
HAL Id: hal-00868616
https://hal.inria.fr/hal-00868616

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Warehousing RDF Graphs
Dario Colazzo, François Goasdoué, Ioana Manolescu, Alexandra Roatis

To cite this version:
Dario Colazzo, François Goasdoué, Ioana Manolescu, Alexandra Roatis. Warehousing RDF Graphs.
Bases de Données Avancées, Oct 2013, Nantes, France. 2013. <hal-00868616>

https://hal.inria.fr/hal-00868616
https://hal.archives-ouvertes.fr

Warehousing RDF Graphs∗

Dario Colazzo François Goasdoué
Université Paris Dauphine, France Université Rennes 1, France

dario.colazzo@dauphine.fr francois.goasdoue@univ-rennes1.fr

Ioana Manolescu Alexandra Roatiş
Inria Saclay and Université Paris-Sud and

Université Paris-Sud, France Inria Saclay, France

ioana.manolescu@inria.fr alexandra.roatis@lri.fr

Abstract

Research in data warehousing (DW) has developed expressive and efficient tools for the
multidimensional analysis of large amounts of data. As more data gets produced and
shared in RDF, analytic concepts and tools for analyzing such irregular, graph-shaped,
semantic-rich data need to be revisited. We introduce the first all-RDF model for ware-
housing RDF graphs. Notably, we define analytical schemas and analytical queries for
RDF, corresponding to the relational DW star/snowflake schemas and cubes. We also
show how typical OLAP operations can be performed on our RDF cubes, and experiments
on a fully-implemented platform demonstrating the practical interest of our approach.

Keywords: RDF, data warehouse, OLAP

Résumé

La recherche sur les entrepôts de données a mené des techniques et outils efficaces pour
l’analyse multidimensionnelle de grandes quantités de données. Avec la monté en puis-
sance de la production et du partage de données RDF, les concepts et outils d’analyse
multidimensionnelle pour ces données irrégulières, de type graphe, et sémantiquement
riches ont besoin d’être revisités. Nous introduisons le premier modèle tout-RDF pour
les entrepôts de graphes RDF. Notamment, nous définissons les schémas analytiques et les
requêtes analytiques pour RDF, correspondant aux schémas en étoile/flocon et cubes des
entrepôts relationnels. Nous montrons aussi comment les opérations OLAP typiques peu-
vent être effectuées sur nos cubes RDF, et nous présentons quelques expériences validant
l’intérêt pratique de notre approche.

∗This work was performed while the authors were with LRI (Université Paris-Sud) and Inria Saclay,
France.

1

1 Introduction
Databases of facts, each characterized by multiple dimensions, whose values are recorded
in measures, are at the core of multidimensional data warehouses (DWs in short) [17].
The facts can then be analyzed by means of aggregating the measures, e.g., “what is the
average sale price of item A every month in every store?” One of the pioneer books on
the topic is Immon’s [15], which lists a set of data warehouse characteristics: the data is
integrated (possibly through an Extract-Transform-Load process that feeds the warehouse
with well-structured data; data is typically non volatile, since a recorded fact or measure
is unlikely to change in the future, data only gets added to the warehouse; finally, time
is an important dimension in most DW applications.

Relational data warehousing. Data warehouses are typically built to analyze
(some aspects of) an enterprise’s business processes. Thus, a first crucial task is choosing
among the many data sources available to the analyst, those that are interesting for a
given class of business questions that the DW is designed for answering. The analysts
then describe the facts, dimensions, and measures to be analyzed. Then, for each relevant
business question, an analytical query is formulated, by (i) classifying facts along a set
of dimensions and (ii) reporting the aggregated values of their measures. Such queries
are commonly known as cubes. For all its practical applications, data warehousing has
attracted enormous interest, both from practitioners [18] and from the research commu-
nity [12, 16, 26]; warehousing tools are now part of major relational database servers.
Relational data warehousing is thus a pretty mature area.

Semantic Web data and RDF. Recent years have witnessed a steady and impor-
tant interest in Semantic Web data, represented within the W3C’s Resource Description
Framework (or RDF, in short) [27]. The RDF model allows describing resources (either
digital or taken from the real world), by specifying the values of their properties. Thus,
an RDF information unit is a triple s p o, with s, p and o standing for the subject,
property and object, respectively, in RDF terminology. The RDF language is increasingly
being used in order to export, share, and collaboratively author data in many settings. For
instance, it serves as a metadata language to describe cultural artifacts in large digital
libraries, and to encode protein sequence data, as in the Uniprot data set. RDF is a
natural target for representing heterogeneous facts contributed by millions of Wikipedia
users, gathered within the DBpedia data source, as well as for the Linked Open Data
effort, aiming at connecting and sharing collectively produced data and knowledge.

RDF analytics. The current popularity of RDF raises interest in models and tools
for RDF data analytics. For instance, consider applications seeking to harvest, aggregate
and analyze user data from various sources (such as social networks, blog posts, comments
on public Web sites etc.). The data is heterogeneous; it may include facts about the user
such as age, gender or region, an endorsement of a restaurant the user liked etc. The
data is graph-structured, since it describes relationships between users, places, companies
etc. It comes from multiple sources and may have attached semantics, based on some
ontologies for which RDF is an ideal format.

Analyzing Semantic Web data with warehouse-style tools has many applications. For
instance, in a City Open Data scenario, RDF data sources describing providers of goods
and services in a city can be integrated, e.g., based on a city map, while social and Web
feeds referring to the providers can be warehoused to analyze service usage, identify trends
and user groups, and take decisions such as opening a new branch in an under-served city

2

area, or better tune a transport service to the user needs. Efforts to open city data are
significantly advanced or under way in major French cities, including Rennes, Grenoble
and Paris.

Despite the perceived need, there is currently no satisfactory conceptual and practical
solution for large-scale RDF analytics. Relational DW tools are not easily adaptable,
since loading RDF data in a relational analytical schema may lead to facts with unfilled
or multiply-defined dimensions or measures; the latter does not comply with the relational
multidimensional setting and DW tools. More important, to fully exploit RDF graphs, the
heterogeneity and rich semantics of RDF data should be preserved through the warehouse
processing chain and up to the analytical queries. In particular, RDF analytical queries
should be allowed to jointly query the schema and the data, e.g., ask for most frequently
specified properties of a CollegeStudent, or the three largest categories of Inhabitants.
Changes to the underlying database (such as adding a new subclass of Inhabitant) should
not cause the warehouse schema to be re-designed; instead, the new resources (and their
properties) should propagate smoothly to the analysis schema and cubes.

In this work, we establish formal models, validated through a fully deployed efficient
tool, for warehouse-style analytics on Semantic Web data. To our knowledge, this is the
first work proposing an all-RDF formal model for data warehousing. Our contributions
are:

• We provide a formal model for analytical schemas, capturing the data of interest for
a given analysis of an RDF data set. Importantly, an analytical schema instance
is an RDF graph itself, and as such, it preserves the heterogeneity, semantics, and
flexible mix of schema and data present in the RDF model.

• We introduce analytical queries, RDF counter-parts of the relational analytical
cubes, supporting typical analytical operations (slice, dice, etc.). We show how
these operations can be realized efficiently on top of a conjunctive query processor
(relational or RDF-specific).

• We implemented an RDF warehouse prototype on top of an efficient in-memory
column-based store. Our experiments confirm its interest and performance.

The remainder of this paper is organized as follows. Section 2 recalls the RDF model,
based on which Section 3 presents our analytical schemas and queries, and Section 4
studies efficient methods for evaluating analytical queries. Section 5 introduces typical
analytical operations (slice, dice etc.) on our RDF analytical cubes. We present our
experimental evaluation in Section 6, discuss related work, and then conclude.

2 RDF graphs and queries
We introduce RDF data graphs in Section 2.1 and RDF queries in Section 2.2.

2.1 RDF graphs
An RDF graph (or graph, in short) is a set of triples of the form s p o. A triple states
that its subject s has the property p, and the value of that property is the object o. We
assume given a set U of URIs, a set L of literals (constants), and a set B of blank nodes
(unknown URIs or literals), such that U , B and L are pairwise disjoint. As per the RDF
specification [27], triple subject values belong to U ∪B, property values belong to U , and
object values belong to U ∪ B ∪ L. Moreover, we use typed RDF literals, whose types
belong to a set τ = {string, integer, double, . . .}.

3

Constructor Triple Relational notation

Class assertion s rdf:type o o(s)
Property assertion s p o p(s, o)

Figure 1: RDF statements.

G =
{user1 hasName “Bill”, user1 hasAge “28”, user1 friend user3, user1 bought product1,
product1 rdf:type SmartPhone, user1 worksWith user2, user2 hasAge “40”, . . .}

Figure 2: Sample RDF triples.

Blank nodes are essential features of RDF allowing to support unknown URI/literal
tokens. For instance, one can use a blank node :b1 to state that the country of :b1

is United States while the city of the same :b1 is Washington; at the same time, the
population of Washington can be said to be an unspecified value :b2.

Notation. We use s, p, o and :b in triples (possibly with subscripts) as placeholders.
That is, s stands for values in U ∪ B, p stands for values in U , o represents values from
U ∪B∪L, and :b denotes values in B. We also use strings between quotes as in “string”
to denote string-typed literals from L. Finally, the set of values (URIs, blank nodes,
literals) of an RDF graph G is denoted Val(G).

Figure 1 shows how to use triples to describe resources, that is, to express class (unary
relation) and property (binary relation) assertions. The RDF standard [27] provides a
set of built-in classes and properties, as part of the rdf: and rdfs: pre-defined namespaces.
We use these namespaces exactly for these classes and properties, e.g., rdf:type which
specifies the class(es) to which a resource belongs.

Below, we formalize the representation of an RDF graph using graph notations. We
use f|d to denote the restriction of a function f to its sub-domain d.

Definition 1 (Graph notation of an RDF graph) An RDF graph is a labeled
directed graph G = 〈N , E , λ〉 with:

• N is the set of nodes, let N 0 denote the nodes in N having no outgoing edge, and
let N>0 = N \N 0;

• E ⊆ N>0 ×N is the set of directed edges;

• λ : N ∪ E → U ∪ B ∪ L is a labeling function such that λ|N is injective, with
λ|N 0 : N 0 → U ∪B ∪ L and λ|N>0 : N>0 → U ∪B, and λ|E : E → U .

Example 1 (RDF Graph) We consider an RDF graph comprising information about
users and products. Figure 2 shows some of the triples, whereas Figure 3 depicts the
whole dataset using its graph notation. The RDF graph features a resource user1 whose
name is “Bill” and whose age is “28”. Bill works with user2 and is a friend of user3. He
is an active contributor to two blogs, one shared with his co-worker user2. Bill also bought
a SmartPhone and rated it online.

A valuable feature of RDF is RDF Schema (RDFS) that allows enhancing the de-
scriptions in RDF graphs. RDFS triples declare semantic constraints between the classes
and the properties used in those graphs. Figure 4 shows the allowed constraints and how
to express them; in this figure, s, o ∈ U ∪B, while domain and range denote respectively
the first and second attribute of every property.

4

G =
user1

user2

worksWith

user3

friend

William
hasName

Bill hasName

28 hasAge

Madrid
inCity

Student
rdf:type

product1

bought

brand1 hasBrand

400hasPrice

SmartPhonerdf:type

rating1
gave

on
good dealhasValue

post1

post2

post3

post4

wrote

wrote

wrote

wrote

blog1

blog2

inBl

inBl

inBl

inBl

40hasAge

35 hasAge

NY inCity

Figure 3: Running example: RDF graph.

Subclass constraint
Triple s rdfs:subClassOf o
Relational (under OWA) s ⊆ o

Subproperty constraint
Triple s rdfs:subPropertyOf o
Relational (under OWA) s ⊆ o

Domain typing constraint
Triple s rdfs:domain o

Relational (under OWA) Πdomain(s) ⊆ o

Range typing constraint
Triple s rdfs:range o

Relational (under OWA) Πrange(s) ⊆ o

Figure 4: RDFS statements.

Traditionally constraints can be interpreted in two ways [6] under the closed-world
assumption (CWA) or under the open-world assumption (OWA). Under CWA, any fact
not present in the database is assumed not to hold. Under this assumption, if the set
of database facts does not respect a constraint, then the database is inconsistent. For
instance, the CWA interpretation of a constraint of the form R1 ⊆ R2 is: any tuple in
the relation R1 must also be in the relation R2 in the database, otherwise the database
is inconsistent. On the contrary, under OWA, some facts may hold even though they
are not in the database. For instance, the OWA interpretation of the same example is:
any tuple t in the relation R1 is considered as being also in the relation R2 (the inclusion
constraint propagates t to R2).

The RDF data model [27] – and accordingly, the present work – is based on OWA,
and this is how we interpret all the constraints in Figure 4.

Example 2 (RDF Schema) Consider next to the graph G from Figure 3, the schema
depicted in Figure 5. This schema expresses semantic (or ontological) constraints like a
Phone is a Product, a SmartPhone is a Phone, a Student is a Person, the domain and
range of knows is Person, that working with someone is one way of knowing that person
etc.

RDF schemas vs. relational schemas. It is worth stressing that the RDFS con-
straint language (outlined in Figure 4 and illustrated in the above example) is much
“weaker” than those from the traditional relational setting. RDFS does not allow enforc-
ing that instances of a given class have a specific property: if r1 belongs to class C1, this

5

G′ = G∪

SmartPhone

Phone

Notebook

Product

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Person

Student

rdfs:subClassOf

wrote

rdfs:domain

bought

rdfs:domain
rdfs:range

hasBrand

Brand

rdfs:domain

rdfs:range

inBl

Message

Blog

rdfs:domain

rdfs:range

rdf:Literal

hasAge

rdfs:range

hasName

rdfs:range

knows

rdfs:range

rdfs:domain

worksWith

rdfs:subPropertyOf
friend

rdfs:subPropertyOf

Figure 5: Running example: RDF Schema.

has no impact over which properties of r1 are (or are not) specified in the RDF graph.
In other words: the presence of a schema does not restrain and even less eliminate the
heterogeneity of an RDF graph. Instead, the schema adds semantics to the data, which
may still be very heterogeneous.

RDF entailment. Our discussion about OWA above illustrated an important RDF
feature: implicit triples, considered to be part of the RDF graph even though they are
not explicitly present in it. The W3C names RDF entailment the mechanism through
which, based on the set of explicit triples and some entailment rules (to be described
shortly), implicit RDF triples are derived. We denote by `iRDF immediate entailment,
i.e., the process of deriving new triples through a single application of an entailment rule.
More generally, a triple s p o is entailed by a graph G, denoted G `RDF s p o, if and only
if there is a sequence of applications of immediate entailment rules that leads from G to
s p o (where at each step of the entailment sequence, the triples previously entailed are
also taken into account).

Saturation. The immediate entailment rules allow defining the finite saturation
(a.k.a. closure) of an RDF graph G, which is the RDF graph G∞ defined as the fixpoint
obtained by repeatedly applying `iRDF on G.

The saturation of an RDF graph is unique (up to blank node renaming), and does
not contain implicit triples (they have all been made explicit by saturation). An obvious
connection holds between the triples entailed by a graph G and its saturation: G `RDF s p o

if and only if s p o ∈ G∞. RDF entailment is part of the RDF standard itself; in particular,
the answers of a query posed on G must take into account all triples in G∞, since the
semantics of an RDF graph is its saturation. RDF saturation is supported by many
popular RDF platforms such as Sesame, Jena or OWLIM.

Immediate entailment rules. The RDF Schema specification comprises a set of
immediate entailment rules. Of interest to us are the rules deriving RDF statements
through the transitivity of class and property inclusions, and from inheritance of domain
and range typing. Using a tabular notation, with the entailed (consequence) triple shown
at the bottom, some examples are:

SmartPhone rdfs:subClassOf Phone
Phone rdfs:subClassOf Product

SmartPhone rdfs:subClassOf Product

6

and similarly:

worksWith rdfs:subPropertyOf knows
knows rdfs:domain Person

worksWith rdfs:domain Person

Some other rules derive entailed RDF statements, through the propagation of values
(URIs, blank nodes, and literals) from sub-classes and sub-properties to their super-
classes and super-properties, and from properties to classes typing their domains and
ranges. Within our running example:

worksWith rdfs:subPropertyOf knows
user1 worksWith user2

user1 knows user2

knows rdfs:domain Person
user1 rdf:type Person

2.2 BGP queries
We consider the well-known subset of SPARQL consisting of (unions of) basic graph
pattern (BGP) queries, also known as SPARQL conjunctive queries. A BGP is a set of
triple patterns, or triples in short. Each triple has a subject, property and object. Subjects
and properties can be URIs, blank nodes or variables; objects can also be literals.

A boolean BGP query is of the form ASK WHERE {t1, . . . , tα}, while a non-boolean
BGP query is of the form SELECT x̄ WHERE {t1, . . . , tα}, where {t1, . . . , tα} is a BGP; the
query head variables x̄ are called distinguished variables, and are a subset of the variables
occurring in t1, . . . , tα.

Notation. Without loss of generality, in the following we will use the conjunctive
query notation q(x̄):- t1, . . . , tα for both ASK and SELECT queries (for boolean queries x̄ is
empty). We use x, y, and z (possibly with subscripts) to denote variables in queries. We
denote by VarBl(q) the set of variables and blank nodes occurring in the query q. For
a BGP query q(x̄):- t1, . . . , tα, the head of q denoted head(q) is q(x̄) and the body of q
denoted body(q) is t1, . . . , tα.

BGP query graph. For our purposes, it is useful to view each triple atom in the
body of a BGP q as a generalized RDF triple, where, beyond URIs, blank nodes and
literals, variables may also appear in any of the subject, predicate and object positions.
This naturally leads to a graph notations for BGP queries, which is the corresponding
generalization of that for RDF graphs as described in Definition 1.

For instance, the query: q(x, y, z):- x hasName y, x z product1

is represented by the graph: xy product1hasName z

Query evaluation. Given a query q and a RDF graph G, the evaluation of q against G
is: q(G) = {x̄µ | µ : VarBl(q)→ Val(G) is a total assignment s.t. tµ1 ∈ G, tµ2 ∈ G, . . . , tµα ∈ G}
where we denote by tµ the result of replacing every occurrence of a variable or blank node
e ∈ VarBl(q) in the triple t, by the value µ(e) ∈ Val(G)1.

Notice that evaluation treats the blank nodes in a query exactly as it treats non-
distinguished variables. Thus, in the sequel, without loss of generality, we consider queries

1We assume µ respects the SPARQL rules [29] governing the conversions of different-type
atomic values (recall we use typed RDF literals) for join or selection comparisons etc.

7

x1

x2

y1

y2 x3

knows

hasName

wrote inBl

Figure 6: Rooted query example.

where all blank nodes have been replaced by distinct (new) non-distinguished variable
symbols.

Query answering. The evaluation of q against G only uses G’s explicit triples, thus
may lead to an incomplete answer set. The (complete) answer set of q against G is
obtained by the evaluation of q against G∞, denoted by q(G∞).

Example 3 (BGP Query Answering) The following query asks for the names of
those having bought a product related to Phone:

q(x):- y1 hasName x, y1 bought y2, y2 y3 Phone

In this example, q(G′∞) = {〈“Bill”〉}.
This answer results from G′ `RDF product1 rdf:type Phone and the assignment µ = {y1 →
user1, x→ Bill, y2 → product1, y3 → rdf:type}.
Note that evaluating q against G′ leads to the incomplete (empty) answer set q(G′) = {〈〉}.

BGP queries for data analysis. Data analysis typically allows investigating par-
ticular sets of facts according to relevant criteria (a.k.a. dimensions) and measurable or
countable attributes (a.k.a. measures) [17]. In this work, rooted BGP queries play a cen-
tral role as they are used to specify the set of facts to analyze, as well as the dimensions
and the measure to be used (Section 3.2).

Definition 2 (Rooted Query) Let q be a BGP query, G = 〈N , E , λ〉 its graph and
n ∈ N a node whose label is a variable in q. The query q is rooted in n iff G is a
connected graph and any other node n′ ∈ N is reachable from n following the directed
edges in E.

Example 4 (Rooted Query) The query q described below is a rooted BGP query, with
x1 as root label.

q(x1, x2, x3):- x1 knows x2, x1 hasName y1, x1 wrote y2, y2 inBl x3

The graph representation of the query, given in Figure 6, shows that every node is reach-
able from the root x1.

Next, we introduce the concept of join query, which joins some BGP queries on
their distinguished variables, and projects out some of these distinguished variables. Join
queries will be useful later on when defining data warehouse analyses, as well as operations
(e.g., drill down, dice etc.) on the results of such analyses.

Definition 3 (Join Query) Let q1, . . . , qn be BGP queries whose non-distinguished vari-
ables are pairwise disjoint. We say q(x̄):- q1(x̄1) ∧ · · · ∧ qn(x̄n), where x̄ ⊆ x̄1 ∪ · · · ∪ x̄n,
is a join query q of q1, . . . , qn. The answer set to q(x̄) is defined to be that of the BGP
query qon:

qon(x̄):- body(q1(x̄1)), · · · , body(qn(x̄n))

8

Observe that the above definition considers queries that do not share non-distinguished
variables (a.k.a. variables which are not present in the head of the query). This as-
sumption is made without loss of generality, as one can easily rename non-distinguished
variables in q1, q2, . . . , qn in order to meet the condition. In the sequel, we assume such
renaming has already been applied in join queries.

Example 5 (Join Query) Consider the BGP queries q1, asking for the users having
bought a product and their age, and q2, asking for users having posted in some blog:

q1(x1, x2):- x1 hasAge x2, x1 bought y1

q2(x1, x3):- x1 wrote y2, y2 inBl x3

The join query q1,2(x1, x2):- q1(x1, x2) ∧ q2(x1, x3) asks for the users and their ages, for
all the users having posted in a blog and having bought a product, i.e.,

qon1,2(x1, x2):- x1 hasAge x2, x1 bought y1,
x1 wrote y2, y2 inBl x3

Other join queries can be obtained from q1 and q2 by returning another subset of the
head variables x1, x2, x3, and/or by changing their order in the head etc.

3 RDF graph analysis
We define here the basic ingredients of our approach for analyzing RDF graphs. An
analytical schema is first designed, and then mapped onto an RDF graph to analyze,
as we explain in Section 3.1. This defines the instance of the analytical schema to be
analyzed with an analytical query, introduced in Section 3.2, modeling the chosen crite-
ria (a.k.a. dimensions) and measurable or countable attributes (a.k.a. measures) of the
analysis.

3.1 Analytical schema and instance
We model a schema for RDF graph analysis, called analytical schema, as a labeled directed
graph.

From a classical data warehouse analytics perspective, each node of our analytical
schema represents a set of facts that may be analyzed. Moreover, the facts represented
by an analytical schema node n can be analyzed using the schema nodes reachable from n
as dimensions and measures. This makes our analytical schema model extremely flexible
and more general than the traditional DW setting where facts (at the center of a star or
snowflake schema) are analyzed according to a specific set of measures.

From a Semantic Web (RDF) perspective, each analytical schema node corresponds
to an RDF class assertion, while each analytical schema edge corresponds to an RDF
property assertion; thus, the analytical schema is a full-fledged RDF instance itself. For-
mally:

Definition 4 (Analytical Schema) An analytical schema (AnS) is a labeled directed
graph S = 〈N , E , λ, δ〉 in which:
• N is the set of nodes;

• E ⊆ N ×N is the set of directed edges;

• λ : N ∪E → U is an injective labeling function, mapping nodes and edges to URIs;

• δ : N ∪ E → Q is a function assigning to each node n ∈ N a unary BGP query
δ(n) = q(x), and to every edge n→ n′ ∈ E a binary BGP query δ(n→ n′) = q(x, y).

9

n1

personn5

age

n1 → n5

personAge

n6

pname

n1 → n6

personName

n8

city

n1 → n8

personCity

n4

product

n7

price

n4 → n7

pPrice

n2

message

n3

blog

n2 → n3

messgInBlogn10

pType

n9

pBrand

n1 → n1

acquaintance

n1 → n2

wroteMessg

(n1 → n4)1
purchase

(n1 → n4)2
rating

n4 → n10

productType

n4 → n9

productBrand

Figure 7: Sample Analytical Schema (AnS).

node n λ(n) δ(n)

n1 person q(x):- x rdf:type Person
n2 message q(x):- y wrote x,

x inBl b , b rdf:type Blog
n4 product q(x):- x rdf:type Product
n5 age q(x):- y hasAge x
n6 pname q(x):- y hasName x
n9 pBrand q(x):- y hasBrand x,
n10 pType q(x):- x rdfs:subClassOf Product

edge n→ n′ λ(n→ n′) δ(n→ n′)

n1 → n1 acquaintance q(x, y):- x knows y
n1 → n4 purchase q(x, y):- x bought y
n1 → n5 personAge q(x, y):- x rdf:type Person,

x hasAge y
n2 → n3 messgInBlog q(x, y):- x rdf:type Message,

x inBl y
n4 → n10 productType q(x, y):- x rdf:type Product,

x rdf:type y

Table 1: Labels and queries of some nodes and edges of the analytical schema (AnS)
shown in Figure 7.

From now on, to simplify the presentation, we assume that through λ, each node in
the AnS defines a new class (not present in the original graph G), while each edge defines
a new property2. Just as an analytical schema defines (and delimits) the data available to
the analyst in a typical relational data warehouse scenario, in our framework, the classes
and properties modeled by an AnS (and labeled by λ) are the only ones visible to further
RDF analytics, that is: analytical queries will be formulated against the AnS and not
against the base data (as Section 3.2 will show). Example 6 introduces an AnS for the
RDF graph in Section 2.1.

Example 6 (Analytical Schema) Figure 7 depicts an AnS S = 〈N , E , λ, δ〉 for an-
alyzing people and products. The node and edge labels appear in the figure, while (some
of) the BGP queries defining these nodes and edges are provided in Table 1; the others
are very similar. In Figure 7 a person (n1) may have written messages (n1 → n2) which
appear on some blog (n2 → n3). A person may also have bought products (n1 → n4)1 or
may have commented on them (n1 → n4)2. The semantics for the rest of the schema can
be easily derived from the figure.

The nodes and edges of the AnS shown in Figure 7 are those considered of interest
for our sample data analysis scenario. In other words, the AnS offers a perspective (or
lens) through which to analyze an RDF database. This is formalized as follows:

2In practice, nothing prevents λ from returning URIs of class/properties from G and/or the
RDF model, e.g., rdf:type etc.

10

I(S, G′) =

{user1 rdf:type person, n1

user2 rdf:type person, n1

user3 rdf:type person, n1

user1 acquaintance user2, n1 → n1

user1 acquaintance user3, n1 → n1

post1 messgInBlog blog1, n2 → n3

product1 rdf:type product, n4

user1 personAge “28”, n1 → n5

user1 personName “Bill”, n1 → n6

Notebook rdf:type pType, n10

SmartPhone rdf:type pType, n10

product1 pPrice “$400”, . . .} n4 → n7

Table 2: Partial instance of the AnS in Figure 7.

Definition 5 (Instance of an AnS) Let S = 〈N , E , λ, δ〉 be an analytical schema and
G an RDF graph. The instance of S w.r.t. G is the RDF graph I(S, G) defined as:⋃

n∈N

{s rdf:type λ(n) | s ∈ q(G∞) ∧ q = δ(n)} ∪⋃
n1→n2∈E

{s λ(n1 → n2) o | s, o ∈ q(G∞) ∧ q = δ(n1 → n2)}.

From now on, we will denote the instance of an AnS either I(S, G) or simply I, when
that does not lead to confusion.

Example 7 (Analytical Schema Instance) Table 2 shows part of the instance of
the analytical schema introduced in Example 6. For each triple, we indicate at right the
node (or edge) of the AnS which has produced it.

Crucial to our ability to handle RDF heterogeneity is the disjunctive semantics of an
AnS, materialized by the two levels of ∪ operators in Definition 5. Each node and each
edge of an AnS populates I through an independent query, and the resulting triples are
simply combined through unions. This has two benefits: (i) significant flexibility when
designing the AnS, and (ii) the ability to build a (heterogeneous) data warehouse on top
of a heterogeneous RDF graph.

Consider for instance the three users in the original graph G (Figure 3) and their prop-
erties: user1, user2 and user3 are part of the person class in our AnS instance I (through
n1’s query), although user2 and user3 lack a name. However, those user properties present
in the original graph, are reflected by the AnS edges n1 → n2, n1 → n8 etc. Thus, the
inherent heterogeneity of RDF graphs is accepted in the base data and present in the
AnS instance.

Defining analytical schemas. Just as in relational data warehouses, our approach
requires the analyst to define the analytical schema, which in our context means picking
the δ and λ queries associated to each AnS node and edge, respectively. Experiment-
ing with the prototype implementing our approach, we have found the following simple
method for devising the AnS. First, a default AnS is automatically created by (i) build-
ing an edge for each distinct property value in G, and (ii) building a node for each distinct
domain and range of an edge obtained in (i). Based on this default AnS, we can inspect
nodes and edges, for instance starting with the ones that are most populated (have the
largest number of instances) and build with the help of our tool’s GUI, more complex

11

queries to define a refined AnS, typically having fewer nodes and edges than the default
one, but with more complex node and edge definitions.

On the instances of analytical schemas. For simplicity, an AnS uses unary and
binary BGP queries (introduced in Section 2.2) to define its instance, as the union of every
AnS node/class and edge/property instance. This can be extended straightforwardly to
unary and binary (full) SPARQL queries in the setting of RDF analytics, and even to
unary and binary queries from (a mix of) query languages (SQL, SPARQL, XQuery, etc.),
in order to analyze data from distributed heterogeneous sources.

3.2 Analytical queries
Data warehouse analysis summarizes facts according to relevant criteria into so-called
cubes. Formally, a cube (or analytical query) analyzes facts characterized by some di-
mensions, using a measure. We consider a set of dimensions d1, d2, . . . , dn, such that
each dimension di may range over the value set {d1

i , . . . , d
ni
i }; the Cartesian product of

all dimensions d1 × · · · × dn defines a multidimensional spaceM. To each tuple t in this
multidimensional spaceM corresponds a subset Ft of the analyzed facts, having for each
dimension di, 1 ≤ i ≤ n, the value of t along di.

A measure is a set of values3 characterizing each analyzed fact f . The facts in
Ft are summarized by the cube cell M[t] by the result of an aggregation function ⊕
(e.g., count, sum, average, etc.) applied to the union of the measures of the Ft facts:
M[t] = ⊕(

⋃
f∈Ft

vf).
An analytical query consists of two (rooted) queries and an aggregation function.

The first query, known as a classifier in traditional data warehouse settings, defines the
dimensions d1, d2, . . . , dn according to which the facts matching the query root will be
analyzed. The second query defines the measure according to which these facts will be
summarized. Finally, the aggregation function is used for summarizing the analyzed facts.
To formalize the connection between an analytical query and the AnS on which it is
asked, we introduce a useful notion:

Definition 6 (BGP query to AnS homomorphism) Let q be a BGP query whose
labeled directed graph is Gq = 〈N , E , λ〉, and S = 〈N ′, E ′, λ′, δ′〉 be an AnS. An homo-
morphism from q to S is a graph homomorphism h : Gq → S, such that:
• for every n ∈ N , λ(n) = λ′(h(n)) or λ(n) is a variable;
• for every n→ n′ ∈ E: (i) h(n)→ h(n′) ∈ E ′ and (ii) λ(n→ n′) = λ′(h(n)→ h(n′))

or λ(n→ n′) is a variable;
• for every n1 → n2, n3 → n4 ∈ E, if λ(n1 → n2) = λ(n3 → n4) is a variable, then

h(n1 → n2) = h(n3 → n4);
• for n ∈ N and n1 → n2 ∈ E, λ(n) 6= λ(n1 → n2).

The above homomorphism is defined as a correspondence from the query to the AnS
graph structure, which preserves labels when they are not variables (first two items), and
maps all the occurrences of a same variable labeling different query edges to the same label
value (third item). Observe that a similar condition referring to occurences of a same
variable labeling different query nodes is not needed, since by definition, all occurrences of
a variable in a query are mapped to the same node in the query’s graph representation.

3It is a set rather than a single value, due to the structural heterogeneity of the AnS instance,
which is an RDF graph itself: each fact may have zero, one, or more values for a given measure.

12

The last item (independent of h) follows from the fact that the labeling function of an
AnS is injective. Thus, a query with a same label for a node and an edge cannot have
an homomorphism with an AnS.

We are now ready to introduce our analytical queries. In keeping with the core
concepts known from the relational data warehouse literature, a classifier defines the
level of data aggregation while a measure allows obtaining values to be aggregated using
aggregation functions.

Definition 7 (Analytical Query) Given an analytical schema S = 〈N , E , λ, δ〉, an
analytical query (AnQ) rooted in the node r ∈ N is a triple:

Q = 〈c(x, d1, . . . , dn),m(x, v),⊕〉

where:

• c(x, d1, . . . , dn) is a query rooted in the node rc of its graph Gc, with λ(rc) = x. This
query is called the classifier of x w.r.t. the n dimensions d1, . . . , dn.

• m(x, v) is a query rooted in the node rm of its graph Gm, with λ(rm) = x. This
query is called the measure of x.

• ⊕ is a function computing a value (a literal) from an input set of values. This
function is called the aggregator for the measure of x w.r.t. its classifier.

• For every homomorphism hc from the classifier to S and every homomorphism hm
from the measure to S, hc(rc) = hm(rm) = r holds.

The last item above guarantees the “well-formedness” of the analytical query, that is:
the facts for which we aggregate the measure, are indeed those classified along the desired
dimensions. It is worth noticing that, from a practical viewpoint, this condition can be
easily and naturally guaranteed by giving explicitly in the classifier and the measure
either the type of the facts to analyze, using x rdf:type λ(r), or a property describing
those facts, using x λ(r → n) o with r → n ∈ E . As a result, since the labels are unique
in an AnS (its labeling function is injective), every homomorphism from the classifier
(respectively the measure) to the AnS does map the query’s root node labeled with x to
the AnS’s node r.

Example 8 (Analytical Query) The next query asks for the number of blogs where
the user posts, classified by the user age and city:

〈c(x, a, c),m(x, b), count〉
where the classifier and measure queries are defined by:

c(x, a, c):- x personAge a, x personCity c
m(x, b):- x wroteMessg o, o messgInBlog b

The semantics of an analytical query is:

Definition 8 (Answer Set of an AnQ) Let I be the instance of an AnS with respect
to some RDF graph. Let Q = 〈c(x, d1, . . . , dn),m(x, v),⊕〉 be an AnQ against I. The
answer set of Q against I, denoted ans(Q, I), is:

ans(Q, I) = {〈dj1, . . . , djn,⊕(qj(I))〉 | 〈xj, dj1, . . . , djn〉 ∈ c(I)
and qj is defined as qj(v):- m(xj, v)}

assuming that the type of each value returned by qj(I) belongs (or can be converted by
the SPARQL rules [29]) to the input type of the aggregator ⊕. Otherwise, the answer set
is undefined.

13

In other words, the analytical query returns each tuple of dimension values found in
the answer of the classifier query, together with the aggregated result of the measure
query. The answer set of an AnQ can thus be represented as a cube of n dimensions,
holding in each cube cell the corresponding aggregate measure. In the following, we focus
on analytical queries whose answer sets are well-defined.

Example 9 (Analytical Query Answer) Consider the query in Example 8, over the
analytical schema in Figure 7. Some triples from the instance of this analytical schema
were shown in Table 2. The classifier query returns:

{〈user1, 28, “Madrid”〉, 〈user3, 35, “NY ”〉}
while the measure query returns:

{〈user1, blog1〉, 〈user1, blog2〉, 〈user2, blog2〉, 〈user3, blog2〉}
Aggregating the blogs among the classification dimensions leads to the AnQ answer:

{〈28, “Madrid”, 2〉, 〈35, “NY ”, 1〉}

In this work, for the sake of simplicity, we assume that an analytical query has one
measure. However, this can be easily relaxed, by introducing a set of measure queries
with an associated set of aggregation functions.

4 Analytical query evaluation
We now consider practical strategies for AnQ answering.

The AnS materialization approach. The simplest method consists of materializ-
ing the instance of the AnS (Definition 5) and storing it within an RDF data management
system (or RDF-DM, for short); recall that the AnS instance is an RDF graph itself.
Then, to evaluate an AnQ, one simply delegates the evaluation of the classifier and mea-
sure queries, and of the final aggregation, to the RDF-DM. While effective, this solution
has the drawback of storing the whole AnS instance; moreover, this instance may need
maintenance when the analyzed RDF graph changes.

The AnQ reformulation approach. To avoid materializing and maintaining the
AnS instance, we propose an alternative solution. The idea is to reformulate the AnQ
based on the AnS definition so that evaluating the reformulated query, returns exactly
the same answer as if materialization was used. Using reformulation, one can store the
original RDF graph into an RDF-DM, and delegate the reformulated query evaluation to
the RDF-DM.

The technique builds on the reformulation of BGP queries, lying at the core of AnQs,
w.r.t. analytical schemas:

Definition 9 (AnS-reformulation of a query)
Given an analytical schema S = 〈N , E , λ, δ〉, a BGP query q(x̄):- t1, . . . , tm whose graph
is Gq = 〈N ′, E ′, λ′〉, and the non-empty set H of all the homomorphisms from q to S,
the reformulation of q w.r.t. S is the union of join queries qonS =

⋃
h∈H q

on
h (x̄):-

∧m
i=1 qi(x̄i)

such that:

• for each triple ti ∈ q of the form s rdf:type λ′(ni), qi(x̄i) in qonh is defined as qi =
δ(h(ni)) and x̄i = s;

• for each triple ti ∈ q of the form s λ′(ni → nj) o, qi(x̄i) in qonh is defined as
qi = δ(h(ni → nj)) and x̄i = s, o.

14

This definition basically says that, for a BGP query meaningful w.r.t. an AnS (there is
at least an homomorphism from the query to the AnS), the reformulated query amounts
to translating all its possible interpretations w.r.t. the AnS (modeled by all the homo-
morphism from the query to the AnS) into a union of join queries modeling them. The
important point is that these join queries are defined onto the RDF graph the AnS is
wrapped, using its node queries.

Example 10 (AnQ reformulation) Let q(x, o, s) be:

q(x, o, s):- x rdf:type person, x wroteMessg o, o messgInBlog s

The query q uses the vocabulary of the AnS and is meant to be evaluated over its
instance I. In the following, we reformulate q into qonS , which uses the vocabulary of the
initial graph G and can be evaluated over it to obtain the same result as q over I.

The first atom x rdf:type person in q is of the form s rdf:type λ(n1), for the node
n1 in the AnS in Figure 7. Consequently, qonS contains as a conjunct the query q(x):-
x rdf:type Person (obtained from δ(n1) in Table 1)4.

The second atom in q is of the form s λ(n1 → n2) o for the person node n1 and the
message node n2 in Figure 7, while the query labeling n1 → n2 is: q(x, y):- x wrote y,
y rdf:type Message. As a result, qonS contains the conjunct q(x, o):- x wrote o,
o rdf:type Message.

Similarly, q’s last atom corresponds to the edge n2 → n3 in the AnS; it adds the
conjunct q(o, s):- o rdf:type Message, o inBl s to qonS . Thus, the reformulated query
amounts to:

qonS (x, o, s):- x rdf:type Person, x wrote o, o rdf:type Message, o inBl s

which can be evaluated directly on the graph G in Figure 3.

The following theorem states how BGP query reformulation w.r.t. an AnS can be
used to answer analytical queries correctly.

Theorem 1 (Reformulation-based answering)
Let S be an analytical schema, whose instance I is defined w.r.t. an RDF graph G. Let
Q = 〈c(x, d1, . . . , dn),m(x, v),⊕〉 be an analytical query against S, and conS be the refor-
mulation of Q’s classifier query against S. We have:

ans(Q, I) = {〈dj1, . . . , djn,⊕(qjonS (G∞))〉 | 〈xj, dj1, . . . , djn〉 ∈ conS(G∞)
and qj is defined as qj(v):- m(xj, v)}

assuming that the type of each value returned by qjonS (G∞) belongs (or can be converted by
the SPARQL rules [29]) to the input type of the aggregator ⊕. Otherwise, the answer set
is undefined.

The above theorem states that in order to answerQ on I, one first needs to reformulate
Q’s classifier, and answer it directly against G (and not against I as in Definition 8):
this is how reformulation avoids materializing the analytical schema instance. Then,
for each tuple (xj, dj1, . . . , d

j
n) returned by the classifier, the following steps are needed:

instantiating the measure query m with the fact xj leading to the query qj, reformulating
qj w.r.t. S into qjonS , answering the latter again against G, and, finally, aggregating its
results through ⊕. The theorem follows quite directly by showing that two-way inclusion
holds between the two terms.

4Recall that the person type used in q is part of the AnS (Figure 7), whereas the Person
type belongs to the original RDF graph G (Figure 5).

15

5 OLAP RDF analytics
On-Line Analytical Processing (OLAP) [2] technologies enhance the abilities of data
warehouses (usually relational) to answer multi-dimensional analytical queries.

The analytical model we introduced so far is specifically designed for graph-structured,
heterogeneous RDF data. In this section, we demonstrate that our model is expressive
enough to support RDF-specific counterparts of all the traditional OLAP concepts and
tools known from the relational data warehouse setting.

Typical OLAP operations allow transforming a cube into another. In our frame-
work, a cube corresponds to an AnQ; for instance, the query in Example 8 models a
bi-dimensional cube on the warehouse related to our sample AnS in Figure 7. Thus, we
model traditional OLAP operations on cubes as AnQ rewritings, or more specifically,
rewritings of extended AnQs which we introduce below:

Definition 10 (Extended AnQ) As in Definition 7, let S be an AnS, and d1, . . . , dn
be a set of dimensions, each ranging over a non-empty finite set Vi. Let Σ be a total
function over {d1, . . . , dn} associating to each di, either {di} or a non-empty subset of Vi.
An extended analytical query Q is defined by a triple:

Q:- 〈cΣ(x, d1, . . . , dn),m(x, v),⊕〉

where (as in Definition 7) c is a classifier and m a measure query over S, ⊕ is an
aggregation operator, and moreover:

cΣ(x, d1, . . . , dn) =
⋃

(χ1,...,χn)∈Σ(d1) × ...×Σ(dn) c(x, χ1, . . . , χn)

In the above, the extended classifier cΣ(x, d1, . . . , dn) is the set of all possible classifiers
obtained by substituting each dimension variable di with a value in Σ(di). The function
Σ is introduced to constrain some classifier dimensions, i.e., it plays the role of a filter-
clause restricting the classifier result. The semantics of an extended analytical query
is easily derived from the semantics of a standard AnQ (Definition 8) by replacing the
tuples from c(I) with tuples from cΣ(I) (containing all tuples returned by included single
classifier). This highlights that an extended analytical query can be seen as a union of a
set of standard AnQs, one for each combination of values in Σ(d1), . . . ,Σ(dn). Conversely,
an analytical query corresponds to an extended analytical query where Σ only contains
pairs of the form (di, {di}).

We can now define the classical slice and dice OLAP operations in our framework:
Slice. Given an extended query Q = 〈cΣ(x, d1, . . . , dn), m(x, v), ⊕〉, a slice operation

over a dimension di with value vi returns the extended query 〈cΣ′(x, d1, . . . , dn),m(x, v),⊕〉,
where Σ′ = (Σ \ {(di,Σ(di)}) ∪ {(di, {vi})}.
The intuition is that slicing binds an aggregation dimension to a concrete value.

Example 11 (Slice) Let Q be extended query corresponding to the query-cube defined
in Example 8, that is:

〈cΣ(x, a, c),m(x, y), count〉

with Σ = {(a, {a}), (c, {c})} (classifier and measure queries are as in Example 8). A
slice operation on the age dimension a with value 34 results in replacing the extended
classifier of Q with:

16

cΣ′(x, a, c) = {c(x, 34, c)}

where Σ′ = Σ \ {(a, {a})} ∪ {(a, {34})}.

Dice. Similarly, a dice operation on Q and over dimensions {di1 , . . . , dik} and cor-
responding sets of values {Si1 , . . . , Sik}, returns the query 〈cΣ′(x, d1, . . . , dn),m(x, v),⊕〉,
where:

Σ′ = Σ \ (∪k1{(dj,Σ(dj)}) ∪ (∪k1{(dj, Sj)})

Intuitively, dicing forces several aggregation dimensions to take values from specific sets.

Example 12 (Dice) Consider again the initial cube Q from Example 11, and a dice
operation on both age and city dimensions with values {34} for b and {Madrid,Kyoto}
for c. The dice operation replaces the extended quantifier of Q with cΣ′(x, a, c), consisting
of:

{c(x, 28, “Madrid”), c(x, 28, “Kyoto”)}

where:

Σ′ = Σ \ {(a, {a}) (c, {c})} ∪ {(a, {34}), (s, {“Madrid”, “Kyoto”})}

Drill-in and drill-out. These operations consist of adding and removing a dimension
to the classifier, respectively. Rewritings for drill operations can be easily formalized. Due
to space limitations we omit the details, and instead exemplify below a drill-in example.

Example 13 (Drill-in) Consider the cube Q from Example 11, and a drill-in on the
age dimension. The drill-in rewriting produces the query:

Q = 〈c′Σ(x, c),m(x, y), count〉

with Σ = {(c, {c})} and c′(x, c) = x city c.

Dimension hierarchies. Typical relational warehousing scenarios feature hierarchi-
cal dimensions, e.g., a value of the country dimension corresponds to several regions, each
of which contains many cities etc. Such hierarchies were not considered in our framework
so far5.

To capture hierarchical dimensions, we introduce dedicated built-in properties to
model the nextLevel relationship among parent-child dimensions in a hierarchy. For
illustration, consider the addition of a new state node and a new nextLevel edge to the
fragment of the AnS in Figure 7 relevant for our sample analytical query in Example 8,
as shown below (new nodes and edges are dashed):

n1

person

n5

age n1 → n5

personAge

n6

pname
n1 → n6

personName

n8

city

n1 → n6

personCity

n12

state

n8 → n12

nextLevel

n2

message

n3

blog

n2 → n3

messgInBlog

n2 → n3

wroteMessg

5Dimension hierarchies should not be confused with the hierarchies built using the predefined
RDF(S) properties, such as rdfs:subClassOf, e.g., in Figure 3.

17

Tables used for AnS materialization

Tables used for reformulation

dw
(DW instance: I)

s[int], p[int], o[int]

nX
(I nodes)

s[int]

eY
(I edges)

s[int], o[int]

asch
(DW schema: AnS)

s[int], p[int], o[int]

query dict
(AnS nodes/edges)

λ[int], δ[str]

db
(RDF/S triples)

s[int], p[int], o[int]

dict
(URI encodings)

uri[str], val[int]

Figure 8: Data layout of the RDF warehouse.

G size schema size dictionary G∞ size
3.4× 107 triples, 5.5× 103 triples, 7× 106 3.8× 107

4.4 GB 746 KB entries triples

Table 3: Dataset characteristics.

In a similar fashion one could add use the nextLevel property to support a hierarchy
among edges. For instance, one could state that relationships such as isFriendsWith and
isCoworkerOf can be rolled up into a more general relationship knows etc.

Based on dimension hierarchies, roll-up/drill-down operations correspond add to /
remove from the classifier, triple atoms navigating such nextLevel edges.

Example 14 (Roll-up)Recall the cube query in Example 8. A roll-up along the city
dimension to the state level yields:

〈cΣ(x, a, s),m(x, y), count〉
where:

cΣ(x, a, s):- x personAge a, x personCity c, c nextLevel s.

The measure component remains the same, and Σ in the rolled-up query consists of
the obvious pairs of the form (d, {d}). Note the change in both the head and body of the
classifier, due to the roll-up.

6 Experiments
We performed a set of experiments with our RDF analytical framework. Section 6.1
outlines our implementation and experimental settings. We describe experiments we
carried to build AnS instances in Section 6.2, evaluate AnQs in Section 6.3, discuss query
reformulations in Section 6.4 and OLAP operations in Section 6.5, then we conclude.

6.1 Implementation and settings
Underlying platform: kdb+. Our RDF analytics approach can be deployed on top
of any system capable of storing and querying RDF triples. We chose to use kdb+ v3.0
(64 bits) [1], an in-memory column DBMS used in decision-support analytics. kdb+ pro-
vides arrays (tables), which can be manipulated through the q interpreted programming
language. We store in kdb+ the RDF graph G, the AnS definitions, as well as the AnS
instance, when we choose to materialize it. We translate BGP queries into q programs
that kdb+ interprets.

18

Data organization. Figure 8 outlines our data layout in kdb+. The URIs within
the RDF data set are encoded using integers; the mapping is preserved in a q dictionary
data structure, named dict. The saturation of G, denoted G∞ (Section 2.2), is stored in
the db table. Analytical schema definitions are stored as follows. The asch table stores
the analytical schema triples λ(n1) λ(n1 → n2) λ(n2) for all the nodes n1, n2 and edges
n1 → n2 ∈ AnS. The separate query dict dictionary maps the encoded λ values for
nodes and edges to their corresponding δ queries. Finally, we use the dw table to store
the AnS instance I, or i tables named nX and j tables named eY if a partitioned-table
storage is used (see Section 6.2), where i, j are the number of nodes, respectively edges,
in the AnS and X, Y uniquely identify the node, respectively edge, data stored in the
table. While query dict and db suffice to create the instance, we store the analytical
schema definition in asch to enable checking incoming analytical queries for correctness
w.r.t. the AnS.

kdb+ stores each table column independently, and does not have a traditional query
optimizer in the database sense. It is quite fast since it is an in-memory system; at the
same time, it relies on the q programmer’s skills for obtaining an efficient execution. We
try to avoid low-performance formulations of our queries in q, but further optimization
is possible and more elaborate techniques (e.g., cost-based join reordering etc.) would
further improve performance.

Dataset. Our experiments used triples from DBpedia, more specifically, three ontology
infobox datasets and the RDFS schema from the version (http://dbpedia.org/Download38).
The main characteristics of the data appear in Table 3. For our scalability experiments
(Figures 10 and 12), we replicated the dataset several times (leading to doubling, tripling
etc. the size of the analytical schema instance; see Section 6.2).

Hardware. The experiments ran on an 8-core DELL server at 2.13 GHz with 16 GB
of RAM, running Linux 2.6.31.14. All times we report are averaged over five executions.

6.2 AnS materialization
We loaded the (unsaturated) G in about 3 minutes, and we computed its full saturation
G∞ in 22 minutes. We specified an AnS of 26 nodes and 75 edges, capturing a set of
concepts and relationship of interest. AnS node queries have one or two atoms, while
edge queries consist of one to three atoms.

We considered two ways of materializing the instance I. First, we used a single
table (dw in Figure 8). Second, inspired from RDF stores such as [14], we tested a
partitioned data layout for I as follows. For each distinct node (modeling triples of the
form s rdf:type λX), we store a table with the subjects s declared of that type (nX
with X ∈ [1, 26]). Further, for each distinct edge (s λY o) a separate table stores the
corresponding triple subjects and objects (eY with Y ∈ [1, 75]).

Figure 9 shows for each node and edge query (labeled on the y axis by λ, chosen
based on the name of a “central” class or property in the query6): (i) the number of
query atoms (in parenthesis next to the label), (ii) the number of query results (we show
log10(#res)/10 to improve readability), (iii) the evaluation time when inserting into a
single dw table, and (iv) the time when inserting into the partitioned store. For 2 node
queries and 57 edge queries, the evaluation time is too small to be visible (below 0.01 s),

6The dbpo, xsd and warg namespaces respectively correspond to DBpedia, XML Schema and the
AnS we defined.

19

http://dbpedia.org/Download38

w
ar

g:
A

rt
is

tS
ci

en
tis

t (
2)

db
po

:A
ge

nt
 (

1)

d
bp

o:
A

rt
is

t
(1

)

db
po

:A
w

ar
d

(1
)

db
po

:C
om

pa
ny

 (
1)

db
p

o:
C

ur
re

nc
y

(1
)

db
po

:E
th

ni
cG

ro
up

 (
1)

db
po

:E
du

ca
tio

na
lIn

st
itu

tio
n

(1
)

db
po

:G
ov

er
nm

en
tT

yp
e

(1
)

db
po

:Id
eo

lo
gy

 (
1

)

db
po

:L
an

gu
ag

e
(1

)

db
po

:N
on

-P
ro

fit
O

rg
an

is
at

io
n

(1
)

db
po

:O
rg

an
is

at
io

n
(1

)

db
po

:P
er

so
n

(1
)

db
po

:P
e

rs
on

F
un

ct
io

n
(1

)

db
po

:P
o

pu
la

te
dP

la
ce

 (
1)

db
po

:P
ro

gr
am

m
in

gL
an

gu
ag

e
(1

)

db
po

:S
ci

en
tis

t (
1

)

db
po

:S
of

tw
ar

e
(1

)

d
bp

o:
W

or
k

(1
)

db
po

:W
rit

te
nW

or
k

(1
)

xs
d:

do
ub

le
 (

2)

xs
d:

gY
ea

r
(2

)

xs
d:

st
rin

g
(2

)0

0.2

0.4

0.6

log10(number of results) / 10
evaluation using dw (s)
evaluation using partitioned store (s)

w
ar

g:
af

fil
ia

tio
n

(3
)

w
ar

g:
bi

rth
P

la
ce

O
f (

1)

w
ar

g:
co

nt
rib

ut
eW

or
k

(3
)

w
ar

g:
he

ad
 (

3)

w
ar

g:
pe

rs
on

F
un

ct
io

n
(3

)

w
ar

g:
pl

ac
eL

an
gu

ag
e

(3
)

w
ar

g:
re

la
te

dC
om

pa
ny

 (3
)

w
ar

g:
re

la
te

dP
er

so
n

(3
)

w
ar

g:
re

la
te

dW
or

k
(3

)

w
ar

g:
w

or
kL

an
gu

ag
e

(3
)

w
ar

g:
w

or
kR

el
at

ed
P

er
so

n
(3

)

db
po

:a
re

aT
ot

al
 (1

)

db
po

:b
irt

hP
la

ce
 (

1)

db
po

:d
ea

th
P

la
ce

 (
1)

db
po

:o
cc

up
at

io
n

(1
)

db
po

:p
op

ul
at

io
nT

ot
al

 (
1)

db
po

:s
ta

rr
in

g
(1

)

db
po

:w
rit

er
 (

1)

0.01

0.1

1

10

Figure 9: Evaluation time (s) and number of results for AnS node queries (left) and edge
queries (right).

38 x 10^6 71 x 10^6 104 x 10^6 137 x 10^6 169 x 10^6

0

50

100

150

200

250

300
dictionary size (number of triples / 10^6)
instance size (number of triples / 10^6)
time to create instance table (s)
time to create partitioned tables (s)

initial graph size (number of triples)

Figure 10: I materialization time vs. I size.

and we omitted them from the plots. The total time to materialize the instance I (1.3×107

triples) was 38 seconds.
Scalability. We created larger RDF graphs such that the size of I would be multiplied

by a factor of 2 to 5, with respect to the I obtained from the original graph G. The
corresponding I materialization time is shown in Figure 10, demonstrating linear scale-
up w.r.t. the data size.

6.3 AnQ evaluation over I
We consider a set of AnQs, each adhering to a specific query pattern. A pattern is
a combination of: (i) the number of atoms in the classifier query (denoted c), (ii) the
number of dimension variables in the classifier query (denoted v), and (iii) the number of
atoms in the measure query (denoted m). For instance, the pattern c5v4m3 designates
queries whose classifiers have 5 atoms, aggregate over 4 dimensions, and whose measure
queries have 3 atoms. We used 12 distinct patterns for a total of 1,097 queries.

The graph at the top of Figure 11 shows for each query pattern, the number of
queries in the set (in parenthesis after the pattern name), and the average, minimum and
maximum number of query results. The largest result set (for c4v3m3) is 514, 240, while
the second highest (for c1v1m3) is 160, 240. The graph at the bottom of Figure 11 shows
the average, minimum and maximum query evaluation time among the queries of each
pattern.

As can be seen in the figure, the query result size (up to hundreds of thousands) is the
most strongly correlated with the query evaluation time. The other parameters impacting

20

0

1

10

100

1,000

10,000

100,000

1,000,000

average number of results
min number of results
max number of results

0.1

1

10

100
average evaluation time (s)
min evaluation time (s)
max evaluation time (s)

Figure 11: AnQ statistics for query patterns.

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

instance table
partitioned store

ev
al

ua
tio

n
tim

e
(s

)

c1v1m1 c5v4m3

instance size (number of triples)

Figure 12: AnQ evaluation time over large datasets.

the evaluation time are the number of atoms in the classifier and measure queries, and the
number of aggregation variables. These parameters are to be expected in an in-memory
execution engine such as kdb+. Observe the moderate time increase with the main query
size metric (the number of atoms); this demonstrates quite robust performance even for
complex AnQs.

Figure 12 shows the average evaluation time for queries belonging to the sets c1v1m1
and c5v4m3 over increasing tables, using the instance triple table and the partitioned
store implementations. In both cases the evaluation time increases linearly with the size
of the dataset. The graph shows that the partitioned store brings a modest speed-up
(about 10%); for small queries, the difference is unnoticeable. Thus, without loss of
generality, in the sequel we consider only the single-table dw option.

6.4 Query reformulation

We now study the performance of AnQ evaluation through reformulation (Section 4),
through a set of 32 queries mathcing the pattern c1v1m1.

21

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

11
Q

1
2

Q
1

3
Q

1
4

Q
1

5
Q

1
6

Q
1

7
Q

1
8

Q
1

9
Q

2
0

Q
2

1
Q

2
2

Q
2

3
Q

2
4

Q
2

5
Q

2
6

Q
2

7
Q

2
8

Q
2

9
Q

3
0

Q
3

1
Q

3
20.1

1

10
reformulated – evaluation time over db (s)
evaluation time over dw (s)

number
of results

100 to 500 500 to 800 1,300 to 7,000 12,300 to 76,200 >100k

Figure 13: AnQ reformulation.

Q
1

Q
1s

1
Q

1s
2

Q
1s

3
Q

1s
4

Q
1d

1
Q

1d
2

Q
1d

3
Q

1d
4

Q
2

Q
2s

1
Q

2s
2

Q
2s

3
Q

2s
4

Q
2d

1
Q

2d
2

Q
2d

3
Q

2d
4

Q
3

Q
3s

1
Q

3s
2

Q
3s

3
Q

3s
4

Q
3d

1
Q

3d
2

Q
3d

3
Q

3d
4

0

1

2

3

4

5

6

7
log10 (number of answers)
evaluation time (s)

Figure 14: Slice and dice over AnQs.

Figure 13 shows for each query, the number of answers (under the chart), the eval-
uation time over db when reformulated and the evaluation time over I. As expected,
reformulation-based evaluation is slower, because reformulated queries have to re-do some
of the AnS materialization work. It turns out that the queries for which the difference
is largest (such as Q15, Q16 or Q19) are those whose reformulation against the AnS def-
inition have the largest numbers of atoms, one or more of which are of the form x y z.
Evaluating complex joins including those of this form (matching all dw) is expensive,
compared to evaluating them on the materialized I. However, the extra-time incurred by
query reformulation can be seen as the price to pay to avoid AnS’s instance maintenance
time upon base data updates.

6.5 OLAP operations

We now study the performance of OLAP operations on AnQ results (Section 5).
Slice and dice. In Figure 14, we consider three c5v4m3 queries: Q1 having a small

result size (455), Q2 with a medium result size (1, 251) and Q3 with a large result size
(73, 242). For each query we perform a slice (dice) by restricting the number of answers
of each of its 4 dimension variables, leading to the OLAP queries Q1s1 to Q1s4, Q1d1 to
Q1d4 and similarly for Q2 and Q3. The figure shows that the slice/dice running time is
quite strongly correlated with the result size, and is overall small (under 2 seconds in
many cases, 4 seconds for Q3 slice and dice queries having 104 results).

Drill-in and drill-out. The queries following the patterns c5v1m3, c5v2m3, c5v3m3
and c5v4m3 were chosen starting from the ones for c5v4m3 and eliminating one dimension

22

variable from the classifier (without any other change) to obtain c5v3m3; removing one
further dimension variable yielded the c5v2m3 queries etc. Recalling the definitions of
drill-in and drill-out (Section 5), it follows that the queries in c5vnm3 are drill-ins of
c5v(n+1)m3 for 1≤n≤3, and conversely, c5v(n+1)m3 result from drill-out on c5vnm3.
Their evaluation times appear in Figure 11 (1-2 seconds on average).

OLAP operations evaluated on AnQs. The OLAP operations described so far
were applied on AnQs and evaluated from scratch (against the database dw). Alter-
natively, we experimented with OLAP operations applied directly on the materialized
results of previous analytical queries. As expected, applying for instance the slice oper-
ations on Q1-Q3 in Figure 14 was faster by 1-3 orders of magnitude than evaluation on
the original graph, since the input data is much smaller (and the regular-structure AnQ
results are easier to deal with than the original heterogeneous graph).

6.6 Conclusion of the experiments
Our experiments have demonstrated the feasibility of deploying our full RDF warehousing
approach on top of a concrete system, in our case based on kdb+; thanks to the genericity
of our proposal and its reliance on standard RDF queries, any system providing a triple
store, conjunctive query evaluation, and possibly reasoning can be easily used instead.
Our experiments have demonstrated robust scalable performance when loading and sat-
urating G, building I in time linear in the input size (even though it includes complex,
many-joins node and edge queries), finally we have shown that OLAP operations in our
framework are evaluated efficiently based on the database, and extremely fast based on
already-materialized AnQs (equivalent of cubes in our setting). Our experiments have
also confirmed that AnQ evaluation is faster based on a materialized analytical schema
instance, than by reformulation against the AnS definition, as in the traditional DW
setting. While further optimizations could be certainly applied at many points (as in tra-
ditional DW platforms), our experiments confirmed the interest and good performance
of our proposed all-RDF Semantic Web warehousing approach.

7 Related Works and Discussion
Relational DWs have been thoroughly studied [17], and many efficient tools exist. Ware-
houses for Web data have been defined as repositories of interconnected XML document
and Web services [4], or as distributed knowledge bases specified in a rule-based lan-
guage [5]. In [23], a large RDF knowledge base (such as Yago [25]) is enriched with
information gathered from the Web. None of these works considered RDF analytics.

RDF(S) vocabularies (pre-defined classes and properties) have been proposed for de-
scribing relational multi- dimensional data and cubes [28, 10] in RDF; [10] also maps
OLAP operations into SPARQL queries over cubes described in the vocabulary. In con-
trast, we introduce analytical schemas and queries based on which one can define RDF
cubes over heterogeneous, semantic-rich RDF graphs; our approach is not tied to any
vocabulary. Going in the opposite direction, [19] presents a semi-automated approach
for deriving a relational DW from a Semantic Web domain ontology. In contrast, our
approach is all-RDF: the analytical schema instance is RDF, thus analytical queries can
still exploit rich RDF semantics, e.g., reasoning and joint querying of the schema and
data.

23

In the area of RDF data management, recent works tackled storage [3, 24], index-
ing [30], query processing [21], updates [22], cardinality estimations [20], materialized
views [11], and Map-Reduce based RDF processing [13, 14]; among the industrial sys-
tems, Oracle 11g provides a “Semantic Graph” extension etc. In this context, our work
is the first work to formalize RDF analytics and propose analytic schema and queries
with well-defined semantics. As we have shown, these concepts can be efficiently imple-
mented on top of a conjunctive query processing engine, or an RDF data management
system, extending their functionality and enabling users to fully take advantage of the
information comprised in their data.

Recent works have focused on graph warehousing and thus are related to our pro-
posal. The model of [31] first introduced the idea of defining the nodes and edges of
the analytical schema (“graph cube” in their terminology) through independent queries
(the aggregation applied to edges is independent of that applied to nodes); further, their
OLAP manipulations of graph cubes bear some similarity to our corresponding notions in
Section 5. However, their approach was not meant for heterogeneous graphs, and thus it
cannot handle multi-valued attributes, e.g., a movie being both a comedy and a romance;
in contrast, our models handles this naturally. Moreover, unlike our approach, their model
does not attach labels to edges, and does not consider graphs with semantics (such as
RDF graphs). Also, this approach only focuses on counting edges between various groups
of nodes, whereas our framework captures aggregation in a more general, database-style
interpretation (where one has the choice between many kinds of aggregation), yet being
rich with RDF semantics.

The work of [8] aims at extending DW and business intelligence operations to graphs.
They do not consider the semantically rich RDF model, but rather encode geo-spatial
informations: nodes are connected via paths segments, each of which has a cost related
to the distance between nodes in the graph. Their analytical schemas consist of nodes
and paths; aggregation is performed over records, which are subgraphs of the analytical
schema.We share with [8] the principle of separation between schema and data. However,
in our model edges are assigned diverse meanings, different from the discussed work where
an edge models solely a measure (an assigned cost). The analytical query definitions also
share some general principles such as the usage of path queries in an OLAP framework.
However the diverse meanings assigned to our edges enable us to define multiple measures
on which to perform aggregations, while in [8] aggregation can be done only on the path
costs. Their interpretation of roll-up operations is also very different from ours: in their
framework, a roll-up collapses neighbor nodes into one, based strictly on the proximity
criteria, e.g., collapsing several locations or cities, into a single node representing that
geographical area.

In [9], the authors consider multidimensional modeling using the Object-Oriented
paradigm. Conceptually, their complex objects and complex relationships are similar to
our AnS nodes and edges, respectively defining new entities and potential analysis axes.
While their complex relationships rely on already defined relationships between classes,
our edges are defined independently from the nodes they connect. In both works the
dimensions and facts are not static or predefined and can be selected at data cube creation
time. In [9] hierarchies are defined through two modeling concepts (attribute hierarchy
and object hierarchy) distinct from the complex relationships, while in our case hierarchies
are represented as a special type of edges.

24

The separation between grouping and aggregation present in our analytical queries is
similar to the MD-join operator introduced in [7] for relational DWs.

Finally, the recent SPARQL 1.1 language [29] includes group-by and aggregation con-
structs closely inspired from SQL. Efficient RDF data management platforms supporting
it will be ideal candidates for deploying our full-RDF analytics chain, providing analytical
schemas and queries, and navigation within RDF cubes through OLAP-style operations.

8 Conclusion
DW models and techniques have had a strong impact on the usages and usability of data.
In this work, we proposed the first approach for specifying and exploiting an RDF data
warehouse, notably by (i) defining an analytical schema that captures the information
of interest, and (ii) formalizing analytical queries (or cubes) over the AnS. Importantly,
instances of AnS are RDF graphs themselves, which allows to exploit the semantics and
rich, heterogeneous structure (e.g., jointly query the schema and the data) that make
RDF data rich and interesting.

The broader area of data analytics, related to data warehousing, albeit with a sig-
nificantly extended set of goals and methods, is the target of very active research now,
especially in the context of massively parallel Map-Reduce processing etc. Efficient meth-
ods for deploying AnSs and AnQ evaluation in such a parallel context are part of our
future work.

References

[1] [kx] white paper. kx.com/papers/KdbPLUS Whitepaper-2012-1205.pdf.

[2] OLAP council white paper. http://www.olapcouncil.org/research/resrchly.htm.

[3] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In VLDB, 2007.

[4] S. Abiteboul. Managing an XML warehouse in a P2P context. In CAiSE, 2003.

[5] S. Abiteboul, E. Antoine, and J. Stoyanovich. Viewing the web as a distributed knowledge
base. In ICDE, 2012.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[7] M. Akinde, D. Chatziantoniou, T. Johnson, and S. Kim. The MD-join: An operator for
complex OLAP. In ICDE, pages 524–533, 2001.

[8] D. Bleco and Y. Kotidis. Business intelligence on complex graph data. In EDBT/ICDT
Workshops, 2012.

[9] D. Boukraâ, O. Boussäıd, F. Bentayeb, and D. E. Zegour. A layered multidimensional
model of complex objects. In C. Salinesi, M. C. Norrie, and O. Pastor, editors, CAiSE,
volume 7908 of Lecture Notes in Computer Science, pages 498–513. Springer, 2013.

[10] L. Etcheverry and A. A. Vaisman. Enhancing OLAP analysis with web cubes. In ESWC,
2012.

[11] F. Goasdoue, K. Karanasos, J. Leblay, and I. Manolescu. View selection in Semantic Web
databases. PVLDB, 5(1), 2012.

25

[12] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In
SIGMOD, 1996.

[13] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of Large RDF Graphs.
PVLDB, 4(11), 2011.

[14] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. M. Thuraisingham. Heuristics-
Based Query Processing for Large RDF Graphs Using Cloud Computing. IEEE Trans. on
Knowl. and Data Eng., 2011.

[15] W. H. Immon. Building the Data Warehouse. Wiley, 1992.

[16] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis. Fundamentals of Data Warehouses.
Springer, 2001.

[17] C. S. Jensen, T. B. Pedersen, and C. Thomsen. Multidimensional Databases and Data
Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2010.

[18] R. Kimball and M. Ross. The Data Warehouse Toolkit. Wiley, 2002. 2nd Edition.

[19] V. Nebot and R. B. Llavori. Building data warehouses with semantic web data. Decision
Support Systems, 52(4), 2012.

[20] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estimation for
RDF queries with multiple joins. In ICDE, 2011.

[21] T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF data.
VLDB J., 19(1), 2010.

[22] T. Neumann and G. Weikum. x-RDF-3X: Fast querying, high update rates, and consistency
for RDF databases. PVLDB, 3(1), 2010.

[23] N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann, W. Yuan, and G. Weikum. Active
knowledge: dynamically enriching RDF knowledge bases by web services. In SIGMOD,
2010.

[24] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold. Column-store support
for RDF data management: not all swans are white. PVLDB, 1(2), 2008.

[25] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A large ontology from Wikipedia
and WordNet. J. Web Sem., 6(3), 2008.

[26] D. Theodoratos and T. K. Sellis. Data warehouse configuration. In VLDB, 1997.

[27] W3C. Resource description framework. http://www.w3.org/RDF/.

[28] W3C. The RDF data cube vocabulary. http://www.w3.org/TR/vocab-data-cube/, 2012.

[29] W3C. SPARQL 1.1 query language. http://www.w3.org/TR/sparql11-query/, March 2013.

[30] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for Semantic Web
data management. PVLDB, 1(1), 2008.

[31] P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing and OLAP multidimen-
sional networks. In SIGMOD, pages 853–864, 2011.

26

	Introduction
	RDF graphs and queries
	RDF graphs
	BGP queries

	RDF graph analysis
	Analytical schema and instance
	Analytical queries

	Analytical query evaluation
	OLAP RDF analytics
	Experiments
	Implementation and settings
	AnS materialization
	AnQ evaluation over I
	Query reformulation
	OLAP operations
	Conclusion of the experiments

	Related Works and Discussion
	Conclusion

