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ABSTRACT

Previous studies have suggested that infraslow brain activity could

play an important role in cognition. Its scale-free properties (coarsely

described by its 1/f power spectrum) are indeed modulated between

contrasted conscious states (sleep vs. awake). However, finer modu-

lations remain to be investigated. Here, we make use of a robust

multifractal analysis to investigate the group-level impact of percep-

tual learning (visual (V), or audiovisual (AV), N = 12 subjects in

each group) on the source reconstructed scale-free activity recorded

with magnetoencephalography (MEG) during rest and task. We first

observed a significant decrease of self-similarity in evoked activity

during the task after both trainings. More interestingly, only the most

efficient training (AV) induced a decrease of self-similarity in spon-

taneous activity at rest whereas only V training induced an increase

of multifractality in evoked activity.

Index Terms— MEG, scale-free activity, scaling, multifractal

analysis, plasticity, learning

1. INTRODUCTION

Traditionally, the analysis of brain signals acquired with electroen-

cephalography (EEG) and magnetoencephalography (MEG) has con-

sisted of decomposing the temporal signal into different oscillations

whose prominent frequency peaks were easily observable in the po-

wer spectrum. These frequency bands were given names suchs as

δ (1-3Hz), θ (4-8Hz), α (8-12Hz), β (12-30Hz) and γ (>40Hz). They

drew all the attention to the detriment of infraslow activity (<1Hz),

which is characterized by a power law distribution. In other words,

its power spectrum plotted in logarithmic coordinates decreases li-

nearly. Because such behavior (also referred to as 1/f spectrum)

is very common in dynamical systems (e.g. turbulence, stock mar-

ket...) [1], this infraslow activity has long been attributed to sensor or

neural noise and considered to be functionally irrelevant. However,

since the last decade, a growing body of evidence has shown a modu-

lation of the 1/f slope between contrasted cognitive states (awake vs

phases of sleep [1,2], task vs rest [3,4]) and in pathologies [5] using

different imaging techniques (ECoG [1,6], EEG [7–9], MEG [8,10]

and fMRI [3, 6, 11, 12]). Such results suggest that the infraslow ac-

tivity also carries meaningful information for brain function.

A 1/f spectrum can be interpreted in time domain as a scale-

free property. A signal X(t) with such properties is said to be self-

similar, meaning that it shares the same statistical properties with its

own dilated version X(at)a>0 scaled by the factor a−H . The expo-

nent H is called the self-similarity parameter or Hurst exponent. If

the signal can be modelled as a fractional Gaussian noise (fGn) or

its increments as a fractional Brownian motion (fBm), the Hurst ex-

ponent H is linearly related to the 1/f slope and can be accurately

estimated using the Detrended Fluctuation Analysis (DFA) [13] or

even more simply with a linear fit on the log-scale power spectrum.

However, experimental data in different neuroimaging modalities of-

ten presents non-Gaussian and non-stationnary properties, thus sig-

nificantly altering the reliability and statistical perfomances of such

analysis tools. Instead, another analysis, more robust to non-stationa-

rity issues and more efficient in disentangling true scaling phenome-

na from superimposed drifts has been proposed since the last decade

as the Wavelet Leader Based Multifractal Formalism (WLBMF) [14].

This method offers a richer and more flexible description of func-

tional neuroimaging data and has been successfully applied to MEG

in previous work [10] to demonstrate a modulation of scale-free pro-

perties of MEG time series at the sensor level between evoked and

spontaneous activity.

According to recent findings showing that spontaneous activity

at rest is modified by learning [15], we now asked whether refined

modulations of scale-free properties could be observed after visual

learning in ongoing and evoked activity. To this aim, two groups of

participants were trained to discriminate the coherence level of two

mixed random dot kinematograms (RDK). The training was adjusted

individually and performed either audiovisually (AV) or visually (V)

only. We then carried out the WLBMF analysis on MEG data recon-

structed onto cortical areas presenting functional plasticity.

Here, we propose an intuitive interpretation of the two main

measures output by WLBMF, which are self-similarity and multi-

fractality (see Section 2). We also show that the AV training is more

efficient than the V training and we present the cortical areas selected

for the WLBMF analysis (see Section 3). Finally, differences in

self-similarity and multifractality before and after learning in sponta-

neous and evoked activity for both trainings are presented (see Sec-

tion 4). A significant decrease of self-similarity is reported in i.)

evoked activity after both trainings (V and AV), and in ii.) sponta-

neous activity after AV training only. On the other hand, a significant

increase of multifractality could be exhibited only during evoked ac-

tivity after V training. Conclusions are drawn in Section 5.

2. SCALING ANALYSIS: INTUITIVE APPROACH

2.1. Self-similarity

As previously mentioned, a self-similar process has the same statis-

tical properties as its rescaled dilated version, which means that their



statistical moments are equal at any order. Contrary to standard sca-

ling analysis which only examines the second statistical order using a

power spectrum estimation, the WLBMF method accounts for all or-

ders. This provides a very rich description of the scaling properties,

often given in the form of the multifractal spectrum. This spectrum is

in practice often reduced to its truncated 2nd order polynomial expan-

sion with only two parameters: self-similarity and multifractality. A

complete and more formal description has been given in previous ar-

ticles [4, 14] (where self-similarity is measured by attribute cL1 and

multifractality by attribute cL2 ) and will not be recalled hereafter.

Self-similarity can be approximated here by the 1/f slope and

more precisely by the Hurst exponent. These values are exactly the

same in the absence of multifractality, e.g. for fGn or fBm processes.

This measure also reflects the long memory of the process: if its self-

similarity is strong, its autocorrelation decays very slowly with the

lag. In other words, what happens now will still have some influence

long time after. In the same vein, self-similarity also reflects the

global regularity of the signal: as it increases, the signal becomes

smoother. These properties converge to the following neurophysio-

logical interpretation, already suggested in [3,5]: A decrease of self-

similarity indicates an increase of neural excitability.

Such interpretation is consistent with the experimental result il-

lustrated in Fig. 1, showing the Welch’s power spectrum estimates

in log-log scale of MEG data in one sensor acquired during the exe-

cution of a task (red), resting state (green) and in empty room (light

blue): the 1/f slope at rest is steeper than during task. This ob-

servation is consistent with other studies that have found stronger

self-similarity (i.e. weaker neural excitability) during rest than du-

ring visual or auditory detection tasks [3, 4].
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Fig. 1. Modulation of the 1/f slope between rest and task. Welch’s

periodograms of MEG data are plotted in red (task), green (rest) and

light blue (empty). The 1/f slope at rest is steeper than during task.

2.2. Multifractality

In the absence of multifractality, the scaling properties are entirely

described by only one parameter: self-similarity. In this case, the

scaling behavior is the same for all statistical orders; it would thus

be enough to examine only the 1/f slope at the 2nd statistical order.

This assertion is no longer valid in presence of multifractality.

A more intuitive approach illustrated in Fig. 2 is to consider

multifractality as local fluctuations over time around the 1/f slope.

Imagine you can estimate the power spectrum at each time point per-

fectly. The 1/f slope would fluctuate around a mean value corres-

ponding to the Hurst exponent or self-similarity captured by para-

meter cL1 . Interestingly, these fluctuations are not random but present

a structured pattern over time. Multifractality actually depicts their

variance which is reflected by the second parameter cL2 . To the best

of our knowledge, no neurophysiological interpretations have yet

been proposed as regards multifractality.
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Fig. 2. Multifractal spectra with or without local fluctuations. In

the absence of multifractality (left), the multifractal spectrum shows

a single Hölder exponent also named Hurst exponent (cL1 ). Local

fluctuations over time around this exponent changes the spectrum

into a concave curve ( right) whose broadness corresponds to the

amount of multifractality (cL2 ).

3. LEARNING PARADIGM

3.1. Data acquisition

Twenty-four healthy right-handed subjects (aged 19-27 years) with

normal or corrected-to-normal vision participated in this experiment.

Each participant provided an informed consent in accordance with

the Declaration of Helsinki (2008) and the Ethics Committee on Hu-

man Research at NeuroSpin (Gif-sur-Yvette, France).

Brain magnetic fields were recorded in a magnetically shielded

room using the whole-head Elekta Neuromag MEG system (Elekta

LTD, Helsinki) with 102 triple-sensor elements in upright position.

Data were sampled at 2000Hz and pass-band filtered between 0.03Hz

and 600Hz. Signal Space Separation (SSS) was carried out with

MaxFilter (Elekta LTD) to remove external interferences. Occular

and cardiac artifacts were removed using principal component ana-

lysis based on the recorded electrooculograms (EOG) and electro-

cardiograms (ECG).

Individual forward solutions for cortical source locations were

computed using a 3-layers boundary element model (BEM) cons-

trained by the individual’s anatomical MRI. The inverse solution was

computed using a weighted minimum norm estimate (MNE) [16].

For each region of interest, signals reconstructed in each of its ver-

tices were averaged together and the resulting signal was submitted

to the WLBMF analysis.

3.2. Paradigm

Before each experiment, empty room MEG recordings were acquired

for 5 min. The experiment began with 5 min. of resting state recor-

ding (eyes open, fixating a black screen) followed by a visual test

of approximately 12 min. in which the perceptual threshold was as-

sessed.

The task consisted of discriminating among two mixed colored

RDKs (red and green) which one of them was more coherent du-

ring 1 s. The motion coherence is defined by the proportion of dots

moving in the same direction (radius of the annulus: 4-15 deg, dot

radius: 0.2 deg, dot flow: 16.7 dots per deg2.s, dot speed: 10 deg/s).

Subjects received next training adapted to their initial performance

for approximately 40 min. including 20 min. of rest. Half of them

received only visual (V) training, whereas the other half benefited

from audiovisual (AV) training during which acoustic textures cor-

related with the coherent RDK were simultaneously played. After

the training, a new block of resting state was recorded as well as

another visual test to assess the participant’s improvement.

3.3. Behavioral results

We compared the progression of the perceptual threshold, defined

as the motion coherence corresponding to 75% of performance, as a



function of the training (V or AV). Results are shown with boxplots

in Fig. 3. A decrease of threshold corresponds to an improvement

and indicates therefore a learning effect.

We first checked the success of each training separately with

a one-tailed paired t-test comparing the threshold before and af-

ter learning. Each training shows a significant decrease of thres-

hold (V:t11 = 5.3, p < 10−3 , AV:t11 = 9.4, p < 10−6). We also

compared the initial and final thresholds between the two trainings

with a two-tailed two-samples t-test. Whereas V and AV groups

are not significantly different initially (t22 = 0.29, p = 0.77), the

AV group performs significantly better than the V group after trai-

ning (t22 = 3.1, p < 10−2). These differences are only due to

participants’ training history.
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Fig. 3. Performance before and after training. Box plots show the

distribution of perceptual thresholds in the AV (left) and V (right)

groups in the pre- and post-training sessions. The median is reported

in black and the average in red. Boxes contain values between the

first and the third quartiles. Whiskers extend to the 5th and 95th

percentiles. ** and *** indicate a p-value inferior to 10−2 and 10−3,

respectively.

3.4. Regions of interest

An event-related fields (ERF) analysis made in parallel (results not

shown) allowed us to exhibit five cortical areas on the left hemi-

sphere that presented significant differences of amplitude after V

or AV training: 1.) the hMT+/V5 complex involved in visual mo-

tion processing, 2.) the visual area V4 involved in color processing,

3.) the inferotemporal cortex (ITC) involved in object recognition,

4.) the middle superior temporal sulcus (mSTS) involved in mul-

tisensory processing and 5.) the posterior superior temporal sul-

cus (pSTS) also involved in motion and multisensory processing.

Fig. 4 shows these regions of interest (ROIs) averaged across all sub-

jects on the template cortical surface of the left hemisphere.

Crucially, specific functional plasticity in hMT+/V5 was only

induced by the AV learning, confirming the effectiveness of the AV

training.

Fig. 4. Regions of interest. The five ROIs, revealed by our ERF

analysis:1.) hMT+/V5, 2.) V4, 3.) ITC, 4.) mSTS and 5.) pSTS.

4. MODULATION OF MULTIFRACTAL PROPERTIES

WITH LEARNING

4.1. Difference in self-similarity

For each ROI and for each subject, we estimated the self-similarity

(denoted by cL1 ) of the reconstructed MEG signal during the rest and

the execution of the task before and after training. The WLBMF

analysis was carried out on the integrated time series (i.e. the cumu-

lative sum) over the scale range j = [10, 14] (i.e. over the frequency

range f = [0.1, 1.5]Hz) using a Daubechies mother wavelet with

N = 3 vanishing moments.

The mean differences ∆̂cL
1
= ̂cL

1 POST
− ̂cL

1 PRE
after AV (left)

and V (right) training in each ROI are shown in Fig. 5. A one-tailed

one-sample t-test was carried out in each ROI to assess the statisti-

cal significance of the difference. Non-significant differences (p >

0.05) are indicated with grey colors and group-level standard devia-

tions are indicated with bars. Significant decreases of self-similarity

(i.e. increases of neural excitability) are reported after both trainings

in hMT+/V5, V4 and pSTS. Although only AV training yields a sig-

nificant decrease of self-similarity in ITC and mSTS, the scale-free

properties of the evoked activity evolved globally in the same direc-

tion irrespective of the training type.

∆
̂ c
L 1

Fig. 5. Differences of self-similarity before and after training

during task. ROIs presenting no significant differences are colored

in grey. *, ** and *** indicate a p-value inferior to 0.05, 0.01 and

0.001, respectively

However, if we look at the mean differences of self-similarity in

brain signals recorded at rest before and after training, we observe

significant decreases only for the AV group in hMT+/V5, V4 and

ITC, as shown in Fig. 6. In contrast to evoked activity, the training

type is better distinguished in the resting state activity (i.e. ongoing

fluctuations) in which only AV trained participants present an in-

crease of neural excitability in cortical areas involved in plasticity.

∆
̂ c
L 1

Fig. 6. Differences of self-similarity before and after training at

rest. ROIs presenting no significant differences are colored in grey.

* and ** indicate a p-value inferior to 0.05 and 0.01, respectively.

4.2. Difference in multifractality

Multifractality (denoted by parameter cL2 ) was jointly estimated with

self-similarity during the WLBMF analysis. Parameter cL2 is by con-

struction negative, and thus the more negative cL2 , the more signifi-



cant multifractality. For ease of exposition, multifractality is dis-

cussed here in terms of |cL2 |. Therefore, a positive mean difference

∆|̂cL
2
| = |̂cL

2
|POST − |̂cL

2
|PRE corresponds to an increase of multi-

fractality.

Fig. 7 shows the mean differences of multifractality ∆|̂cL
2
| be-

tween pre- and post-training in evoked activity. Again, a one-tailed

one-sample t-test was carried out in each ROI to assess the statistical

significance of the difference. We only found significant increases of

multifractality in the V group in hMT+/V5, V4 and mSTS, sugges-

ting a modulation of the multifractal properties during evoked activi-

ty with the training type. Moreover, no significant mean differences

of multifractality at rest could be found, as reported in Fig. 8.

∆
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Fig. 7. Differences of multifractality before and after training

during task. ROIs presenting no significant differences are colored

in grey. * and ** indicate a p-value inferior to 0.05 and 0.01, respec-

tively.

∆
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|

Fig. 8. Differences of multifractality before and after training at

rest As no significant differences were found, all ROIs are colored

in grey.

5. DISCUSSION AND CONCLUSION

In this study, we analyzed for the first time the scale-free properties

of brain signals in MEG reconstructed on the cortical surface. In this

manner, we could identify the neural sources for each individual and

overcome the classic issue of normalization accross the participants

that arises in sensor space.

Our results show a reduction of self-similarity in evoked acti-

vity that occurs after both trainings, without clear distinction be-

tween the natures of the learning process. We interpret it as an

increase of the neural excitability which allows the participants to

respond more quickly after the stimulus onset. Indeed, all partici-

pants’ reaction time after training considerably decreased irrespec-

tive of the training type. These changes can also be attributed to a

highest level of attentional focus or confidence.

Moreover, we observed an additional reduction of self-similarity

in spontaneous activity after AV training only. Given that AV trai-

ning was not only the most effective training but also the only one to

induce specific plasticity in hMT+/V5, we suggest that these changes

in self-similarity of resting-state activity capture functional plasti-

city. This is consistent with other studies in fMRI showing that

learning sculpts resting-state activity [15].

No explanation has been given yet concerning the sporadic pre-

sence of multifractality in brain signals. Here, we observed an in-

crease of multifractality during the task only after V training. These

fluctuations of scale-free properties might reflect transient changes

induced by an unachieved training that would disappear as soon as

the asymptot is reached (i.e. like in AV learning). They might also

reflect an attentional modulation that could indicate the absence of a

true perceptual learning. Future work will be devoted to disentangle

these two hypotheses.
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