archives-ouvertes

A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks

Bruno Nunes Astuto, Marc Mendonca, Xuan Nam Nguyen, Katia Obraczka,
Thierry Turletti

» To cite this version:

Bruno Nunes Astuto, Marc Mendonca, Xuan Nam Nguyen, Katia Obraczka, Thierry Turletti.

Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. To

appear in IEEE Communications Surveys

Tutorials. 2013. <hal-00825087v3>

HAL Id: hal-00825087
https://hal.inria.fr /hal-00825087v3
Submitted on 29 Oct 2013 (v3), last revised 19 Jan 2014 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/hal-00825087v3
https://hal.archives-ouvertes.fr

IN SUBMISSION

A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks

Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti

Abstract—The idea of programmable networks has recently
re-gained considerable momentum due to the emergence of
the Software-Defined Networking (SDN) paradigm. SDN, often
referred to as a “radical new idea in networking”, promises
to dramatically simplify network management and enable in-
novation through network programmability. This paper surveys
the state-of-the-art in programmable networks with an emphasis
on SDN. We provide a historic perspective of programmable
networks from early ideas to recent developments. Then we
present the SDN architecture and the OpenFlow standard in
particular, discuss current alternatives for implementation and
testing of SDN-based protocols and services, examine current
and future SDN applications, and explore promising research
directions based on the SDN paradigm.

Index Terms—Software-Defined Networking, programmable
networks, survey, data plane, control plane, virtualization.

I. INTRODUCTION

OMPUTER networks are typically built from a large
number of network devices such as routers, switches and
numerous types of middleboxes (i.e., devices that manipulate
traffic for purposes other than packet forwarding, such as a
firewall) with many complex protocols implemented on them.
Network operators are responsible for configuring policies to
respond to a wide range of network events and applications.
They have to manually transform these high level-policies into
low-level configuration commands while adapting to changing
network conditions. And often they need to accomplish these
very complex tasks with access to very limited tools. As a
result, network management and performance tuning is quite
challenging and thus error-prone. The fact that network devices
are usually vertically-integrated black boxes exacerbates the
challenge network operators and administrators face.
Another almost unsurmountable challenge network practi-
tioners and researchers face has been referred to as “Internet
ossification”. Because of its huge deployment base and the
fact it is considered part of our society’s critical infrastructure
(just like transportation and power grids), the Internet has
become extremely difficult to evolve both in terms of its phys-
ical infrastructure as well as its protocols and performance.
However, as current and emerging Internet applications and
services become increasingly more complex and demanding,
it is imperative that the Internet be able to evolve to address
these new challenges.

Bruno Astuto A. Nunes, Xuan-Nam Nguyen and Thierry Turletti
are with INRIA, France, {bruno.astuto-arouche-nunes, xuan-nam.nguyen,
thierry.turletti } @inria.fr

Marc Mendonca and Katia Obraczka are with UC Santa Cruz, {msm,
katia} @soe.ucsc.edu

The idea of “programmable networks” has been proposed as
a way to facilitate network evolution. In particular, Software
Defined Networking (SDN) is a new networking paradigm
in which the forwarding hardware is decoupled from con-
trol decisions. It promises to dramatically simplify network
management and enable innovation and evolution. The main
idea is to allow software developers to rely on network
resources in the same easy manner as they do on storage
and computing resources. In SDN, the network intelligence is
logically centralized in software-based controllers (the control
plane), and network devices become simple packet forwarding
devices (the data plane) that can be programmed via an open
interface (e.g., ForCES [44], OpenFlow [85], etc).

SDN is currently attracting significant attention from both
academia and industry. A group of network operators, ser-
vice providers, and vendors have recently created the Open
Network Foundation [13], an industrial-driven organization,
to promote SDN and standardize the OpenFlow protocol [85].
On the academic side, the OpenFlow Network Research Cen-
ter [14] has been created with a focus on SDN research. There
have also been standardization efforts on SDN at the IETF and
IRTF and other standards producing organizations.

The field of software defined networking is quite recent,
yet growing at a very fast pace. Still, there are important
research challenges to be addressed. In this paper, we survey
the state-of-the-art in programmable networks by providing a
historic perspective of the field and also describing in detail
the SDN paradigm and architecture. The paper is organized
as follows: in Section II, it begins by describing early efforts
focusing on programmable networks. Section III provides an
overview of SDN and its architecture. It also describes the
OpenFlow protocol. Section IV describes existing platforms
for developing and testing SDN solutions including emulation
and simulation tools, SDN controller implementations, as
well as verification and debugging tools. In Section V, we
discuss several SDN applications in areas such as data centers
and wireless networking. Finally, Section VI discusses future
research directions related to SDN.

II. EARLY PROGRAMMABLE NETWORKS

SDN has great potential to change the way networks oper-
ate, and OpenFlow in particular has been touted as a “radical
new idea in networking” [80]. The proposed benefits range
from centralized control, simplified algorithms, commoditizing
network hardware, eliminating middleboxes, to enabling the
design and deployment of third-party ‘apps’.

While OpenFlow has received considerable attention from
industry, it is worth noting that the idea of programmable

IN SUBMISSION

networks and decoupled control logic has been around for
many years. In this section, we provide an overview of early
programmable networking efforts, precursors to the current
SDN paradigm that laid the foundation for many of the ideas
we are seeing today.

a) Open Signaling: The Open Signaling (OPENSIG)
working group began in 1995 with a series of workshops
dedicated to “making ATM, Internet and mobile networks
more open, extensible, and programmable” [34]. They believed
that a separation between the communication hardware and
control software was necessary but challenging to realize; this
is mainly due to vertically integrated switches and routers,
whose closed nature made the rapid deployment of new
network services and environments impossible. The core of
their proposal was to provide access to the network hardware
via open, programmable network interfaces; this would allow
the deployment of new services through a distributed program-
ming environment.

Motivated by these ideas, an IETF working group was
created, which led to the specification of the General Switch
Management Protocol (GSMP) [43], a general purpose pro-
tocol to control a label switch. GSMP allows a controller
to establish and release connections across the switch, add
and delete leaves on a multicast connection, manage switch
ports, request configuration information, request and delete
reservation of switch resources, and request statistics. The
working group is officially concluded and the latest standards
proposal, GSMPv3, was published in June 2002.

b) Active Networking: Also in the mid 1990s, the
Active Networking [115], [116] initiative proposed the idea
of a network infrastructure that would be programmable for
customized services. There were two main approaches being
considered, namely: (1) user-programmable switches, with in-
band data transfer and out-of-band management channels;
and (2) capsules, which were program fragments that could
be carried in user messages; program fragments would then
be interpreted and executed by routers. Despite considerable
activity it motivated, Active Networking never gathered crit-
ical mass and transferred to widespread use and industry
deployment, mainly due to practical security and performance
concerns [90].

c¢) DCAN: Another initiative that took place in the mid
1990s is the Devolved Control of ATM Networks (DCAN) [4].
The aim of this project was to design and develop the
necessary infrastructure for scalable control and management
of ATM networks. The premise is that control and management
functions of the many devices (ATM switches in the case
of DCAN) should be decoupled from the devices themselves
and delegated to external entities dedicated to that purpose,
which is basically the concept behind SDNs. DCAN assumes
a minimalist protocol between the manager and the network,
in the lines of what happens today in proposals such as
OpenFlow. More on the DCAN project can be found at [87].

Still in the lines of SDNs and the proposed decoupling of
control and data plane over ATM networks, amongst others,
in the work proposed in [119] multiple heterogeneous control
architectures are allowed to run simultaneously over single
physical ATM network by partitioning the resources of that

switch between those controllers.

d) 4D Project: Starting in 2004, the 4D project [105],
[53], [31] advocated a clean slate design that emphasized
separation between the routing decision logic and the pro-
tocols governing the interaction between network elements.
It proposed giving the “decision” plane a global view of the
network, serviced by a “dissemination” and “discovery” plane,
for control of a “data” plane for forwarding traffic. These ideas
provided direct inspiration for later works such as NOX [54],
which proposed an “operating system for networks” in the
context of an OpenFlow-enabled network.

e¢) NETCONF: In 2006, the IETF Network Configu-
ration Working Group proposed NETCONF [46] as a man-
agement protocol for modifying the configuration of network
devices. The protocol allowed network devices to expose an
API through which extensible configuration data could be sent
and retrieved.

Another management protocol, widely deployed in the past
and used until today, is the SNMP [38]. SNMP was proposed
in the late 80’s and proved to be a very popular network
management protocol, which uses the Structured Management
Interface (SMI) to fetch data contained in the Management
Information Base (MIB). It could be used as well to change
variables in the MIB in order to modify configuration settings.
It later became apparent that in spite of what it was originally
intended for, SNMP was not being used to configure network
equipment, but rather as a performance and fault monitoring
tool. Moreover, multiple shortcomings were detected in the
conception of SNMP, the most notable of which was its lack
of strong security. This was addressed in a later version of the
protocol.

NETCONEF, at the time it was proposed by IETF, was
seen by many as a new approach for network management
that would fix the aforementioned shortcomings in SNMP.
Although the NETCONF protocol accomplishes the goal of
simplifying device (re)configuration and acts as a building
block for management, there is no separation between data
and control planes. The same can be stated about SNMP.
A network with NETCONF should not be regarded as fully
programmable as any new functionality would have to be
implemented at both the network device and the manager so
that any new functionality can be provided; furthermore, it is
designed primarily to aid automated configuration and not for
enabling direct control of state nor enabling quick deployment
of innovative services and applications. Nevertheless, both
NETCONF and SNMP are useful management tools that
may be used in parallel on hybrid switches supporting other
solutions that enable programmable networking.

The NETCONF working group is currently active and the
latest proposed standard was published in June 2011.

f) Ethane: The immediate predecessor to OpenFlow was
the SANE / Ethane project [36], which, in 2006, defined
a new architecture for enterprise networks. Ethane’s focus
was on using a centralized controller to manage policy and
security in a network. A notable example is providing identity-
based access control. Similar to SDN, Ethane employed two
components: a controller to decide if a packet should be
forwarded, and an Ethane switch consisting of a flow table

IN SUBMISSION

and a secure channel to the controller.

Ethane laid the foundation for what would become
Software-Defined Networking. To put Ethane in the context of
today’s SDN paradigm, Ethane’s identity-based access control
would likely be implemented as an application on top of an
SDN controller such as NOX [54], Maestro [32], Beacon [1],
SNAC [20], Helios [6], etc.

III. SOFTWARE-DEFINED NETWORKING
ARCHITECTURE

Data communication networks typically consist of end-
user devices, or hosts interconnected by the network infras-
tructure. This infrastructure is shared by hosts and employs
switching elements such as routers and switches as well as
communication links to carry data between hosts. Routers and
switches are usually “closed” systems, often with limited-
and vendor-specific control interfaces. Therefore, once de-
ployed and in production, it is quite difficult for current
network infrastructure to evolve; in other words, deploying
new versions of existing protocols (e.g., IPv6), not to mention
deploying completely new protocols and services is an almost
insurmountable obstacle in current networks. The Internet,
being a network of networks, is no exception.

As mentioned previously, the so-called Internet “ossifica-
tion” [85] is largely attributed to the tight coupling between
the data— and control planes which means that decisions about
data flowing through the network are made on-board each
network element. In this type of environment, the deployment
of new network applications or functionality is decidedly non-
trivial, as they would need to be implemented directly into
the infrastructure. Even straightforward tasks such as config-
uration or policy enforcement may require a good amount
of effort due to the lack of a common control interface to
the various network devices. Alternatively, workarounds such
as using “middleboxes” (e.g., firewalls, Intrusion Detection
Systems, Network Address Translators, etc.) overlayed atop
the underlying network infrastructure have been proposed and
deployed as a way to circumvent the network ossification
effect. Content Delivery Networks (CDNs) [98] are a good
example.

Software-Defined Networking was developed to facilitate
innovation and enable simple programmatic control of the
network data-path. As visualized in Figure 1, the separation of
the forwarding hardware from the control logic allows easier
deployment of new protocols and applications, straightforward
network visualization and management, and consolidation of
various middleboxes into software control. Instead of enforc-
ing policies and running protocols on a convolution of scat-
tered devices, the network is reduced to “simple” forwarding
hardware and the decision-making network controller(s).

A. Current SDN Architectures

In this section, we review two well-known SDN architec-
tures, namely ForCES [44] and Openflow [85]. Both Open-
Flow and ForCES follow the basic SDN principle of separation
between the control and data planes; and both standardize
information exchange between planes. However, they are

E=E=S SDN Controller

2C)

i Middlebox (e.g. Firewall)

Forwarding device with = Forwarding device with
decoupled control :x: embedded control

Software
Control

Software-Defined Network
(with decoupled control)

Traditional Network
(with distributed control and middleboxes)

Fig. 1. The SDN architecture decouples control logic from the forwarding
hardware, and enables the consolidation of middleboxes, simpler policy
management, and new functionalities. The solid lines define the data-plane
links and the dashed lines the control-plane links.

technically very different in terms of design, architecture,
forwarding model, and protocol interface.

1) ForCES: The approach proposed by the IETF ForCES
(Forwarding and Control Element Separation) Working Group,
redefines the network device’s internal architecture having
the control element separated from the forwarding element.
However, the network device is still represented as a single
entity. The driving use case provided by the working group
considers the desire to combine new forwarding hardware with
third-party control within a single network device. Thus, the
control and data planes are kept within close proximity (e.g.,
same box or room). In contrast, the control plane is ripped
entirely from the network device in “OpenFlow-like” SDN
systems.

ForCES defines two logic entities called the Forwarding
Element (FE) and the Control Element (CE), both of which
implement the ForCES protocol to communicate. The FE
is responsible for using the underlying hardware to provide
per-packet handling. The CE executes control and signaling
functions and employs the ForCES protocol to instruct FEs on
how to handle packets. The protocol works based on a master-
slave model, where FEs are slaves and CEs are masters.

An important building block of the ForCES architecture is
the LFB (Logical Function Block). The LFB is a well-defined
functional block residing on the FEs that is controlled by CEs
via the ForCES protocol. The LFB enables the CEs to control
the FEs’ configuration and how FEs process packets.

ForCES has been undergoing standardization since 2003,
and the working group has published a variety of documents
including: an applicability statement, an architectural frame-
work defining the entities and their interactions, a modeling
language defining the logical functions within a forwarding
element, and the protocol for communication between the
control and forwarding elements within a network element.
The working group is currently active.

IN SUBMISSION

CONTROLLER

OpenFlow Protocol

OPENFLOW CLIENT
OPENFLOW
FLOW TABLE SWITCH
| RULE | ACTIONS |STATISTICS|
L PORT PORT PORT
1 2 N

I Forward to port(s)
IP src/dst , MAC src/dst,

Forward to the controller
Transport Src/Dst, VLAN ... Modify header fields

Drop

Packets, Bytes, Duration

Fig. 2. Communication between the controller and the forwarding devices
happens via OpenFlow protocol. The flow tables are composed by matching
rules, actions to be taken when the flow matches the rules, and counters for
collecting flow statistics.

2) OpenFlow: Driven by the SDN principle of decoupling
the control and data forwarding planes, OpenFlow [85], like
ForCES, standardizes information exchange between the two
planes.

In the OpenFlow architecture, illustrated in Figure 2, the
forwarding device, or OpenFlow switch, contains one or more
flow tables and an abstraction layer that securely communi-
cates with a controller via OpenFlow protocol. Flow tables
consist of flow entries, each of which determines how packets
belonging to a flow will be processed and forwarded. Flow
entries typically consist of: (1) match fields, or matching
rules, used to match incoming packets; match fields may
contain information found in the packet header, ingress port,
and metadata; (2) counters, used to collect statistics for the
particular flow, such as number of received packets, number
of bytes and duration of the flow; and (3) a set of instructions,
or actions, to be applied upon a match; they dictate how to
handle matching packets.

Upon a packet arrival at an OpenFlow switch, packet header
fields are extracted and matched against the matching fields
portion of the flow table entries. If a matching entry is
found, the switch applies the appropriate set of instructions,
or actions, associated with the matched flow entry. If the flow
table look-up procedure does not result on a match, the action
taken by the switch will depend on the instructions defined
by the table-miss flow entry. Every flow table must contain a
table-miss entry in order to handle table misses. This particular
entry specifies a set of actions to be performed when no
match is found for an incoming packet, such as dropping the
packet, continue the matching process on the next flow table,
or forward the packet to the controller over the OpenFlow
channel. It is worth noting that from version 1.1 OpenFlow
supports multiple tables and pipeline processing. Another
possibility, in the case of hybrid switches, i.e., switches that
have both OpenFlow— and non-OpenFlow ports, is to forward
non-matching packets using regular IP forwarding schemes.

The communication between controller and switch happens
via OpenFlow protocol, which defines a set of messages that

can be exchanged between these entities over a secure channel.
Using the OpenFlow protocol a remote controller can, for
example, add, update, or delete flow entries from the switch’s
flow tables. That can happen reactively (in response to a packet
arrival) or proactively.

3) Discussion: In [126], the similarities and differences
between ForCES and OpenFlow are discussed. Among the
differences, they highlight the fact that the forwarding model
used by ForCES relies on the Logical Function Blocks (LFBs),
while OpenFlow uses flow tables. They point out that in
OpenFlow actions associated with a flow can be combined
to provide greater control and flexibility for the purposes
of network management, administration, and development. In
ForCES the combination of different LFBs can also be used
to achieve the same goal.

We should also re-iterate that ForCES does not follow the
same SDN model underpinning OpenFlow, but can be used
to achieve the same goals and implement similar functional-
ity [126].

The strong support from industry, research, and academia
that the Open Networking Foundation (ONF) and its SDN
proposal, OpenFlow, has been able to gather is quite impres-
sive. The resulting critical mass from these different sectors
has produced a significant number of deliverables in the form
of research papers, reference software implementations, and
even hardware. So much so that some argue that OpenFlow’s
SDN architecture is the current SDN de-facto standard. In
line with this trend, the remainder of this section focuses on
OpenFlow’s SDN model. More specifically, we will describe
the different components of the SDN architecture, namely:
the switch, the controller, and the interfaces present on the
controller for communication with forwarding devices (south-
bound communication) and network applications (northbound
communication). Section IV also has an OpenFlow focus as it
describes existing platforms for SDN development and testing,
including emulation and simulation tools, SDN controller im-
plementations, as well as verification and debugging tools. Our
discussion of future SDN applications and research directions
is more general and is SDN architecture agnostic.

B. Forwarding Devices

The underlaying network infrastructure may involve a num-
ber of different physical network equipment, or forwarding
devices such as routers, switches, virtual switches, wireless
access points, to name a few. In a software-defined network,
such devices are often represented as basic forwarding hard-
ware accessible via an open interface at an abstraction layer, as
the control logic and algorithms are off-loaded to a controller.
Such forwarding devices are commonly referred to, in SDN
terminology, simply as “switches”, as illustrated in Figure 3.

In an OpenFlow network, switches come in two vari-
eties: pure and hybrid. Pure OpenFlow switches have no
legacy features or on-board control, and completely rely on a
controller for forwarding decisions. Hybrid switches support
OpenFlow in addition to traditional operation and protocols.
Most commercial switches available today are hybrids.

IN SUBMISSION

1) Processing Forwarding Rules: Flow-based SDN archi-
tectures such as OpenFlow may utilize additional forwarding
table entries, buffer space, and statistical counters that are
difficult to implement in traditional ASIC switches. Some
recent proposals [82], [88] have advocated adding a general-
purpose CPU, either on-switch or nearby, that may be used
to supplement or take over certain functions and reduce the
complexity of the ASIC design. This would have the added
benefit of allowing greater flexibility for on-switch processing
as some aspects would be software-defined.

In [83], network processor based acceleration cards were
used to perform OpenFlow switching. They proposed and
described the design options and reported results that showed
a 20% reduction on packet delay. In [114], an architectural de-
sign to improve look-up performance of OpenFlow switching
in Linux was proposed. Preliminary results reported showed
a packet switching throughput increase of up to 25% com-
pared to the throughput of regular software-based OpenFlow
switching. Another study on data-plane performance over
Linux based Openflow switching was presented in [27], which
compared OpenFlow switching, layer-2 Ethernet switching
and layer-3 IP routing performance. Fairness, forwarding
throughput and packet latency in diverse load conditions were
analyzed. In [69], a basic model for the forwarding speed
and blocking probability of an OpenFlow switch was derived,
while the parameters for the model were drawn from mea-
surements of switching times of current OpenFlow hardware,
combined with an OpenFlow controller.

2) Installing Forwarding Rules: Another issue regarding
the scalability of an OpenFlow network is memory limitation
in forwarding devices. OpenFlow rules are more complex
than forwarding rules in traditional IP routers. They support
more flexible matchings and matching fields and also different
actions to be taken upon packet arrival. A commodity switch
normally supports between a few thousand up to tens of
thousands forwarding rules [110]. Also, Ternary Content-
Addressable Memory (TCAM) has been used to support
forwarding rules, which can be expensive and power-hungry.
Therefore, the rule space is a bottleneck to the scalability of
OpenFlow, and the optimal use of the rule space to serve
a scaling number of flow entries while respecting network
policies and constraints is a challenging and important topic.

Some proposals address memory limitations in OpenFlow
switches. Devoflow [40] is an extension to OpenFlow for high-
performance networks. It handles mice flows (i.e. short flows)
at the OpenFlow switch and only invokes the controller in
order to handle elephant flows (i.e larger flows). The per-
formance evaluation conducted in [40] showed that Devoflow
uses 10 to 53 times less flow table space. In DIFANE [132],
“ingress” switches redirect packets to “authority” switches that
store all the forwarding rules while ingress switches cache
flow table rules for future use. The controller is responsible
for partitioning rules over authority switches.

Palette [71] and One Big Switch [70] address the rule
placement problem. Their goal is to minimize the number
of rules that need to be installed in forwarding devices and
use end-to-end policies and routing policies as input to a rule
placement optimizer. End-to-end policies consist of a set of

Applications

Network OS

Decoupled
Control Logic

Secure
Channel

Abstraction Layer

!

Flow Table

SWITCH

Fig. 3. The separated control logic can be viewed as a network operating
system, upon which applications can be built to “program” the network.

prioritized rules dictating, for example, access control and
load balancing, while viewing the whole network as a single
virtual switch. Routing policies, on the other hand, dictate
through what paths traffic should flow in the network. The
main idea in Palette is to partition end-to-end policies into
sub tables and then distribute them over the switches. Their
algorithm consists of two steps: determine the number k& of
tables needed and then partition the rules set over k tables.
One Big Switch, on the other hand, solves the rule placement
problem separately for each path, choosing the paths based on
network metrics (e.g. latency, congestion and bandwidth), and
then combining the result to reach a global solution.

C. The Controller

The decoupled system has been compared to an operating
system [54], in which the controller provides a programmatic
interface to the network. That can be used to implement
management tasks and offer new functionalities. A layered
view of this model is illustrated in Figure 3. This abstraction
assumes the control is centralized and applications are written
as if the network is a single system. It enables the SDN
model to be applied over a wide range of applications and
heterogeneous network technologies and physical media such
as wireless (e.g. 802.11 and 802.16), wired (e.g. Ethernet) and
optical networks.

As a practical example of the layering abstraction accessible
through open application programming interfaces (APIs), Fig-
ure 4 illustrates the architecture of an SDN controller based on
the OpenFlow protocol. This specific controller is a fork of the
Beacon controller [1] called Floodlight [5]. In this figure it is
possible to observe the separation between the controller and
the application layers. Applications can be written in Java and
can interact with the built-in controller modules via a JAVA
API. Other applications can be written in different languages

IN SUBMISSION

Learning PortDown OpenStack
Switch || Reconciliation Quantum Plugin
Firewall || VNF || Hub Cirouit Pusher
A
T
JAVA API REST API
Module Thread Packet Jython Web Ul Unit
Manager Pool Streamer || Server Tests
Device Topology Link Flow
Manager/ | | . Storage Memory
Manager Roui Discovery || Cache
outing
Counter
. Controller
Switches Memory PerfMon Trace Store
OpenFlow Services

Fig. 4. The Floodlight architecture as an example of an OpenFlow controller.

and interact with the controller modules via the REST APL
This particular example of an SDN controller allows the
implementation of built-in modules that can communicate
with their implementation of the OpenFlow controller (i.e.
OpenFlow Services). The controller, on the other hand, can
communicate with the forwarding devices via the OpenFlow
protocol through the abstraction layer present at the forwarding
hardware, illustrated in Figure 3.

While the aforementioned layering abstractions accessible
via open APIs allow the simplification of policy enforce-
ment and management tasks, the bindings must be closely
maintained between the control and the network forwarding
elements. The choices made while implementing such layering
architectures can dramatically influence the performance and
scalability of the network. In the following, we address some
such scalability concerns and go over some proposals that aim
on overcoming these challenges. We leave a more detailed
discussion on the application layer and the implementation of
services and policy enforcement to Section VI-C.

1) Control Scalability: An initial concern that arises when
offloading control from the switching hardware is the scalabil-
ity and performance of the network controller(s). The original
Ethane [36] controller, hosted on a commodity desktop ma-
chine, was tested to handle up to 11,000 new flow requests per
second and responded within 1.5 milliseconds. A more recent
study [118] of several OpenFlow controller implementations
(NOX-MT, Maestro, Beacon), conducted on a larger emulated
network with 100,000 endpoints and up to 256 switches, found
that all were able to handle at least 50,000 new flow requests
per second in each of the tested scenarios. On an eight-
core machine, the multi-threaded NOX-MT implementation
handled 1.6 million new flow requests per second with an
average response time of 2 milliseconds. As the results show,

a single controller is able to handle a surprising number of new
flow requests, and should be able to manage all but the largest
networks. Furthermore, new controllers under development
such as McNettle [123] target powerful multicore servers and
are being designed to scale up to large data center workloads
(around 20 million flows requests per second and up to 5000
switches). Nonetheless, multiple controllers may be used to
reduce latency or increase fault tolerance.

A related concern is the controller placement problem [60],
which attempts to determine both the optimal number of
controllers and their location within the network topology,
often choosing between optimizing for average and worst
case latency. The latency of the link used for communication
between controller and switch is of great importance when
dimensioning a network or evaluating its performance [40].
That was one of the main motivations behind the work in [100]
which evaluated how the controller and the network perform
with bandwidth and latency issues on the control link. This
work concludes that bandwidth in the control link arbitrates
how many flows can be processed by the controller, as well
as the loss rate when under saturation conditions. The switch-
to-control latency on the other hand, has a major impact on
the overall behavior of the network, as each switch cannot
forward data until it receives the message from the controller
that inserts the appropriate rules in the flow table. This interval
can grow with the link latency and impact dramatically the
performance of network applications.

Also, control modeling greatly impacts the network scala-
bility. Some important scalability issues are presented in [130],
along with a discussion about scalability trade-offs in software-
defined network design.

2) Control models: In the following, we go over some of
these SDN design options and discuss different methods of
controlling a software-defined network, many of which are
interrelated:

o Centralized vs. Distributed

Although protocols such as OpenFlow specify that a
switch is controlled by a controller and therefore ap-
pears to imply centralization, software-defined networks
may have either a centralized or distributed control-
plane. Though controller-to-controller communication is
not defined by OpenFlow, it is necessary for any type of
distribution or redundancy in the control-plane.

A physically centralized controller represents a single
point of failure for the entire network; therefore, Open-
Flow allows the connection of multiple controllers to a
switch, which would allow backup controllers to take over
in the event of a failure.

Onix [76] and HyperFlow [117] take the idea further
by attempting to maintain a logically centralized but
physically distributed control plane. This decreases the
look-up overhead by enabling communication with local
controllers, while still allowing applications to be written
with a simplified central view of the network. The poten-
tial downside are trade-offs [78] related to consistency
and staleness when distributing state throughout the con-
trol plane, which has the potential to cause applications
that believe they have an accurate view of the network to

IN SUBMISSION

act incorrectly.

A hybrid approach, such as Kandoo [58], can utilize local
controllers for local applications and redirect to a global
controller for decisions that require centralized network
state. This reduces the load on the global controller by
filtering the number of new flow requests, while also
providing the data-path with faster responses for requests
that can be handled by a local control application.

A software-defined network can also have some level of
logical decentralization, with multiple logical controllers.
An interesting type of proxy controller, called Flowvi-
sor [107], can be used to add a level of network virtualiza-
tion to OpenFlow networks and allow multiple controllers
to simultaneously control overlapping sets of physical
switches. Initially developed to allow experimental re-
search to be conducted on deployed networks alongside
production traffic, it also facilitates and demonstrates the
ease of deploying new services in SDN environments.
A logically decentralized control plane would be needed
in an inter-network spanning multiple administrative do-
mains. Though the domains may not agree to centralized
control, a certain level of sharing may be appropriate
(e.g., to ensure service level agreements are met for traffic
flowing between domains).

Control Granularity

Traditionally, the basic unit of networking has been
the packet. Each packet contains address information
necessary for a network switch to make routing decisions.
However, most applications send data as a flow of many
individual packets. A network that wishes to provide
QoS or service guarantees to certain applications may
benefit from individual flow-based control. Control can
be further abstracted to an aggregated flow-match, rather
than individual flows. Flow aggregation may be based
on source, destination, application, or any combination
thereof.

In a software-defined network where network elements
are controlled remotely, overhead is caused by traffic
between the data-plane and control-plane. As such, using
packet level granularity would incur additional delay as
the controller would have to make a decision for each
arriving packet. When controlling individual flows, the
decision made for the first packet of the flow can be ap-
plied to all subsequent packets of that flow. The overhead
may be further reduced by grouping flows together, such
as all traffic between two hosts, and performing control
decisions on the aggregated flows.

Reactive vs. Proactive Policies

Under a reactive control model, such as the one proposed
by Ethane [36], forwarding elements must consult a con-
troller each time a decision must be made, such as when
a packet from a new flow reaches a switch. In the case
of flow-based control granularity, there will be a small
performance delay as the first packet of each new flow
is forwarded to the controller for decision (e.g., forward
or drop), after which future packets within that flow will
travel at line rate within the forwarding hardware. While
the delay incurred by the first-packet may be negligible

HIGH-LEVEL NETWORK
SERVICE(S) / APPLICATION(S)

\ NORTHBOUND COMMUNICATION

SERVICE / CONTROLLER INTERFACE

8 NETWORK CONTROLLER

OTHER SERVICE . TopoLoGY
ESSENTIAL MANAGER MANAGER
FUNCTIONS

CONTROLLER / SWITCH INTERFACE

SOUTHBOUND COMMUNICATION
(E.G. OPENFLOW)

CONTROLLER / SWITCH
INTERFACE

PACKET FORWARDING DEVICE(S)

Fig. 5. A controller with a northbound and southbound interface.

in many cases, it may be a concern if the controller is
geographically remote (though this can be mitigated by
physically distributing the controller [117]) or if most
flows are short-lived, such as single-packet flows. There
are also some scalability issues in larger networks, as the
controller must be able to handle a larger volume of new
flow requests.

Alternatively, proactive control approaches push policy
rules from the controller to the switches. A good example
of proactive control is DIFANE [132], which partitions
rules over a hierarchy of switches, such that the controller
rarely needs to be consulted about new flows and traffic is
kept within the data-plane. In their experiments, DIFANE
reduces first-packet delay from a 10ms average round-trip
time (RTT) with a centralized NOX controller to a 0.4ms
average RTT for new single-packet flows. It was also
shown to increase the new flow throughput, as the tested
version of NOX achieved a peak of 50,000 single-packet
flows per second while the DIFANE solution achieved
800,000 single-packet flows per second. Interestingly, it
was observed that the OpenFlow switch’s local controller
implementation becomes a bottleneck before the central
NOX controller. This was attributed to the fact that com-
mercial OpenFlow s