
TCIAIG VOL. X, NO. Y, MONTH YEAR 1

A Survey of Real-Time Strategy Game AI

Research and Competition in StarCraft
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Abstract—This paper presents an overview of the existing work
on AI for real-time strategy (RTS) games. Specifically, we focus
on the work around the game StarCraft, which has emerged in
the past few years as the unified test-bed for this research. We
describe the specific AI challenges posed by RTS games, and
overview the solutions that have been explored to address them.
Additionally, we also present a summary of the results of the
recent StarCraft AI competitions, describing the architectures
used by the participants. Finally, we conclude with a discussion
emphasizing which problems in the context of RTS game AI have
been solved, and which remain open.

Index Terms—Game AI, Real-Time Strategy, StarCraft, Re-
view1

I. INTRODUCTION

THE field of real-time strategy (RTS) game AI has ad-

vanced significantly since Michael Buro’s call for re-

search in this area [1]. Specially, competitions like the “ORTS

RTS Game AI Competition” (held from 2006 to 2009), the

“AIIDE StarCraft AI Competition” (held since 2010), and

the “CIG StarCraft RTS AI Competition” (held since 2011)

have motivated the exploration of many AI approaches in the

context of RTS AI. We will list and classify these approaches,

explain their strengths and weaknesses and conclude on what

is left to achieve human-level RTS AI.

Complex dynamic environments, where neither perfect nor

complete information about the current state or about the

dynamics of the environment are available, pose significant

challenges for artificial intelligence. Road traffic, finance, or

weather forecasts are examples of such large, complex, real-

life dynamic environments. RTS games can be seen as a

simplification of one such real-life environment, with simpler

dynamics in a finite and smaller world, although still complex

enough to study some of the key interesting problems like

decision making under uncertainty or real-time adversarial

planning. Finding efficient techniques for tackling these prob-

lems on RTS games can thus benefit other AI disciplines

and application domains, and also have concrete and direct

applications in the ever growing industry of video games.
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This paper aims to provide a one-stop guide on what is

the state of the art in RTS AI, with a particular emphasis

on the work done in StarCraft. It is organized as follows:

Section II introduces RTS games, in particular the game

StarCraft, and their main AI challenges. Section III reviews

the existing work on tackling these challenges in RTS games.

Section IV analyzes several current state of the art RTS game

playing agents (called bots), selected from the participants to

annual StarCraft AI competitions. Section V presents results

of the recent annual competitions held at the AIIDE and CIG

conferences and a StarCraft bot game ladder1. Section VI

compiles open questions in RTS game AI. Finally, the paper

concludes on discussions and perspectives.

II. REAL-TIME STRATEGY GAMES

Real-time Strategy (RTS) is a sub-genre of strategy games

where players need to build an economy (gathering resources

and building a base) and military power (training units and

researching technologies) in order to defeat their opponents

(destroying their army and base). From a theoretical point of

view, the main differences between RTS games and traditional

board games such as Chess are:

• They are simultaneous move games, where more than one

player can issue actions at the same time. Additionally,

these actions are durative, i.e. actions are not instanta-

neous, but take some amount of time to complete.

• RTS games are “real-time”, which actually means is that

each player has a very small amount of time to decide the

next move. Compared to Chess, where players may have

several minutes to decide the next action, in StarCraft, the

game executes at 24 frames per second, which means that

players can act as fast as every 42ms, before the game

state changes.

• Most RTS games are partially observable: players can

only see the part of the map that has been explored. This

is referred to as the fog-of-war.

• Most RTS games are non-deterministic. Some actions

have a chance of success.

• And finally, the complexity of these games, both in

terms of state space size and in terms of number of

actions available at each decision cycle is very large. For

example, the state space of Chess is typically estimated to

be around 1050, heads up no-limit Texas holdem poker

around 1080, and Go around 10170. In comparison, the

state space of StarCraft in a typical map is estimated to

1An extended tournament, which can potentially go on indefinitely.
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be many orders of magnitude larger than any of those, as

discussed in the next section.

For those reasons, standard techniques used for playing

classic board games, such as game tree search, cannot be

directly applied to solve RTS games without the definition

of some level of abstraction, or some other simplification.

Interestingly enough, humans seem to be able to deal with

the complexity of RTS games, and are still vastly superior to

computers in these types of games [2]. For those reasons, a

large spectrum of techniques have been attempted to deal with

this domain, as we will describe below. The remainder of this

section is devoted to describe StarCraft as a research testbed,

and on detailing the open challenges in RTS game AI.

A. StarCraft

StarCraft: Brood War is an immensely popular RTS game

released in 1998 by Blizzard Entertainment. StarCraft is set in

a science-fiction based universe where the player must choose

one of the three races: Terran, Protoss or Zerg. One of the

most remarkable aspects of StarCraft is that the three races

are extremely well balanced:

• Terrans provide units that are versatile and flexible giving

a balanced option between Protoss and Zergs.

• Protoss units have lengthy and expensive manufacturing

processes, but they are strong and resistant. These con-

ditions make players follow a strategy of quality over

quantity.

• Zergs, the insectoid race, units are cheap and weak. They

can be produced fast, encouraging players to overwhelm

their opponents with sheer numbers.

Figure 1 shows a screenshot of StarCraft showing a player

playing the Terran race. In order to win a StarCraft game,

players must first gather resources (minerals and Vespene gas).

As resources become available, players need to allocate them

for creating more buildings (which reinforce the economy, and

allow players to create units or unlock stronger units), research

new technologies (in order to use new unit abilities or improve

the units) and train attack units. Units must be distributed to

accomplish different tasks such as reconnaissance, defense and

attack. While performing all of those tasks, players also need

to strategically understand the geometry of the map at hand,

in order to decide where to place new buildings (concentrate

in a single area, or expand to different areas) or where to

set defensive outposts. Finally, when offensive units of two

players meet, each player must quickly maneuver each of

the units in order to fight a battle, which requires quick and

reactive control of each of the units.

A typical StarCraft map is defined as a rectangular grid,

where the width × height of the map is measured in the

number of 32 × 32 squares of pixels, also known as build

tiles. However, the resolution of walkable areas is in squares of

8×8 pixels, also known as walk tiles. The typical dimensions

for maps range from 64 × 64 to 256 × 256 build tiles. Each

player can control up to 200 units (plus an unlimited number

of buildings). Moreover, each different race contains between

30 to 35 different types of units and buildings, most of them

with a significant number of special abilities. All these factors

Fig. 1. A screenshot of StarCraft: Brood War.

together make StarCraft a significant challenge, in which

humans are still much better than computers. For instance,

in the game ladder iCCup2 where users are ranked by their

current point totals (E being the lowest possible rank, and

A+ and Olympic being the second highest and highest ranks,

respectively), the best StarCraft AI bots are ranked between D

and D+, where average amateur players are ranked between

C+ and B. For comparison, StarCraft professional players are

usually ranked between A− and A+.

From a theoretical point of view, the state space of a

StarCraft game for a given map is enormous. For example,

consider a 128× 128 map. At any given moment there might

be between 50 to 400 units in the map, each of which might

have a complex internal state (remaining energy and hit-

points, action being executed, etc.). This quickly leads to

an immense number of possible states (way beyond the size

of smaller games, such as Chess or Go). For example, just

considering the location of each unit (with 128×128 possible

positions per unit), and 400 units, gives us an initial number

of 16384400 ≈ 101685. If we add the other factors playing a

role in the game, we obtain even larger numbers.

Another way to measure the complexity of the game is by

looking at the branching factor, b, and the depth of the game,

d, as proposed in [3], with a total game complexity of bd.

In Chess, b ≈ 35 and d ≈ 80. In more complex games,

like Go, b ≈ 30 to 300, and d ≈ 150 to 200. In order

to determine the branching factor in StarCraft when an AI

plays it, we must have in mind, that the AI can issue actions

simultaneously to as many units in the game as desired. Thus,

considering that, in a typical game, a player controls between

50 to 200 units, the branching factor would be between u50

and u200, where u is the average number of actions each unit

can execute. Estimating the value of u is not easy, since the

number of actions a unit can execute is highly dependent on

the context. Let us make the following assumptions: 1) at most

16 enemy units will be in range of a friendly unit (larger values

are possible, but unlikely), 2) when an AI plays StarCraft,

it only makes sense to consider movement in the 8 cardinal

directions per unit (instead of assuming that the player can

issue a “move” command to anywhere in the map at any point

2http://www.iccup.com/StarCraft/
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in time), 3) for “build” actions, we consider that SCVs (Terran

worker units) only build in their current location (otherwise, if

they need to move, we consider that as first issuing a “move”

action, and then a “build”), and 4) let’s consider only the

Terran race. With those assumptions, units in StarCraft can

execute between 1 (units like “Supply Depots”, whose only

action is to be “idle”) to 43 actions (Terran “Ghosts”), with

typical values around 20 to 30. Now, if we have in mind

that actions have cool-down times, and thus not all units

can execute all of the actions at every frame, we can take a

conservative estimation of about 10 possible actions per unit

per game frame. This results in a conservative estimate for the

branching factor between b ∈ [1050, 10200], only considering

units (ignoring the actions buildings can execute). Now, to

compute d, we simply consider the fact that typical games

last for about 25 minutes, which results in d ≈ 36000 (25

minutes × 60 seconds × 24 frames per second).

B. Challenges in RTS Game AI

Early research in AI for RTS games [1] identified the

following six challenges:

• Resource management

• Decision making under uncertainty

• Spatial and temporal reasoning

• Collaboration (between multiple AIs)

• Opponent modeling and learning

• Adversarial real-time planning

While there has been a significant work in many, others

have been untouched (e.g. collaboration). Moreover, recent

research in this area has identified several additional research

challenges, such as how to exploit the massive amounts of

existing domain knowledge (strategies, build-orders, replays,

and so on). Below, we describe current challenges in RTS

Game AI, grouped in six main different areas.

1) Planning: As mentioned above, the size of the state

space in RTS games is much larger than that of traditional

board games such as Chess or Go. Additionally, the number

of actions that can be executed at a given instant of time is also

much larger. Thus, standard adversarial planning approaches,

such as game tree search are not directly applicable. As we

elaborate later, planning in RTS games can be seen as having

multiple levels of abstraction: at a higher level, players need

long-term planning capabilities, in order to develop a strong

economy in the game; at a low level, individual units need to

be moved in coordination to fight battles taking into account

the terrain and the opponent. Techniques that can address these

large planning problems by either sampling, or hierarchical

decomposition do not yet exist.

2) Learning: Given the difficulties in playing RTS games

by directly using adversarial planning techniques, many re-

search groups have turned attention to learning techniques.

We can distinguish three types of learning problems in RTS

games:

• Prior learning: How can we exploit available data, such

as existing replays, or information about specific maps for

learning appropriate strategies before hand? A significant

amount of work has gone in this direction.

• In-game learning: How can bots deploy online learning

techniques that allow them to improve their game play

while playing a game? These techniques might include

reinforcement learning techniques, but also opponent

modeling. The main problem again is the fact that the

state space is too large and the fact that RTS games are

partially observable.

• Inter-game learning: What can be learned from one game

that can be used to increase the chances of victory in the

next game? Some work has used simple game-theoretical

solutions to select amongst a pool of predefined strategies,

but the general problem remains unsolved.

3) Uncertainty: Adversarial planning under uncertainty in

domains of the size of RTS games is still an unsolved chal-

lenge. In RTS games, there are two main kinds of uncertainty.

First, the game is partially observable, and players cannot

observe the whole game map (like in Chess), but need to

scout in order to see what the opponent is doing. This type of

uncertainty can be lowered by good scouting, and knowledge

representation (to infer what is possible given what has been

seen). Second, there is also uncertainty arising from the fact

that the games are adversarial, and a player cannot predict

the actions that the opponent(s) will execute. For this type

of uncertainty, the AI, as the human player, can only build a

sensible model of what the opponent is likely to do.

4) Spatial and Temporal Reasoning: Spatial reasoning is

related to each aspect of terrain exploitation. It is involved

in tasks such as building placement or base expansion. In

the former, the player needs to carefully consider building

positioning into its own bases to both protect them by creating

a wall against invasions and to avoid bad configurations where

large units could be stuck. In base expansion, the player has to

choose good available locations to build a new base, regarding

its own position and opponent’s bases. Finally, spatial reason-

ing is key to tactical reasoning: players need to decide where

to place units for battle, favoring, for instance, engagements

when the opponent’s units are lead into a bottleneck.

Another example of spatial reasoning in StarCraft is that

it is always an advantage to have own units on high ground

while the enemy is on low ground, since units on low ground

have no vision onto the high ground.

Analogously, temporal reasoning is key in tactical or strate-

gic reasoning. For example, timing attacks and retreats to gain

an advantage. At a higher strategic level, players need to rea-

son about when to perform long-term impact economic actions

such as upgrades, building construction, strategy switching,

etc. all taking into account that the effects of these actions are

not immediate, but longer term.

5) Domain Knowledge Exploitation: In traditional board

games such as Chess, researchers have exploited the large

amounts of existing domain knowledge to create good evalu-

ation functions to be used by alpha-beta search algorithms,

extensive opening books, or end-game tables. In the case

of RTS games, it is still unclear how the significantly large

amount of domain knowledge (in the forms or strategy guides,

replays, etc.) can be exploited by bots. Most work in this

area has focused on two main directions: on the one hand,

researchers are finding ways in which to hard-code existing
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strategies into bots, so that bots only need to decide which

strategies to deploy, instead of having to solve the complete

problem of deciding which actions to execute by each individ-

ual unit at each time step. One the other hand, large datasets

of replays have been created [4], [5], from where strategies,

trends or plans have been tried to learn. However, StarCraft

games are quite complex, and how to automatically learn from

such datasets is still an open problem.

6) Task Decomposition: For all the previous reasons, most

existing approaches to play games as StarCraft work by

decomposing the problem of playing an RTS game into a

collection of smaller problems, to be solved independently.

Specifically, a common subdivision is:

• Strategy: corresponds to the high-level decision making

process. This is the highest level of abstraction for the

game comprehension. Finding an efficient strategy or

counter-strategy against a given opponent is key in RTS

games. It concerns the whole set of units and buildings

a player owns.

• Tactics: are the implementation of the current strategy.

It implies army and building positioning, movements,

timing, and so on. Tactics concerns a group of units.

• Reactive control: is the implementation of tactics. This

consists in moving, targeting, firing, fleeing, hit-and-

run techniques (also knows as “kiting”) during battle.

Reactive control focuses on a specific unit.

• Terrain analysis: consists in the analysis of regions com-

posing the map: choke-points, minerals and gas emplace-

ments, low and high walkable grounds, islands, etc.

• Intelligence gathering: corresponds to information col-

lected about the opponent. Because of the fog-of-war,

players must regularly send scouts to localize and spy

enemy bases.

In comparison, when humans play StarCraft, they typically

divide their decision making in a very different way. The

StarCraft community typically talks about two tasks:

• Micro: is the ability to control units individually (roughly

corresponding to Reactive Control above, and part of

Tactics). A good micro player usually keeps their units

alive over a longer period of time.

• Macro: is the ability to produce units and to expand

at the appropriate times to keep your production of

units flowing (roughly corresponding to everything but

Reactive Control and part of Tactics above). A good

macro player usually has the larger army.

The reader can find a good presentation of task decom-

position for AIs playing RTS in [6]. Although the previous

task decomposition is common, a significant challenge is on

designing architectures so that the individual AI techniques

that address each of those tasks can communicate and effec-

tively work together, resolving conflicts, prioritizing resources

between them, etc. Section IV provides an overview of the

task decompositions that state-of-the-art bots use. Moreover,

we would like to point out that the task decomposition above

is not the only possible approach. Some systems, such as

IMAI [7], divide gameplay into much smaller tasks, which are

then assigned resources depending on the expected benefits of
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Fig. 2. RTS AI levels of abstraction and theirs properties: uncertainty (coming
from partial observation and from not knowing the intentions of the opponent)
is higher for higher abstraction levels. Timings on the right correspond to an
estimate of the duration of a behavior switch in StarCraft. Spatial and temporal
reasoning are indicated for the levels at which greedy solutions are not enough.

achieving each task.

III. EXISTING WORK ON RTS GAME AI

Systems that play RTS games need to address most, if

not all, the aforementioned problems together. Therefore, it

is hard to classify existing work on RTS AI as addressing the

different problems above. For that reason, we will divide it

according to three levels of abstraction: strategy (which loosely

corresponds to “macro”), tactics and reactive control (which

loosely corresponds to “micro”).

Figure 2 graphically illustrates how strategy, tactics and

reactive control are three points in a continuum scale where

strategy corresponds to decisions making processes that affect

long spans of time (several minutes in the case of StarCraft),

reactive control corresponds to low-level second-by-second

decisions, and tactics sit in the middle. Also, strategic deci-

sions reason about the whole game at once, whereas tactical

or reactive control decisions are localized, and affect only

specific groups of units. Typically, strategic decisions constrain

future tactical decisions, which in turn condition reactive

control. Moreover, information gathered while performing

reactive control, can cause reconsideration of the tactics being

employed; which could trigger further strategic reasoning.

Following this idea, we consider strategy to be everything

related to the technology trees, build-order3, upgrades, and

army composition. It is the most deliberative level, as a player

selects and performs a strategy with future stances (aggressive,

defensive, economy, technology) and tactics in mind. We

consider tactics to be everything related to confrontations

between groups of units. Tactical reasoning involves both

spatial (exploiting the terrain) and temporal (army movements)

reasoning, constrained on the possible types of attacks by the

army composition of the player and their opponent. Finally,

reactive control describes how the player controls individual

units to maximize their efficiency in real-time. The main

difference between tactics and reactive control is that tactical

3The build-order is the specific sequence in which buildings of different
types will be constructed at the beginning of a game, and completely
determines the long-term strategy of a player.
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reasoning typically involves some sort of planning ahead for

some short spans of time, whereas reactive control involves

no planning ahead whatsoever.

For example, after starting a game, a player might decide

to use a rushing strategy (which involves quickly building an

army and sending it to attack as early as possible in the game);

then, when performing the attack use a surrounding tactic,

where the player tries to surround the enemy cutting potential

escape routes; finally, while executing the surrounding tactic,

the player might decide to use reactive control techniques that

command individual units to perform repeated attack and flee

movements, to maximize the efficiency of each of the units

being used in the attack.

A. Strategy

Strategic decision making in real-time domains is still an

open problem. In the context of RTS games is has been

addressed using many AI techniques, like hard-coded ap-

proaches, planning-based approaches, or machine learning-

based approaches. We cover each of these approaches in turn.

Hard-coded approaches have been extensively used in com-

mercial RTS games. The most common ones use finite state

machines (FSM) [8] in order to let the AI author hard-code

the strategy that the AI will employ. The idea behind FSMs is

to decompose the AI behavior into easily manageable states,

such as “attacking”, “gathering resources” or “repairing” and

establish the conditions that trigger transitions between them.

Commercial approaches also include Hierarchical FSMs, in

which FSMs are composed hierarchically. These hard-coded

approaches have achieved a significant amount of success, and,

as we will discuss later in Section IV, have also been used

in many academic RTS AI research systems. However, these

hard-coded approaches struggle to encode dynamic, adaptive

behaviors, and are easily exploitable by adaptive opponents.

Approaches using planning techniques have also been ex-

plored in the literature. For example Ontañón et al. [9]

explored the use of real-time case-based planning (CBP) in

the domain of Wargus (a Warcraft II clone). In their work,

they used human demonstration to learn plans, which are then

composed at run-time in order to form full-fledges strategies

to play the game. In [10] they improve over their previous

CBP approach by using situation assessment for improving the

quality and speed of plan retrieval. Hierarchical Task-Network

(HTN) planning has also been explored with some success

in the context of simpler first-person shooter games [11].

Planning approaches offer more adaptivity of the AI strategy

compared to hard-coded approaches. However, the real-time

constraints of RTS games limit the planning approaches that

can be applied, HTN and case-based planning being the only

ones explored so far. Moreover, none of these approaches

addresses any timing or scheduling issues, which are key in

RTS games. On notable exception is the work of Churchill

and Buro [12], who used planning in order to construct its

economic build-orders, taking into account timing constraints

of the different actions.

Concerning machine learning-based approaches, Weber and

Mateas [4] proposed a data mining approach to strategy pre-

diction and performed supervised learning on labeled StarCraft

replays. Dereszynski et al. [13] used Hidden Markov Models

(HMM) to learn the transition probabilities of sequences

of building construction orders and kept the most probable

ones to produce probabilistic behavior models (in StarCraft).

Synnaeve and Bessière [14] used the dataset of [4] and

presented a Bayesian semi-supervised model to learn from

replays and predict openings (early game strategies) from

StarCraft replays. The openings are labeled by EM clustering

considering appropriate features. Then, in [15], they presented

an unsupervised learning Bayesian model for tech-tree pre-

diction, still using replays. Finally, evolutionary approaches

to determine priorities of high level tasks were explored by

Young and Hawes in their QUORUM system [16], showing

improvement over static priorities.

Also falling into the machine-learning category, a significant

group of researchers has explored case-based reasoning (CBR)

[17] approaches for strategic decision making. For example

Aha et al. [18] used CBR to perform dynamic plan retrieval

in the Wargus domain. Hsieh and Sun [19] based their work

on Aha et al.’s CBR model [18] and used StarCraft replays

to construct states and building sequences (“build orders”).

Schadd et al. [20] applied a CBR approach to opponent mod-

eling through hierarchically structured models of the opponent

behavior and they applied their work to the Spring RTS game

(a “Total Annihilation” clone). Jaidee et al. [21] study the

use of CBR for automatic goal selection, while playing an

RTS game. These goals will then determine which Q-tables

to be used in a reinforcement learning framework. Finally,

Čertický et al. [22] used CBR to build their army, based on

the opponent’s army composition, and they pointed out on the

importance of proper scouting for better results.

One final consideration concerning strategy is that RTS

games are typically partially observable. Games like StarCraft

implement the “fog-of-war” idea, which basically means that

a player can only see the areas of the map close to her

own units. Areas of the map away from the field of view

of individual units are not observable. Players need to scout

in order to obtain information about the opponent’s strategy.

The size of the state space in StarCraft prevents solutions

based on POMDPs from being directly applicable, and very

few of the previous approaches deal with this problem. Much

work in RTS game AI assumes perfect information all the

time. For example, in the case of commercial games, most

AI implementations cheat, since the AI can see the complete

game map at all times, while the human player does not. In

order to make the human player believe the AI of these games

does not cheat, sometimes they simulate some scouting tasks

as Bob Fitch described in his AIIDE 2011 keynote for the

WarCraft and StarCraft game series. Even if the StarCraft

AI competition enforces fog-of-war, which means that bots

are forced to work under partial information, little published

research exists on this topic. A notable exception is the work

of Weber et al. [23], who used a particle model with a linear

trajectory update to track opponent units under fog-of-war in

StarCraft. They also produced tactical goals through reactive

planning and goal-driven autonomy [24], [25], finding the

more relevant goal(s) to spawn in unforeseen situations.



TCIAIG VOL. X, NO. Y, MONTH YEAR 6

B. Tactics

Tactical reasoning involves reasoning about the different

abilities of the units in a group and about the environment

(terrain) and positions of the different groups of units in order

to gain military advantage in battles. For example, it would

be a very bad tactical decision to send fast, invisible or flying

units (typically expensive) in the first line of fire against slower

heavier units, since they will be wiped out fast. We will divide

the work on tactical reasoning in two parts: terrain analysis and

decision making.

Terrain analysis supplies the AI with structured information

about the map in order to help making decisions. This analysis

is usually performed off-line, in order to save CPU time

during the game. For example, Pottinger [26] described the

BANG engine implemented by Ensemble Studios for the game

Age of Empires II. This engine provides terrain analysis

functionalities to the game using influence maps and areas with

connectivity information. Forbus et al. [27] showed the impor-

tance to have qualitative spatial information for wargames, for

which they used geometric and pathfinding analysis. Hale et

al. [28] presented a 2D geometric navigation mesh generation

method from expanding convex regions from seeds. Finally,

Perkins [29] applied Voronoi decomposition (then pruning) to

detect regions and relevant choke points in RTS maps. This

approach is implemented for StarCraft in the BWTA4 library,

used by most state of the art StarCraft bots.

Walling is the act of intentionally placing buildings at the

entrance of your base to block the path and to prevent the

opponent’s units from getting inside. This technique is used

by human StarCraft players to survive early aggression and

earn time to train more units. Čertický solved this constraint

satisfaction problem using Answer Set Programming (ASP)

[30].

Concerning tactical decision making, many different ap-

proaches have been explored such as machine learning or

game tree search. Hladky and Bulitko [31] benchmarked

hidden semi-Markov models (HSMM) and particle filters for

unit tracking. Although they used first-person shooter (FPS)

games for their experimentation, the results apply to RTS

games as well. They showed that the accuracy of occupancy

maps was improved using movement models (learned from

the player behavior) in HSMM. Kabanza et al. [32] improve

the probabilistic hostile agent task tracker (PHATT [33], a

simulated HMM for plan recognition) by encoding strategies

as HTN, used for plan and intent recognition to find tactical

opportunities. Sharma et al. [34] combined CBR and reinforce-

ment learning to enable reuse of tactical plan components.

Cadena and Garrido [35] used fuzzy CBR (fuzzy case match-

ing) for strategic and tactical planning. [36] combined space

abstraction into regions from [29] and tactical-decision making

by assigning scores (economical, defenses, etc.) to regions and

looking for their correspondences to tactical moves (attacks)

in pro-gamers replays. Finally, Miles [37] created the idea of

IMTrees, a tree where each leaf node is an influence map,

and each intermediate node is a combination operation (sum,

multiplication); Miles used evolutionary algorithms to learn

4http://code.google.com/p/bwta/

IMTrees for each strategic decision in the game involving

spatial reasoning by combining a set of basic influence maps.

Game tree search techniques have also been explored for

tactical decision making. Churchill and Buro [38] presented

the ABCD algorithm (Alpha-Beta Considering Durations), a

game tree search algorithm for tactical battles in RTS games.

Chung et al. [39] applied Monte-Carlo planning to a capture-

the-flag version of Open RTS. Balla and Fern [40] applied

the UCT algorithm (a Monte Carlo Tree Search algorithm) to

tactical assault planning in Wargus. To make game tree search

applicable at this level, abstract game state representations are

used in order to reduce the complexity. Also, abstractions, or

simplifications about the set of possible actions to execute in

a given game state need to be used.

Additionally, scouting is equally important in tactical de-

cision making as in strategic decision making. However, as

mentioned earlier, very little work has been done in this

respect, being that of Weber et al. [23] the only exception.

All previous approaches, including all game tree search ones,

assume complete information.

C. Reactive Control

Reactive control aims at maximizing the effectiveness of

units, including simultaneous control of units of different types

in complex battles on heterogeneous terrain.

Potential fields and influence maps have been found to

be useful techniques for reactive decision making. Some

uses of potential fields in RTS games are: avoiding obsta-

cles (navigation), avoiding opponent fire [41], or staying at

maximum shooting distance [42]. Potential fields have also

been combined with A* path-finding to avoid local traps

[43]. Hagelbäck and Johansson [44] presented a multi-agent

potential fields based bot able to deal with fog-of-war in

the Tankbattle game. Avery et al. [45] and Smith et al.

[46] co-evolved influence map trees for spatial reasoning in

RTS games. Danielsiek et al. [47] used influence maps to

achieve intelligent squad movement to flank the opponent in

a RTS game. Despite their success, a drawback for potential

field-based techniques is the large number of parameters that

has to be tuned in order to achieve the desired behavior.

Approaches for automatically learning such parameters have

been explored, for example, using reinforcement learning [48],

or self-organizing-maps (SOM) [49]. We would like to note

that potential fields are a reactive control technique, and as

such, they do not perform any form of lookahead. As a

consequence, these techniques are prone to make units stuck

in local maxima.

There has been a significant amount of work on using ma-

chine learning techniques for the problem of reactive control.

Bayesian modeling has been applied to inverse fusion of the

sensory inputs of the units [50], which subsumes potential

fields, allowing for integration of tactical goals directly in

micro-management.

Additionally, there have been some interesting uses of

reinforcement learning (RL) [51]: Wender and Watson [52]

evaluated the different major RL algorithms for (decentral-

ized) micro-management, which perform all equally. Marthi
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et al. [53] employ concurrent hierarchical Q-learning (units

Q-functions are combined at the group level) RL to efficiently

control units in a “one robot with multiple effectors” fashion.

Madeira et al. [54] advocate the use of prior domain knowl-

edge to allow faster RL learning and applied their work on a

turn-based strategy game. This is because the action space to

explore is gigantic for real game setups. It requires exploiting

the existing structure of the game in a partial program (or a

partial Markov decision process) and a shape function (or a

heuristic) [53]. Another approach has been proposed by Jaide

and Muñoz-Avila [55] through learning just one Q-function for

each unit type, in order to cut down the search space. Other

approaches that aim at learning the parameters of an underly-

ing model have also been explored. For example Ponsen and

Spronck [56] used evolutionary learning techniques, but face

the same problem of dimensionality. For example, evolutionary

optimization by simulating fights can easily be adapted to

any parameter-dependent micro-management control model,

as shown by [57] which optimizes an AIIDE 2010 micro-

management competition bot.

Finally, approaches based on game tree search are recently

being explored for micro-management. Churchill et al. [58]

presented a variant of alpha-beta search capable of dealing

with simultaneous moves and durative actions, which could

handle reactive control for situations with up to eight versus

eight units.

Other research falling into reactive control has been per-

formed in the field of cognitive science, where Wintermute et

al. [59] have explored human-like attention models (with units

grouping and vision of a unique screen location) for reactive

control.

Finally, although pathfinding does not fall under our previ-

ous definition of reactive control, we include it in this section,

since it is typically performed as a low-level service, not part

of either tactical nor strategical reasoning (although there are

some exceptions, like the tactical pathfinding of Danielsiek et

al. [47]). The most common pathfinding algorithm is A*, but

its big problem is CPU time and memory consumption, hard

to satisfy in a complex, dynamic, real-time environment with

large numbers of units. Even if specialized algorithms, such

as D*-Lite [60] exist, it is most common to use A* combined

with a map simplification technique that generates a simpler

navigation graph to be used for pathfinding. An example of

such technique is Triangulation Reduction A*, that computes

polygonal triangulations on a grid-based map [61]. Consider-

ing movement for groups of units, rather then individual units,

techniques such as steering of flocking behaviors [62] can be

used on top of a path-finding algorithm in order to make whole

groups of units follow a given path. In recent commercial RTS

games like StarCraft 2 or Supreme Commander 2, flocking-

like behaviors are inspired of continuum crowds (“flow field”)

[63]. A comprehensive review about (grid-based) pathfinding

was recently done by Sturtevant [64].

D. Holistic Approaches

Holistic approaches to address RTS AI attempt to address

the whole problem using a single unified method. To the

best of our knowledge, with a few exceptions, such as the

Darmok system [65] (which uses a combination of case-based

reasoning and learning from demonstration) or ALisp [53],

there has not been much work in this direction. The main

reason is that the complexity of RTS games is too large, and

approaches that decompose the problem into smaller, separate,

problems, achieve better results in practice. However, holistic

approaches, based, for example, on Monte Carlo Tree Search,

have only been explored in the context of smaller-scale RTS

games [66], but techniques that scale up to large RTS games

as StarCraft are still not available.

A related problem is that of integrating reasoning at multi-

ple levels of abstraction. Molineaux et al. [67] showed that

the difficulty of working with multi-scale goals and plans

can be handled directly by case-based reasoning (CBR), via

an integrated RL/CBR algorithm using continuous models.

Reactive planning [24], a decompositional planning similar

to hierarchical task networks [11], allows for plans to be

changed at different granularity levels and so for multi-scale

(hierarchical) goals integration of low-level control. Synnaeve

and Bessière [50] achieve hierarchical goals (coming from

tactical decisions) integration through the addition of another

sensory input corresponding to the goal’s objective.

IV. STATE OF THE ART BOTS FOR STARCRAFT

Thanks to the recent organization of international game AI

competitions focused around the popular StarCraft game (see

Section V), several groups have been working on integrating

many of the techniques described in the previous section into

complete “bots”, capable of playing complete StarCraft games.

In this section we will overview some of the currently available

top bots.

Playing an RTS game involves dealing with all the problems

described above. A few approaches, like CAT [18], Darmok

[65] or ALisp [53] try to deal with the problem in a monolithic

manner, by using a single AI technique. However, none of

those systems aims at achieving near human performance. In

order to achieve human-level performance, RTS AI designers

use a lot of domain knowledge in order to divide the task of

playing the game into a collection of sub-problems, which can

be dealt-with using individual AI techniques.

Figure 3 shows some representative examples of the archi-

tectures used by different bots in the AIIDE and CIG StarCraft

AI competitions (see Section V): BroodwarBotQ [50], Nova

[41], UAlbertaBot [12], Skynet, SPAR, AIUR, and BTHAI

[43]. Each box represents an individual module with a clearly

defined task (only modules with a black background can send

actions directly to StarCraft). Dashed arrows represent data

flow, and solid arrows represent control (when a module can

command another module to perform some task). For example,

we can see how SPAR is divided in two sets of modules:

intelligence and decision making. Intelligence in SPAR has

three modules dedicated to analyze the current situation of

the game. Decision making in SPAR is done through four

hierarchically organized modules, with the higher-level mod-

ule (strategic decision) issuing commands to the next module

(tactical decision), which sends commands to the next module
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Fig. 3. Architecture of 7 StarCraft bots obtained by analyzing their source code. Modules with black background sent commands directly to StarCraft,
dashed arrows represent data flow, and solid arrows represent control.

(action implementation), and so on. Only the two lower-level

modules can send actions directly to StarCraft.

On the other hand, bots such as Nova or BroodwarBotQ

(BBQ) only use a hierarchical organization for combat (con-

trolling the attack units), but use a decentralized organization

for the rest of the bot. In Nova and BBQ, there is a collection

of modules that control different aspects of the game (workers,

production, construction, etc.). These modules can all send

actions directly to StarCraft. In Nova those modules coordinate

mostly through writing data in a shared blackboard, and in

BBQ they coordinate only when they have to use a shared

resource (unit) by means of an arbitrator: a bidding market

and broker for settling units control, military and civilian

groups/task forces bid for units proportionally to their use-

fulness and the task importance.

By analyzing the structure of these bots, we can see that

there are two main tools being used in these integration

architectures:

• Abstraction: complex tasks can be formulated at different

levels of abstraction. For example, playing an RTS game

can be seen as issuing individual low-level actions to each

of the units in the game, or at a higher level, it can be seen

as deploying a specific strategy (e.g. a “BBS strategy”, or

a “Reaver Drop” strategy). Some bots, reason at multiple

levels of abstraction at the same time, making the task

of playing StarCraft simpler. Assuming that each module

in the architecture of a bot has a goal and determines

some actions to achieve that goal, the actions determined

by higher-level modules are considered as the goals of

the lower level modules. In this way, each module can

focus on reasoning at only one level of abstraction, thus,

making the problem easier.

• Divide-and-conquer: playing a complex RTS, such as

StarCraft, requires performing many conceptually differ-

ent tasks, such as gathering resources, attacking, placing

buildings, etc. Assuming each of these tasks can be per-

formed relatively independently and without interference,

we can have one module focusing on each of the tasks

independently, thus making the problem easier.

If we imagine the different tasks to perform in a complex

RTS game in a two-dimensional plane, where the vertical axis

represents abstraction, and the horizontal axis represents the

different aspects of the game (combat, resource gathering,

etc.), abstraction can be seen as dividing the space with

horizontal lines, whereas divide-and-conquer divides the space

using vertical lines.

Different bots use different combinations of these two tools.

Looking back at Figure 3, we can see the following use of

abstraction and divide-in-conquer in the bots:

• BroodwarBotQ5: uses abstraction for combat, and divide-

and-conquer for economy and intelligence gathering. To

avoid conflicts between modules (since the individual

5http://github.com/SnippyHolloW/BroodwarBotQ
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tasks of each of the modules are not completely inde-

pendent), BBQ uses an arbitrator.

• Nova6: is similar in design as BroodwarBotQ, and uses

abstraction for combat, and divide-and-conquer for econ-

omy. The differences are that Nova does not have an

arbitrator to resolve conflicts, but has a higher-level

module (strategy manager), which posts information to

the blackboard that the rest of modules follow (thus,

making use of abstraction).

• UAlbertaBot7: also uses abstraction in combat like the

previous two bots. But it also uses it in economy: as

can be seen, the production manager sends commands

to the building manager, who is in charge of producing

the buildings. This bot also uses divide-and-conquer, and

tasks like scouting and resource gathering are managed

by separate, independent modules.

• Skynet8: makes extensive use of both abstraction and

divide-and-conquer. We can see a high level module

that issues commands to a series of tactics modules.

The collection of tactic modules queue tasks (that are

analogous to the abstract actions used in SPAR). Each

different task has a specific low level module that knows

how to execute it. Thus, Skynet uses a 3 layered abstrac-

tion hierarchy, and uses divide-and-conquer in all levels

except the highest.

• SPAR9: only uses abstraction. Its high-level module deter-

mines the strategy to use, and the tactical decision module

divides it into a collection of abstract actions, that are

executed by the lower-level modules.

• AIUR10: is mainly divide-and-conquer oriented, with a

slight abstraction on economy due to a SpendManager

deciding how to spend and share resources among Base,

Production and Construction Managers. At the beginning

of a game, the MoodManager initializes a “mood” which

will influence both tactics and strategy. Combat is divided

into three independent managers: the Defense Manager,

controlling military units when there is nothing special,

the Under Attack Manager, activated when the opponent

is attacking our bases, and the Army Manager, taking

control of units when it is time to attack, following a

timing given by the current mood. This bot does not

manage however any kind of reactive controls so far.

• BTHAI11: uses a two-tier abstraction hierarchy, where a

collection of high-level modules command a collection

of lower-level agents in charge of each of the units. At

the high-level, BTHAI uses divide-and-conquer, having

multiple high-level modules issuing commands to the

lower-level units.

Additionally, except for BTHAI, all other agents use divide-

and-conquer at a higher-level bot design and divide all the

modules into two or three categories: intelligence gathering

and decision making (sometimes divided into combat and

6http://nova.wolfwork.com/
7http://code.google.com/p/ualbertabot/
8http://code.google.com/p/skynetbot/
9http://www.planiart.usherbrooke.ca/projects/spar/
10http://code.google.com/p/aiurproject/
11http://code.google.com/p/bthai/

economy).

Some bots using divide-and-conquer, assume that each of

the modules can act independently and that their actions

can be executed without interference. BBQ, UAlbertaBot

and AIUR, however use an arbitrator (Game Commander’

in UAlbertaBot) that makes sure that modules do not send

contradictory orders to the same unit. However, very little

bots handle the problem of how to coordinate resource usage

amongst modules, for instance BTHAI uses a first-come-first-

serve policy for spending resources, the first module that

requests resources is the one that gets them. Nova and Skynet

are exceptions, and implement some rudimentary prioritization

based on the high level strategy. Following available resources

and timing, AIUR’s Spend Manager orders Base, Production

and Construction Managers what they have to build/produce.

It also orders to start tech research and upgrades. The idea

here is not to let the different managers allocate the resources

they want, but to do the opposite, that is: finding how the AI

can spend the available money.

One interesting aspect of the seven bots described above

is that, while all of them (except AIUR) are reactive at the

lower level (reactive control), most if not all of them, are

scripted at the highest level of abstraction. BTHAI reads

build and squad formations from a predefined script, Nova’s

Strategy Manager is a predefined finite-state machine, BBQ’s

construction manager reads the build order from a prede-

fined script, and Skynet’s BuildOrder Manager is basically

a predefined script. Such scripts describe the strategy that the

bots will use, however, such strategy is always fixed. One

could see this pre-scripting as if each bot defined a “high-

level programming language” to describe StarCraft strategies,

and the bots themselves are just interpreters of such strategy.

Compared to current approaches for Chess or Go, this scripting

seems a rigid and inflexible, but responds to the much higher

complexity of the StarCraft game. An interesting exception

to that is UAlbertaBot, which uses a search algorithm in

the Production Manager to find near-optimal build orders.

Another interesting case is AIUR, that uses a Mood Manager

to randomly pick a mood among six (cheese, rush, aggressive,

defensive, macro, fast expand), which will influence the build

order, strategy and tactics.

In conclusion, we can see that there are two basic tools

that can be used in an integration architecture: abstraction

and divide-and-conquer, which are widely used by the existing

StarCraft bots. For space reasons, we do not include an ex-

haustive comparison of the architectures of all the participating

bots. Some other bots have been documented by their authors,

such as SCAIL [68] or QUORUM [16]. Let us now focus on

their performance.

V. RECENT STARCRAFT AI COMPETITIONS

This section reviews the results of the recent international

competitions on AI for StarCraft. These competitions, typi-

cally co-located with scientific conferences, have been possible

thanks to the existence of the Brood War Application Program-

ming Interface (BWAPI)12, which enables replacing the human

12http://code.google.com/p/bwapi/
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player interface with C++ code. The following subsections

summarize the results of all the StarCraft AI competitions held

at the AIIDE (Artificial Intelligence for Interactive Digital En-

tertainment) and CIG (Computational Intelligence in Games)

conferences during the past years. Additionally we analyze the

statistics from the StarCraft Bot Ladder, where the best bots

play against each other continuously over time.

A. AIIDE

Started in 2010, the AIIDE StarCraft AI Competition13

is the most well known and longest running StarCraft AI

Competition in the world. Each year, AI bots are submitted by

competitors to do battle within the retail version of StarCraft:

Brood War, with prizes supplied by Blizzard Entertainment.

The first competition in 2010 was organized and run by Ben

Weber in the Expressive Intelligence Studio at University of

California, Santa Cruz14. 26 total submissions were received

from around the world. As this was the first year of the

competition, and little infrastructure had been created, each

game of the tournament was run manually on two laptop

computers and monitored by hand to record the results. Also,

no persistent data was kept for bots to learn about opponents

between matches.

The 2010 competition had 4 different tournament categories

in which to compete. Tournament 1 was a flat-terrain unit

micro-management battle consisting of four separate unit

composition games. Of the six competitors, FreSCBot won

the competition with Sherbrooke coming in 2nd place. Tour-

nament 2 was another micro-focused game with non-trivial

terrain. Two competitors submitted for this category, with

FreSCBot once again coming in 1st by beating Sherbrooke.

Tournament 3 was a tech-limited StarCraft game on a single

known map with no fog-of-war enforced. Players were only

allowed to choose the Protoss race, with no late game units

allowed. 8 bots faced off in this double-elimination tournament

with MimicBot taking first place over Botnik in the final. As

this was a perfect information variant of StarCraft, MimicBot

adopted a strategy of “mimic its opponent’s build order,

gaining an economic advantage whenever possible” which

worked quite well.

Tournament 4 was the complete game of StarCraft: Brood

War with fog-of-war enforced. The tournament was run with

a random pairing double-elimination format with each match

being best of 5 games. Competitors could play as any of the

three races, with the only limitations in gameplay being those

that were considered “cheating” in the StarCraft community. A

map pool of 5 well-known professional maps were announced

to competitors in advance, with a random map being chosen

for each game.

Results are shown in Table I. The team that won was Over-

mind15, from University of California, Berkeley. Using the

Zerg race, their strategy was to defend early aggression with

zergling units while amassing mutalisk units, which they used

to contain and eventually defeat their opponents. The mutalisk

13http://www.StarCraftAICompetition.com
14http://eis.ucsc.edu/StarCraftAICompetition
15http://overmind.cs.berkeley.edu

TABLE I
RANKING OF THE THREE BEST BOTS OF THE AIIDE 2010 COMPETITION

Position Bot

1 Overmind
2 Krasi0
3 Chronos

is a very fast and agile flying unit which is able to attack

while moving with no drawback, which makes them quite a

powerful unit when controlled by a computer. Overmind used a

potential-field based micro-management system to guide their

mutalisks, which led them to victory. Krasi0 came in 2nd

place with a standard defensive Terran opening strategy that

transitioned into “mech” play in the late game.

In 2011 the University of Alberta hosted the competition,

with organization by Michael Buro and David Churchill16.

Due to a lack of entrants in tournament categories 1-3 in

the 2010 competition, it was decided that only the full game

category would be played in the 2011 competition. Another

important change in the 2011 competition was the introduction

of automated tournament-managing software running StarCraft

games simultaneously on 20 computers, allowing a total of

1170 games to be played in far less time than the 108 games

of the 2010 competition. This increase in games played also

allowed the tournament to switch to a round-robin format,

eliminating the “luck” factor of the pairings inherent in bracket

style tournaments. The bot that achieved the highest win

percentage over the course of the competition would be

determined the winner. Also, the competition became open-

source, in an effort not only to prevent possible cheating, but to

promote healthy competition in future tournaments by giving

newcomers and easier entry point by basing their design off

of previous bots.

In the end, Skynet won the competition with its solid Protoss

play (results are summarized in Table II). The bot executed

one of a small set of strategies randomly at the start of the

match based on the map and the race of the opponent. Skynet

would then amass a medium to large sized army and expand

before moving out to attack. Good use of Dragoon (powerful

ranged ground unit with clumsy movement) range and kiting

micro-management allowed it to hold off the early aggression

of other bots such as UAlbertaBot, which came in 2nd.

UAlbertaBot used an early zealot-rush strategy to take

advantage of the power of early game Protoss units. It would

send out the first zealots that were made and immediately

attack the enemy base, using a unit counting heuristic to

determine whether or retreat or keep pushing. Of note is that

16https://skatgame.net/mburo/sc2011/

TABLE II
RESULTS OF THE FIVE BEST BOTS OF THE AIIDE 2011 COMPETITION

Position Bot Win %

1 Skynet 88.9%
2 UAlbertaBot 79.4%
3 AIUR 70.3%
4 ItayUndermind 65.8%
5 EISBot 60.6%
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Fig. 4. Evolution of the win percentage of each bot participating in the
AIIDE 2012 competition

UAlbertaBot used an online planning algorithm to construct

all of its economic build-orders [12], as no hard-coded build

orders were used.

AIUR also chose Protoss, with a strategy that was in

between Skynet and UAlbertaBot in terms of attack timings.

At that time, AIUR chose one mood among five (leading to

slightly different strategies and tactics) at the beginning of a

game and kept it until the end. These five moods were:

• Rush: where the bot tries early attacks, and have good

probabilities to send the two or three first Zealots (basic

contact attack ground unit) to harass the opponent.

• Aggressive: where we have less chance to perform ha-

rasses with the first Zealots, and the first attack is usually

a bit delayed with regard to the Rush mood.

• Macro: where the AI do not try any early attacks and

focus a bit more on its economy before attacking.

• Defense: where the AI “turtles” and wait to have a

consequent army before running an attack.

• Fast expand: where the first building constructed it a base

expansion, for a very economical-oriented game.

Notice that build orders are not fully hard-coded since they

can be altered by AIUR’s Spend Manager.

Of note in these results was that a rock-paper-scissors effect

happened among the top 3 finishers. Of the 30 rounds, Skynet

beat UAlbertaBot 26 times, UAlbertaBot beat AIUR 29 times,

and AIUR beat Skynet 19 times. Another notable result is that

Overmind did not choose to compete despite winning the 2010

competition. After the competition, many bot programmers

(including the Overmind team) realized that their 2010 strategy

was quite easily defeated by early game rushing strategies,

and so they submitted a Terran bot instead, called Undermind,

which finished in 7th.

After the competition was over, a man vs. machine match

was held between the winner (Skynet) and an ex-professional

StarCraft player named Oriol Vinyals. Oriol was a competitor

in the 2001 World Cyber Games StarCraft competition, and

though he had been out of practice for a few years was still

quite a good player. The match was arranged to see how well

StarCraft AI bots had progressed and to see if they could

actually beat a decent human opponent.

For the best-of-three match, Oriol chose his races randomly

and ended up beating Skynet in a 2-0. In the first match, Oriol

TABLE III
RESULTS OF THE FIVE BEST BOTS OF THE AIIDE 2012 COMPETITION

Position Bot Win %

1 Skynet 84.4%
2 AIUR 72.2%
3 UAlbertaBot 68.6%
4 BroodwarBotQ 59.1%
5 AdjutantBot 52.8%

played Zerg vs. Skynet’s Protoss on Python, a four player

map. Oriol chose to start with a fast expansion strategy and

transition into two base mutalisk production. Skynet chose

to rush with a few early zealots, which was luckily the best

possible choice given Oriol’s strategy. Skynet’s initial attack

destroyed Oriol’s early defenses, and nearly won the game

in the first few minutes, however it then proceeded to send

zealots to attack one at a time rather than group up its units

before moving in, which allowed Oriol to catch up. Once

Oriol produced his mutalisks, Skynet did not produce sufficient

air defenses and Oriol quickly destroyed Skynet’s base. In

the second game, Oril played Terran, again on Python. After

holding off early Dragoon pressure from Skynet, Oriol moved

out with a few marines, medics and tanks. Skynet tried to

defend with its army of Dragoons, however due to poor unit

targeting decisions it started to attack useless medics after the

marines had died, rather than the tanks. Oriol overcame the

Dragoon army and was victorious. Later analysis of the match

concluded that Skynet, while dominant over the other bots,

was unable to properly adapt and transition into a mid-game

strategy in game one once its early pressure failed, and in

game two made a key blunder in unit targeting which cost it

the game. Humans were still in command.

The University of Alberta also hosted the 2012 competition,

with the major difference from the 2011 competition being the

addition of persistent storage. Bots could now write informa-

tion to disk during a match, and then read the information

during other matches, allowing them to adjust strategies based

on previous results. 6 of the 10 entrants used this feature to

aid in strategy selection, including the top 4 finishers. More

improvements to the tournament environment also meant that

a total of 4240 games could now be played in the same time

period. Results are shown in Table III.

Skynet once again won the competition with its solid

Protoss build orders and good Dragoon kiting. AIUR and

UAlbertaBot switched positions from the previous year to

come 2nd and 3rd respectively. Both AIUR and UAlbertaBot

used data stored from the results of previous games to select

a strategy for future matches. UAlbertaBot did this using the

UCB [69] algorithm, while AIUR used a uniform distribution

to choose its mood before altering this distribution after

some games against the same opponent to favor efficient

strategies, achieving similar results than UAlbertaBot. Notice

that, compared to AIIDE 2011, AIUR proposes a new mood,

Cheese, implementing a Photon Cannon rush strategy in order

to surprise the opponent and to finish the game as soon as

possible. The effect of this strategy selection process can be

seen Figure 4 which shows bot win percentages over time.

While the earlier rounds of the tournament fluctuated wildly
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in results, eventually the results converged to their final values.

One of the main reasons for this is due to the bots learning

which strategies to use as the tournament progressed.

The 2012 man vs. machine match again used the winner

of the competition (Skynet), who played against Mike Lange,

also known as Bakuryu. At the time of the match, Bakuryu

was an A- ranked Zerg player on ICCup, and known as one

of the best non-Korean Zerg players in the world. Bakuryu

was considered much stronger than Oriol at the time that the

match was played, and the results showed that this was true.

In the first game of the best-of-three, Bakuryu made Skynet

look quite silly by running around inside Skynet’s base with a

small number of zerglings while Skynet’s zealots and half of

its worked chased then in vain. After killing off several probes

and buying enough time to set up his expansion, he cleaned

up Skynet’s army with a flying army of mutalisks. In the

second game, Bakuryu contained Skynet inside its base with

a group of zerglings positioned within Skynet’s expansion.

Skynet then constructed several Dark Templar and along with

some Dragoons and Zealots attacked into Bakuryu’s expansion

which was heavily defended, and was crushed almost instantly,

allowing Bakuryu’s zergling force to finish off the Protoss

base.

In this match it was shown that the true weakness of state

of the art StarCraft AI systems was that humans are very

adept at recognizing scripted behaviors and exploiting them

to the fullest. A human player in Skynet’s position in the first

game would have realized he was being taken advantage of

and adapted his strategy accordingly, however the inability

to put the local context (Bakuryu kiting his units around his

base) into the larger context of the game (that this would

delay Skynet until reinforcements arrived) and then the lack

of strategy change to fix the situation led to an easy victory

for the human. These problems remain as some of the main

challenges in RTS AI today: to both recognize the strategy and

intent of an opponent’s actions, and how to effectively adapt

your own strategy to overcome them.

All results, videos, and replays from the AIIDE Star-

Craft AI Competition can be found in http://www.

StarCraftAICompetition.com.

B. CIG

An initial attempt to run a StarCraft tournament at the

Computational Intelligence in Games conference (CIG 2010)

suffered from technical problems. These mainly stemmed

from the desire to use evolved, largely untested maps which

proved to look interesting but made the submitted bots and

the Brood War Terrain Analyzer (BWTA) provided with the

BWAPI interface crash so frequently that it would have been

unjustifiable to announce a winner.

At CIG 2011, the tournament was therefore run with a

(secret) selection of maps used in league play, which can be

regarded as the most important difference to the AIIDE tourna-

ment that employed a known list of maps. The competition was

organized by Tobias Mahlmann and Mike Preuss and attracted

10 bots. In addition to the ones discussed in previous sections

(UAlbertaBot, Skynet, AIUR, Nova, BroodwarBotQ, BTHAI),
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Fig. 5. Evolution of the win percentage of each bot participating in the CIG
2012 competition

the set also contained LSAI, Xelnaga, Protoss Beast Jelly, and

EvoBot, these are shortly described in the following:

LSAI (Zerg): utilizes a heavily modified BWSAL17 to

divide management of the units to different modules that

communicate via a centralized information module. It works

using a simple reactive strategy to try and survive early game

attacks and macro up to a larger attack force and maintain

map control.

Xelnaga (Protoss): is a modification of the AIUR bot

that chooses the Dark Templar Opening in order to destroy

the enemy base before defenses against invisible units are

available.

Protoss Beast Jelly (Protoss): always goes for a 5-gate

Zealot rush, supported by an effective harvesting strategy

named power-mining (2 probes are assigned to every mineral

patch, thereby needing 18 probes for 100% saturation in a

normal map, prior to expanding). Gas is not mined as it is not

needed for constructing Zealots.

EvoBot (Terran): employs an evolutionary algorithm

for obtaining rational unit combinations and influence map

techniques for deciding the strategic locations. Note that this

bot was submitted in a very early version, with many of its

designed features not yet fully ready.

1) First Round: As the CIG competition games were exe-

cuted manually due to a lack of available software (the AIIDE

program was not yet available at that time), the organizers

separated the ten entries into two brackets. In each bracket of

5 bots, a round-robin tournament was held with 10 repetitions

per pairing, resulting in 40 games per bot. The 5 maps chosen

for the first round were selected from the pool of well-known

league play maps found on the Internet: (2)MatchPoint 1.3,

(4)Fighting Spirit 1.3, iCCup Destination 1.1, iCCup Gaia,

and iCCup Great Barrier Reef. Each bot pairing played on

every map twice, with switched starting positions.

The two top bots of every bracket qualified for the fi-

nal round. Table IV summarizes the results. Note that as

BroodwarBotQ and BTHAI have the same number of wins,

their direct encounter was evaluated which accounted 6:4

for the BroodwarBotQ. The bots going into the final were

17https://code.google.com/p/bwsal/
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TABLE IV
RESULTS OF THE FIRST ROUND AT CIG 2011, HELD IN TWO BRACKETS. QUALIFIED FOR THE FINAL ROUND: UALBERTABOT AND SKYNET (FROM A),

XELNAGA AND BROODWARBOTQ (FROM B, THE LATTER BY COMPARING DIRECT ENCOUNTERS WITH BTHAI OF WHICH 6:4 WERE WON)

Bracket A

Position Crashes Games Bot Win %

A1 0 40 UAlbertaBot 82.5%
A2 1 40 Skynet 77.5%
A3 2 40 AIUR 60.0%
A4 1 40 Nova 20.0%
A5 0 40 LSAI 10.0%

Bracket B

Position Crashes Games Bot Win %

B1 12 40 Xelnaga 62.5%
B2 3 40 BroodwarBotQ 57.5%
B3 0 40 BTHAI 57.5%
B4 17 40 Protoss Beast Jelly 42.5%
B5 0 40 EvoBot 30.0%

thus UAlbertaBot, Skynet (from bracket A) and Xelnaga and

BroodwarBotQ (from bracket B). All qualified bots play the

Protoss faction. Most bots proved pretty stable, only Xelnaga

and Protoss Beast Jelly crashed relatively often (each in more

than a quarter of the games). Crashing of course resulted in an

instant win for the other bot. In some cases, neither bot was

able to finish the other off completely, so that they went into

a passive state. We manually ended such games after around

15 minutes and assigned victory to the bot that had obtained

more points as indicated on the end game screen.

2) Final Round: The final round was played in a similar

mode as each of the first round brackets, using another set of 5

previously unknown maps: iCCup lost temple 2.4, iCCup rush

hour 3.1, iCCup swordinthemoon 2.1, iCCup yellow 1.1, and

La Mancha 1.1. Letting each pairing play on each map twice

again with switching starting positions resulted in 30 games

per bot. The final results are displayed in table V, indicating

Skynet as winner and UAlbertaBot as runner-up, being almost

equally strong, and the two other bots as clearly inferior. The

competition setup, documentation and results can be found

in18.

For CIG 2012, the AIIDE tournament software was em-

18http://ls11-www.cs.tu-dortmund.de/rts-competition/StarCraft-cig2011

TABLE V
RESULTS OF THE CIG 2011 COMPETITION

Position Crashes Games Bot Win %

1 0 30 Skynet 86.7%
2 0 30 UAlbertaBot 73.3%
3 3 30 Xelnaga 36.7%
4 2 30 BroodwarBotQ 3.3%

TABLE VI
RESULTS OF THE CIG 2012 COMPETITION.

Position Bot Win %

1 Skynet 78.3%
2 UAlbertaBot 65.2%
3 AIUR 60.4%
4 Adjutant 58.6%
5 Nova 52.4%

ployed, leading to a total of 4050 games played in 90 rounds

of round robin. As 6 different maps were used, this means that

each bot played every other on every map 15 times. As in the

AIIDE competition, writing to and reading from a bot specific

directory was enabled, however, due to technical reasons, this

feature was constrained to the computer (of 6) the game was

actually run on. We can therefore assume that this feature

was of minor use for the CIG competition. The only other

difference to the AIIDE competition was that the used maps

were not made available to the competitors in advance.

These maps came in two flavors, namely three 3-player

maps: Athena-II, Neo Moon Glaive, Tears of the Moon, and

three 6-player maps: Legacy, River of Light, and The Huntress

1.1. We shall note that some bots consistently crashed on

one of the originally considered maps which has thus been

replaced. This is surprising as all maps are well known league

play maps or have been provided with the StarCraft Brood

War distribution itself. Setup, replays and results for the CIG

2012 competition can be found here19.

The overall results are displayed in table VI, and the win

rate evolution over time in figure 5. These are quite consistent

with the results of the AIIDE 2012 competition, so that we can

19http://ls11-www.cs.tu-dortmund.de/rts-competition/StarCraft-cig2012
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conclude that the best bots are not very dependent on knowing

the maps beforehand. However, the bot vs. bot win rates as

displayed in figure 6 show some interesting trends. On the

maps with more possible start points, some bots do better than

others, namely SCAIL, Adjutant, Nova, and UAlbertaBot, the

latter probably due to its very efficient scouting routine. Some

bots however suffer from the increased uncertainty about the

enemies’ position, namely Xelnaga and BroodwarBotQ.

As already observed before in the previously described

competitions, there are also bots who consistently beat top

ranked bots but have severe problems against lower ranked

bots. E.g., Xelnaga is especially strong against Skynet on the

3-player maps (about 70% wins). Reviewing the replays led

to the assumption that Xelnaga usually tries to attack Skynet’s

probes with a dark templar strategy, and often succeeds.

Nova does very well against the UAlbertaBot, and the replays

show that it sometimes succeeds to lure the probes into its

own base, where they get killed, leading to severe resource

problems. However, we cannot tell how often this happens

as this would require to review every single replay between

the 2 bots. Summarizing, most bots seem to have improved,

which becomes clear if the nearly unchanged BTHAI bot is

taken as a baseline. In 2011, it won more than half of its

qualifying games, in 2012 it came out last with around 20%

wins. However, designing a bot in order to beat a top bot (as

for Xelnaga with Skynet) leads to a very restricted strategy

that often leads to failure if playing against different bots.

Note that in the direct encounter between Xelnaga and AIUR,

its ancestor, Xelnaga looses consistently.

Nevertheless, from the observations we made during the

tournament, we can draw the conclusion that the available bots

are still very constrained. No bot in the competition played

the Zerg race, which is surprising as the AIIDE 2010 winner

(Overmind) did so. Presumably, implementing a good Zerg

strategy is more demanding than for the Protoss or Terran

races. Many bots consistently crashed when playing against a

random race built-in bot for testing, and also did so when

the map size was changed from 128 × 128 to any other.

Furthermore, every single bot sometimes failed to finish off an

already beaten opponent, such that the game had to be stopped

after a previously determined maximum time. It also seems

that most of the current bots are not very good at adapting
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their strategy to the one of their opponent during a game, or

at least (via the read/write procedure of game information)

within a series of games.

C. StarCraft Bot Ladder

The StarCraft Bot Ladder is a website20 where bot versus

bot matches are automatized, and are running all the time. This

ladder is a great resource for creating data sets (all the game

replays are available) and statistics. For bot ranking, the ladder

uses an Elo rating system suitable for calculating the relative

skill level of a bot in two-player games. In the Elo system

each player has a numerical rating that gets incremented

or decremented some points after each game. The amount

of points depends on the difference in the ratings of the

players. A player will gain more points by beating a higher-

rated player than by beating a lower-rated player. This kind

of rating system is widely used in games like chess. This

bot ladder compiles different versions of bots from the main

worldwide competitions (like AIIDE, CIG or SSCAI21), even

some independent or “under construction” bots. Therefore, it

is a very good resource to test the performance of new bots

against the current state of the art in StarCraft bots before

participating in the official competitions.

Figure 7 shows the Elo rating of the bots in the ladder during

the first half year of 2012. The ranking is practically equal than

the AIIDE 2011 competition, showing the lack of adaptability

of the current bots. We can notice these more extremely in

Figure 8 for the second half year of 2012. During this period

new bots were introduced in the ladder. We can observe how

the first version of KillerBot made a huge impact on Skynet

ranking and finally, the second version of KillerBot quickly

became the best bot for more than one month (again we can

see how the rest of the bots aren’t able to adapt and the ranking

doesn’t change so much). And finally, in January, the Ximp bot

appears with a new strategy that overcomes the rest of the bots.

Both KillerBot and Ximp use hard-coded strategies without

any kind of adaptation capabilities. However, they implement

strategies that no other bot has a counter for, and thus manage

to win a very large percentage of games. This points out, once

again, that one of the major open challenges in RTS game AI

is how achieving adaptive strategies, that can recognize the

opponent’s intentions, and select an adequate response.

D. Adaptation Analysis

One of the major conclusions from the results of the

StarCraft competitions is the lack of adaptation of bots. Some

switch between different build-orders, but do not fully adapt

their strategy. No bot is capable of observing the opponent

and autonomously synthesize a good plan from scratch to

counter the opponent strategy. In this section we analyzed this

claim quantitatively using the tools of [14]. We analyzed the

replays from the 2011 and 2012 AIIDE competitions (shown

in Figures 9 and 10 respectively). We analyzed the way bots

choose their openings depending on which other bot they are

20http://bots-stats.krasi0.com
21http://sscaitournament.com

playing against. Given that there is no dominant strategy in

StarCraft, and it is necessary to see what the opponent is

doing in order to determine the best opening, we would expect

bots to change their openings depending on which other bot

they are playing (since each bot uses a different strategy, or

set of strategies). Using clustering, we identified the most

common openings in all the replays from the 2011 and 2012

competitions (each one shown with a different color in the

figures). No data is shown for the ItayUnvermind bot, since

its opening did not match significantly with any of the ones

used in our study (extracted from humans pro-gamers).

Specifically, we identified the following openings (for a bet-

ter comprehension of strategies, buildings or units of StarCraft,

we refer the reader to Teamliquid’s wiki22):

• Protoss openings:

– two gates: Build two Gateways and keep training

Zealots (basic contact attack ground unit), this is the

quickest way to apply pressure.

– fast dt: Produce Dark Templars (technologically ad-

vanced stealth ground unit) as soon as possible,

sacrificing early game power for a technological

advance, hard-countered by detectors technology.

– templar: Train High Templars (technologically ad-

vanced zone attack unit) as fast as possible, same as

above, less deadly but is less easily countered.

– speedzeal: Train Zealots and research attack and

speed upgrades as soon as possible, some early game

power transitioning into late game tech.

– corsair: Produce Corsairs (air-air flying unit) as

soon as possible and then transition into training

Dark Templars (safe from Zerg’s flying detectors

thanks to Corsairs), Reavers (ground artillery unit)

or Dragoons. Weak early game.

– nony: Build three Gateways and massive training of

Dragoons. Slower than two gates but still some early

game (ranged) power.

– reaver drop: Train Reavers as soon as possible to be

able to do drops (air transport of artillery units).

• Terran openings:

– bio: Produce a large army of Marines (basic ranged

ground unit) and Medics (can heal biological units).

Quickest way to apply pressure.

– rax fe: Take the closest “natural expansion” as soon

as possible. This provides a big economic boost in

the mid game by sacrificing some early game power.

– two facto: Build two Factories and keep producing

Tanks (ground artillery unit). Vulnerable while build-

ing up to it and then very powerful on ground.

– vultures: Produce mainly Vultures (fast ground

ranged unit, excels against small units) and research

mines. Quicker to reach (technologically) and build

than tanks, can transition into tanks.

– air: Produce Wraiths (ranged flying units) as soon

as possible for an air attack. Vulnerable to anti-air

openings or quick rushes.

22http://wiki.teamliquid.net/starcraft/Category:Strategies
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– drop: Train Dropships (flying transports) as soon as

possible to be able to do (mostly tanks or marines)

drops, leveraging efficient tactics.

• Zerg openings:

– speedlings: Train Zerlings (basic cheap, fast, ground

contact attack unit) and research speed upgrade as

soon as possible. Quickest way to apply pressure.

– fast mutas: Produce mainly Mutalisks (ranged flying

units). Vulnerable in the early game while gathering

gas and researching the technology.

– mutas: Expand two times for a stronger economy

before massive training of Mutalisks. Slower but

more powerful build-up than above.

– lurkers: Train Lurkers (ground, stealth artillery unit)

as soon as possible to benefit from their (advanced

technology) zone attack and cloak ability.

– hydras: Massive production of Hydralisks (ground

ranged unit). Much quicker to reach technologically

than Lurkers and can transition into them.

As the figures show, the top three ranked bots in the

competition (Skynet, Aiur and UalbertaBot) do not change

their strategy at all depending on their opponent. For example,

the Skynet bot (both in 2011 and 2012), always uses the same

opening (two gates), except when playing a Terran opponent,

when it uses nony. This reflects the trend that the performance

of bots is still more dependent on carefully handcrafted

and non-adaptive behaviors, than on on-line decision making

procedures. This is so, since most of the problems that need

to be solved in order to implement such procedures are still

open.

VI. OPEN QUESTIONS IN RTS GAME AI

As illustrated in this paper, there is a set of problems in RTS

game AI that could be considered mostly solved, of for which

we have very good solutions. One example of such problems

is pathfinding (mostly solved) or low-scale micro-management

(for which we have good solutions). However, there are many

other problems for which this is not the case. For example,

there is no current StarCraft bot that can come up with its

own tactical moves, such as “unit drops” in response to an

observed opponent strategy. Some bots do drops, but only if

this is hard-coded; no bot has the capability of reasoning about

the current situation, synthesize a tactical move that involves

a “unit drop”, and determine that this move is the best one

in the current situation. This is related to the lack of real-

time adversarial planning techniques that scale up to the size

required for RTS games.

We present here a list of problems that are currently

unsolved, grouped in various categories.

• Learning and adaptation:

– Adaptation to opponent strategy: observing the oppo-

nent strategy, and synthesizing an adequate counter

strategy. Current bots switch between predefined

strategies based on hard-coded preconditions, or

based on the performance of each predefined strat-

egy against an opponent in previous games, but no

current bot creates new strategies (like Chess or Go

playing programs do).

– Learning from experience in RTS games: how can

we make a bot that improves performance over time?

Some current bots learn which strategy (out of a

predefined set of strategies) is best against a given

opponent, but how can we devise learning strategies

that can perform more general learning? This has

been achieved in classical board games, such as

Chess [70], in the context of game-tree search (by

learning the evaluation function). But it’s unclear

how to do it in RTS games.

– Learning from observation (from demonstration, or

from observing the opponent) in RTS games: how

can we learn by observing the game play of other

players? Can we devise algorithms that can auto-

matically extract strategies from observation, and

later apply them? There has been some work in this

direction [65], but it is very far from being mature.

• Planning:

– Adversarial planning under real-time constraints:

although some solutions for small-scale real-time

planning have been recently proposed (such as [58],

based on alpha-beta game-tree search), the problem

of large-scale adversarial planning under real-time

constraints is still open.

– Adversarial planning under uncertainty of partially-

observable domains: how can we adapt adversarial

planning techniques for dealing with uncertainty?

This problem has been widely studied in the context

of simple games such as back-gammon [71], or

Poker [72]. However, the techniques developed for

those domains do not scale to RTS-game scenarios.

– Adversarial planning with resources: similarly, even

if there exist planning algorithms that handle re-

sources (like GRT-R [73]), they cannot scale up to

the size of problems needed for RTS games like

StarCraft.

• Integration: Multi-scale planning/reasoning: as de-

scribed in this paper, all the bots developed for the

StarCraft AI competitions decompose the problem of

playing an RTS game into smaller sub-problems, and then

solutions for each of those sub-problems are integrated in

to a common architecture to play the game. However,

the integration of each of the modules in a unified

architecture is still an open problem. For example, how

can decisions made at high-level modules be integrated

with decisions made at lower-level modules?

• Domain Knowledge: We know how to incorporate

some aspects of domain knowledge (e.g. build orders)

into RTS game playing agents. But, in general, how

to incorporate some forms of domain knowledge into

algorithms for RTS games is still an open problem. For

example, standard techniques to encode strategies for

other forms of games, like Behavior Trees, are hard to

deploy in RTS games. Is it possible to devise techniques

that can automatically mine the existing collections of



TCIAIG VOL. X, NO. Y, MONTH YEAR 17

Fig. 9. Distribution of different openings performed by the different bots participating in the AIIDE 2011 competition. For each bot match-up, the colors
show the proportion of times that the column bot used a particular opening against the row bot.

Fig. 10. Distribution of different openings performed by the different bots participating in the AIIDE 2012 competition. For each bot match-up, the colors
show the proportion of times that the column bot used a particular opening against the row bot.

domain knowledge for an RTS game like StarCraft, and

incorporate it into the bot? An initial exploration of this

idea was carried out by Branavan et al. [74].

VII. CONCLUSIONS

As the list in the previous section indicates, Real-Time

Strategy games are an excellent testbed for AI techniques,

which pose a very large list of open problems. As Section

V has shown, the current top performing programs to play

RTS games such as StarCraft still rely mainly on hard-coded

strategies. It is still possible to perform strongly, or even win,

one of these competitions simply by finding a hard-coded

strategy that no other bot has a predefined counter-strategy

for. Additionally, good human players are still clearly superior

to the best computer programs. From an industry point of

view, one additional challenge is to make bots more believable

to play against, and thus, more fun for human players (this

includes, for example, doing scouting, instead of cheating and

having full information of the game state).

One of the main goals of this paper is to provide a

centralized and unified overview to the research being done

in the area of RTS game AI. To that end, in this paper

we have highlighted the existing challenges in RTS games,

from an AI point of view, and surveyed the recent advances

towards addressing these challenges with a focus on StarCraft

(which has emerged as a unified test-bed). Given that playing
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an RTS game is a very challenging task, researchers tend to

divide such task into smaller tasks, which can be individually

addressed by AI techniques. We have also surveyed the

different task subdivisions used in some of the top StarCraft-

playing programs, highlighting advantages and disadvantages.

Additionally, we have presented an analysis of the results of

the different StarCraft AI competitions, highlighting strengths

and weaknesses of each of the bots. Finally, we have closed

the paper with a list of specific open research questions for

future research.

Real-time strategy games encompass many interesting and

complex sub-problems that are closely related not only to

other fields of AI research, but to real-world problems as

well. For example, optimizing assembly line operations in fac-

tories is akin to performing build-order optimizations. Troop

positioning in military conflicts involves the same spatial and

tactical reasoning used in RTS games. Robot navigation in

unknown environments requires real-time path-finding and

decision making to avoid hitting obstacles. All of these issues

mentioned in this paper must are being tackled by the real-

time strategy game AI community, and in doing so we will not

only be improving techniques for writing tournament-winning

bots, but for advance the state of the art for many other fields

as well.
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