues. In Proceedings of the International Workshop on Lexical Resources, Ljubljana.

Mel’čuk, I. A. (1996). Lexical functions: a tool for the description of lexical relations in a lexicon.
Lexical functions in lexicography and natural language processing, 31:37–102.

Mel’čuk, I. A. (2004a). Actants in Semantics and Syntax I: Actants in Semantics. Linguistics,
42(1):1–66.

Inria

The Unit Graphs Mathematical Framework 57

Mel’čuk, I. A. (2004b). Actants in Semantics and Syntax II: Actants in Syntax. Linguistics,
42(2):247–291.

Mel’čuk, I. A. and Arbatchewsky-Jumarie, N. (1999). Dictionnaire explicatif et combinatoire du
français contemporain: recherches lexico-sémantiques, volume 4. PU Montréal.

Mel’čuk, I. A. (2006). Explanatory Combinatorial Dictionary. Open problems in linguistics and
lexicography, page 225.

Polguère, A. (2000). Une base de données lexicales du français et ses applications possibles en
didactique. Revue de Linguistique et de Didactique des Langues (LIDIL), 21:75–97.

Polguère, A. (2009). Lexical systems: graph models of natural language lexicons. Language
resources and evaluation, 43(1):41–55.

Rudolph, S. (2011). Foundations of description logics. Reasoning Web. Semantic Technologies
for the Web of Data, pages 76–136.

Sowa, J. F. (1984). Conceptual structures: information processing in mind and machine. System
programming series. Addison-Wesley.

Sowa, J. F. (1989). Using a lexicon of canonical graphs in a semantic interpreter. In Relational
models of the lexicon, page 113–137.

Sérasset, G. (1997). Le projet NADIA-DEC: vers un dictionnaire explicatif et combinatoire
informatisé. LTT, 97:149–160.

Tesnière, L. (1959). Éléments de syntaxe structurale. C. Klincksieck (Colombes, Impr. ITE).

RR n° 8212

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	I Introduction
	Motivations to Introduce a New Knowledge Representation Formalism
	Semantic Web Formalisms
	The Conceptual Graphs (CGs) Formalism
	The new Unit Graphs Formalism

	II Unit Types
	Primitive Unit Types (PUTs)
	Definition of PUTs
	PUT Participant Slots (PSlots)

	Conjunctive Unit Types (CUTs)
	Definition of CUTs

	Characterizing CUTs
	Necessary Conditions to Compare Two CUTs
	Properties of CUT Slots and Signatures

	III Unit Graphs
	Unit Graphs (UGs)
	Circumstantial Dependency Symbols Hierarchy
	Definition of UGs

	Mappings of UGs
	Weak Homomorphism

	Elementary Operations
	Explicitation Operations
	Specialization Operations

	Rules
	-UG
	Definition and Logical Semantics of Rules
	PUTs Prints and Definitions
	UG Support with PUTs Definitions and GDefs

	IV Conclusion

