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Abstract

Convolutional neural networks (CNN) have recently shown
outstanding image classi cation performance in the large-
scale visual recognition challenge (ILSVRC2012). The suc-
cess of CNNs is attributed to their ability to learn rich mid-
level image representations as opposed to hand-designed
low-level features used in other image classi cation meth-
ods. Learning CNNs, however, amounts to estimating mil-
lions of parameters and requires a very large number of
annotated image samples. This property currently prevents
application of CNNs to problems with limited training data.
In this work we show how image representations learned
with CNNs on large-scale annotated datasets can be ef -
ciently transferred to other visual recognition tasks with

chair diningtable person

limited amount of training data. We design a method to

reuse layers trained on the ImageNet dataset to compute F

mid-level image representation for images in the PASCAL =~

VOC dataset. We show that despite differences in image ‘ .

statistics and tasks in the two datasets, the transferred rep- .
Sofa

resentation leads to signi cantly improved results for object ~ Pottedplant tvmonitor

and action classi cation, outperforming the current state of
]

the art on Pascal VOC 2007 and 2012 datasets. We also
Figure 1:Recognition and localization results of our method for

show promising results for object and action localization.

Objhe.Ct recogntltlon_h.as k:f)een a driving mcF)etlvatlcin for re- a Pascal VOC test image. Output maps are shown for six object
search in computer vision for many years. Recent progress,, e ries with the highest responses.
in the eld has allowed recognition to scale up from a few
ob!ect mstancgs in cont.rolled se’gups towards hundreds. ofyorks have a long history in visual recognition. Rosen-
object categories in arbitrary environments. Much of this powe Mark | Perceptron 49 arguably was one of the
progress has been enabled by the development of robustg; compuyter vision systems. Inspired by the neural con-
image descriptors such as SIFTI] and HOG [, bag-  petivity pattern discovered by Hubel and WieseH][
of-features image representations s, 35 43 as well - g yshima's Neocognitronif] extended earlier networks
as deformable part models. Another enabling factor it invariance to image translations. Combining the back-

has been the development of increasingly large and realis'propagation algorithm3¢] with the Neocognitron archi-

tic imag(_a datasets providing object annotation for training tecture, convolutional neural networks4| 28] quickly
and testing, such as Caltech256] Pascal VOC [(]and  5chieved excellent results in optical character recognition
ImageNet p]. . , leading to large-scale industrial applicatiois,[41].

Although being less common in recent years, neural net- Convolutional neural networks (CNN) are high-capacity

WILLOW project-team, @partement d'Informatique defltole Nor- classi ers with Very_la:rge numbers of pe_trameters that must
male Sugrieure, ENS/Inria/lCNRS UMR 8548, Paris, France. be learned from training examples. While CNNs have been

1. Introduction




advocated beyond character recognition for other vision brie y discuss below.

tasks p3, 49 including generic object recognitioril],  rangfer learning. Transfer learning aims to transfer
their performance was limited by the relatively small sizes knowledge between relatadurceandtargetdomains B4].
of standard object recognition datasets. |5 computer vision, examples of transfer learning in-
Notably, many successful image classi cation pipelines ,de I, 46] which try to overcome the de cit of training
share aspects of the Neocognitron and convolutional ”eurakamples for some categories by adapting classi ers trained
networks. Quantizing and spatially aggregating local de- tor other categories. Other methods aim to cope with differ-
scriptors [/, 25, 31] arguably produces low-level image fea-  ont gata distributions in the source and target domains for
tures comparable to those computed by the rst two layers ihe same categories, e.g. due to lighting, background and
of the Neocognitron. It is therefore possible that these Man-yiew-point variations {2, 22, 40]. These and other related
ually designed pipelines only outperform CNNs because methods adapt classi ers or kernels while using standard
CNNs are hard to train using small numbers of images.  jmage features. Differently to this work, we here transfer
This situation has changed with the appearance of thejmage representations trained on the source task.
large-scale ImageNet datase} gnd the rise of GPU com- More similar to our work, §] trains CNNs on unsuper-
puting. Krizhevskyet al. [27] achieve a performance 1eap seq pseudo-tasks. Differently t&][we pre-train the con-
in image classi cation on the ImageNet 2012 Large-Scale \o|ytional layers of CNNs on a large-scale supervised task
Visual Recogpnition Challenge (ILSVRC-2012), and further 54 aqdress variations in scale and position of objects in the
improve the performance by training a network on all 15 346 Transfer learning with CNNs has been also explored

million images and 22,000 ImageNet classes. As much asor Natural Language Processiri [n a manner closely re-
this result is promising and exciting, it is also worrysome. |ated to our approach.

Will we need to collect millions of annotated images for . . )
Visual object classication. Most of the recent im-

each new visual recognition task in the future? oot
It has been argued that computer vision datasets havé?9€ classi cation methods follow the bag-of-features

signi cant differences in image statisticel'{]. For ex- p|p_eline 1 D_ensely_—sampled S”.:T descriptprs; I are
ample, while objects are typically centered in Caltech256 typically q_uantlzed using gnsuperwsed c_Iustermg (k-_means,
and ImageNet datasets, other datasets such as Pascal VOgMM). Histogram encoding {, 47, spatial pooling £]

and LabelMe are more likely to contain objects embed- and more recent Fisher Vector encodiiigjfare common

ded in a scene (see Figug Differences in viewpoints, methods for feature aggregation. While such representa-
tions have been shown to work well in practice, it is un-

scene context, “background” (negative class) and other fac- | hv thev should b imal for th K Thi .
tors, inevitably affect recognition performance when train- ¢/€ar why they should be optimal for the task. This question
raised considerable interest in the subject of mid-level fea-

ing and testing across different domaifs,[40, 47]. Sim- o N
], and feature learning in generalj, 37, 45].

ilar phenomena have been observed in other areas such duresb, 21, . ) .
NLP [2]. Given the “data-hungry” nature of CNNs and the The goal of this work is to show that convolutional network

layers provide generic mid-level image representations that

dif culty of collecting large-scale image datasets, the appli-
y g'arg g bp can be transferred to new tasks.

cability of CNNs to tasks with limited amount of training

data appears as an important open problem. Deep Learning. The recent revival of interest in multi-
To address this problem, we propose to transfer im- layer neural networks was triggered by a growing number of

age representations learned with CNNs on large datasets tavorks on learning intermediate representations, either using

other visual recognition tasks with limited training data. In unsupervised methods, as in/[ 26], or using more tradi-

particular, we design a method that uses ImageNet-trainedional supervised techniques, as in[23].

layers of CNN to compute ef cient mid-level image repre- ) ]

sentation for images in Pascal VOC. We analyze the transfer3- Transferring CNN weights

performance and show signi cant improvements on the Pas-

cal VOC object and action classi cation tasks, outperform- ion narameters. Directly learning so many parameters from
ing the state of the art. We also show promising results for only a few thousand training images is problematic. The
object and action localization. Results of object recognition key idea of this work is that the internal layers of the CNN
and localization by our method are illustrated in Figlire can act as @eneric extractor of mid-level image represen-
In the following we discuss related work in Secti@n tation, which can be pre-trained on one dataset @berce
SectiqnsS and4 present our method and experiments, re- taqy here ImageNet) and then re-used on otaeget tasks
spectively. (here object and action classi cation in Pascal VOC), as il-
lustrated in Figure2. However, this is dif cult as the la-
2. Related Work bels and the distribution of images (type of objects, typical
Our method is related to numerous works on transfer viewpoints, imaging conditions, etc.) in the source and tar-
learning, image classi cation, and deep learning, which we get datasets can be very different, as illustrated in Figure

The CNN architecture of{3] contains more than 60 mil-
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Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classi cation, top row) with

a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classi cation, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

To address these challenges we (i) design an architecturesource task can be very different from the labels in the tar-
that explicitly remaps the class labels between the sourceget task (also called a “label bias'{]). For example, the
and target tasks (Sectiéhl), and (ii) develop training and  source network is trained to recognize different breeds of
test procedures, inspired by sliding window detectors, thatdogs such abusky dog or australian terrier , but the
explicitly deal with different distributions of object sizes, target task contains only one lalidg. The problem be-
locations and scene clutter in source and target tasks (Seceomes even more evident for the target task of action classi-

tions3.2and 3.3). cation. What object categories in ImageNet are related to
the target actionseading  or running  ?
3.1. Network architecture In order to achieve the transfer, we remove the output

For the source task. we use the network architec-!ayer FC8 of the pre-trained network and add an adaptation
ture of Krizhevskyet al. [23. The network takes as layer fprmed by two fully connected layers FCa and FCb
input a square224 224 pixel RGB image and pro- (see Figure, pottom) that use the outp_ut vector; of the
duces a distribution over the ImageNet object classes.|2yer FC7 asinput. Note that; is obtained as a complex
This network is composed of ve successive convolu- non-Imear_funcUon of potentially all input plxel_s and may
tional layers C1...C5 followed by three fully connected Capture mid-level object parts as well as their high-level
layers FC6...FC8 (Figure, top). Please refer to?f] con gurations P6, 50]. The FCa and FCb layers compute
for the description of the geometry of the ve convolu- Ya= (WaY7+ Ba)andYp= (WpYa+ Bp), where

tional layers and their setup regarding contrast normaliza-W a: Ba, W, By, are the trainable parameters. In all our
tion and pooling. The three fully connected layers then experiments, FC6 and FC7 have equal sizes (either 4096 or

compute Yg= (WgYs+ Bg), Y7= (W7Yg+ B7), 6144, see Sectiof), FCa has size 2048, and FCb has a size

and Yg= (WgY7+ Bg), whereY denotes the out- equal to the number of target categories.

put of thek-th layer, W, B are the trainable param- The parameters of layers C1 C5, FC6 and FC7 are rst

eters of thek-thslayer, and (X)[i]=max(0;X[i]) and trained on the source task, then transferred to the target task
(X)[i]= eXlil= j Xl are the “ReLU” and “SoftMax” and kept xed. Only the adaptation layer is trained on the

non-linear activation functions. target task training data as described next.

For target tasks (Pascal VOC object and action classi ca- ..
tion) we wish to design a network that will output scores for 3.2. Network training
target categories, drackground if none of the categories First, we pre-train the network using the code &f][on
are present in the image. However, the object labels in thethe ImageNet classi cation source task. Each image typi-
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cally contains one object centered and occupying signi cant
portion of the image with limited background clutter as il-
lustrated in Figure(left). The network is trained to predict
the ImageNet object class label given the entire image ag
input. Details are given in Sectigh

As discussed above, the network is pre-trained to clas-
sify source task images that depict single centered objectsFigure 4: Generating training data for the target task. The
The images in the target task, however, often depict Com_lnput image (top) is dlv_lded into mu_Itl-scaIe (_)verlapplng patches
plex scenes with multiple objects at different scales and ori- (P0ttom). Each patch is labelled with an object label (green) or

. . N as background (red) depending on the overlap with object bound-
entations with signi cant amount of background clutter, as ing boxes. Note that object patches are similar in appearance to

iIIustrgte_d in_ Figure3 .(middlle and_ right). In .other words, the training data for the source task containing mostly centered
the distribution of object orientations and sizes as well as, gpjects.

for example, their mutual occlusion patterns is very differ-
ent between the two tasks. This issue has been also calleghat do not contain any object. One additional dif culty is
“a dataset capture bias”]]. In addition, the target task that the training data is unbalanced: most patches from the
may contain many other objects in the background that aretraining images come from background. This can be ad-
not present in the source task training data (a “negative datelressed by re-weighting the training cost function, which
bias” [47]). To explicitly address these issues we train the Would amount to re-weighting its gradients during train-
adaptation layer using a procedure inspired by training slid- ing. We opt for a slightly different procedure and instead
ing window object detectors (e.gl.4]) described next. re-sample the training patches to balance the training data
We employ a sliding window strategy and extract around distribution. This resampled training set is then used to
500 square patches from each image by sampling eight dif-form mini-batches for the stochastic gradient descent train-
ferent scales on a regularly-spaced grid with at least 50%iNg. This is implemented by sampling a random 10% of the
overlap between neighboring patches. More precisely, wetraining background patches.
use square patches of widtl min( w; h)=pixels, where 3.3. Classi cation
w andh are the width and height of the image, respectively, At test time we apply the network to each of the (ap-

?ngz 42 lez;zg;_l:s;lz;ztz‘“?8;312;3:6'4&1 _EaCT fpatt%h 1S rte\;;ca:(led proximately) 500 overlapping multi-scale patches extracted
° S led PIXELS 10 Oan availdinput for the nEwork. b from the test image. Examples of patch scores visualized
ampled image patches may contain one or more ob-, e antire images are shown in Figureand5. We use

Jects, chkgrpqnd,_ or only a part of the object. To label the following aggregation formula to compute the overall
patches in training images, we measure the overlap betweelgCore for objecC, in the image
n

the bounding box of a patdA and ground truth bounding

2 labels : deletefs background

L] Person'\. no overlap
A Sheep\. truncated

background

|- Persony truncated |
Sheepit!
— sheep

boxesB of annotated objects in the image. The patch is la- 1

belled as a positive training example for clas$there ex- scoreCn) = y(CajPi)"; (1)
ists aB, corresponding to clagssuch that (i)B, overlaps i=1

suf ciently with the patchiP \ Boj  0:2jPj, (ii) the patch  \wherey(C,jP;) is the output of the network for cla,
contains large portion of the objefe \ Boj  0:6]Boj, on image patchP;, M is the number of patches in the im-

and (iii) the patch overlaps with no more than one object. age, anck 1 is a parameter. Higher valueslofocus on

In the above de nitiongAj measures the area of the bound- the highest scoring patches and attenuate the contributions
ing boxA. Our labeling criteria are illustrated in Figude of low- and mid-scoring patches. The valuekot 5 was
Dealing with background. As discussed above, the tar- optimized on the validation set and is xed in our experi-
get task has an additionahckground label for patches  ments.



Note that patch scores could be computed much morerior to those reported by the winners of the 2012 challenge
ef ciently by performing large convolutions on adequately (NUS-PSL [19]), our method outperforms!f] on ve out
subsampled versions of the full image, as described for in-of twenty classes. To estimate the performance boost pro-
stance in [1]. This would permit a denser patch coverage vided by the feature transfer, we compare these results to
at a lower computation cost. the performance of an identical network directly trained on
. the Pascal VOC 2012 training data@dNRETRAIN) without
4. Experiments using any external data from ImageNet. Notably, the per-

In this section we rst describe details of training, and formance drop of nearly 8% in the case 0bNRETRAIN
discuss pre-training results for the source task of ImageNetclearly indicates the positive effect of the proposed transfer.

object classi cation. We next show experimental results of Transfer learning and source/target class overlap. Our

the proposed transfer learning method on the target Pascaéource ILSVRC-2012 dataset contains target-related object
VOC object classi cation task for both VOC 2007 and VOC  classes, in particular, 59 species of birds and 120 breeds of
2012 datasets. We also investigate the dependency of resultgogs related to theird anddog classes of Pascal VOC. To

on the overlap of source and target tasks by object classesunderstand the in uence of this overlap on our results, we
Finally, we apply the proposed transfer learning method on have pre-trained the network on a source task data formed
a very different task of action recognition in still images. by 1,000 ImageNet classes selected, this tiaterandom
Training convolutional networks. All our training ses-  among all the 22,000 available ImageNet classes. Results
sions were carried out using the code provided by Of this experimentare reported in Tatdlegow PRE-1000R.
Krizhevsky et al. [27] and replicating their exact dropout The overall performance has decreased slightly, indicating
and jittering strategies. However, we do not alter the RGB that the overlap between classes in the source and target do-
intensities and we use a single GeForce GTX Titan GPU mains may have a positive effect on the transfer. Given the
with 6GB of memory instead of the two GPUs of earlier relatively small performance drop, however, we conclude
generation used ir?[j]. The training procedure periodically ~ that our transfer procedure is robust to changes of source
evaluates the cross-entropy objective function on a subset ofind target classes. As the number of training images in this
the training set and on a validation set. The initial learning €xperiment was about 25% smaller than in the ILSVRC-
rates are set to 0.01 and the network is trained until the train-2012 training set (RE-1000C), this could have been an-
ing cross-entropy is stabilized. The learning rates are thenother reason for the decrease of performance.

divided by 10 and the training procedure repeats. We stop Conversely, we have augmented the 1,000 classes of the
training after three iterations. We have not tuned parame-ILSVRC-2012 training set with 512 additional ImageNet
ters for this part of the algorithm and we did not observe classes selected to increase the overlap with specic
over tting on the validation set. classes in the Pascal VOC target task. We included all
Image classi cation on ImageNet. We rsttrainasingle ~ the ImageNet classes located below tiwfed mammal
convolutional network on the 1000 classes and 1.2 million (276 classes)fumiture  (165), motorvehicle  (48),
images of the ImageNet 2012 Large Scale Visual Recogni-Public transport (18), bicycle  (5) nodes of the

tion Challenge (ILSVRC-2012). This network has exactly WordNet hierarchy. In order to accommodate the larger
the same structure as the network described . [Lay- number of classes, we also increased the size of the FC6 and
ers FC6 and FC7 have 4096 units. Training lasts about ong”C7 layers from 4,096 to 6,144 dimensions. Training on the
week. The resulting network achieves a 18% top-5 error 'ésulting 1.6 million images achieves a 21.8% top-5 error
rate", comparable to the 17% reported &7 for a single rate on the 1,512 classes. Using this pre-trained network we
network. This slight performace loss could be caused by thehave obtained further improvements on the target task, out-

absence of RGB intensity manipulation in our experiments. Performing the winner of Pascal VOC 202 on average
(row PRE-1512 in Table2). In particular, improvements

Image classi cation on Pascal VOC 2007. We apply our are obtained for categoriesofy, horse , sheep , sofa ,

mid-level feature transfer scheme to the Pascal VOC 2007Chair table ) related to the added classes in the source

e o) e don. 185k By conpang resuts for:L000R, - 1000C
d 9 and RRE-1512 setups, we also note the consistent improve-

cant improvements over previous results on this data outper—mem ofall target classes. This suagests that the number of
forming the 2007 challenge winners] (INRIA) by 18.3% g ' 99

and the more recent work of{] (NUS-PSL) by 7.2%. images and class_es in the source task might be decisive for
o the performance in the target task. Hence, we expect further
Image classi cation on Pascal VOC 2012. We next ap-  jmprovements by our method using larger source tasks.
ply our method to the Pascal VOC 2012 object classi ca- . o
. . Object localization. Although our method has not been
tion task. Results are shown in the ro®E21000C of Ta- e . o
explicitly designed for the task of localization, we have

ble 2. Although these results are on average about 4% infe- . . : o
observed strong evidence of object and action localization
15 guesses are allowed. provided by the network at test time. For qualitative as-




plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa traimAR/
INRIA [27] 775 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 859 36.3 44.7 50.6 79.2 53.2| 59.4
NUS-PSL4] | 825 79.6 64.8 73.454.2 75.0 77.5 79.2 46.2 62.7 414 74850 76.8 91.1 53.9 61.067.5 83.6 70.6 70.5
PRe-1000C | 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9| 77.7

Table 1:Per-class results for object classi cation on the VOC2007 test set (average precision %).

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa traimAR/
NUS-PSL '] | 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7| 82.2
NoO PRETRAIN| 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 624 61.9 49.8 759 714 827 93.1 59.1 69.7 49.3 80.0/07B|7
PRE-1000C | 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3| 78.7
PRE-1000R | 93.2 779 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 814 84.8 952 59.8 749 529 83.&6/5
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 934 88.6 96.1 64.3 86.6 62.3 91.1 79.8| 82.8

N

Table 2: Per-class results for object classi cation on the VOC2012 test set (average precision %).

Action lumpphon instr read bike horse run photcompwalkP action recognition task, and inspired b§],[ our last re-

STANFORD[1]|75.7 44.866.6 44.4 93.294.287.6 38.4 70.6 75.6 69.1 : g .
OXFORD[1] |77.0 50.465.3 39.594.1 95.9 87.742.7 68.6 74.569.6 sults were obtained by training the target task CNN with-

NO PRETRAIN|43.230.650.225.076.880.775.222.237.955.6149.7|  Out freezing the FC6 weights. More precisely, we copy
PRE-1512  |73.4 44.874.843.2 92.1 94.3 83.45.7 65.5 66.868.4 the ImageNet-trained weights of layers:C1C5, FC6 and

PRE-1512U |74.846.075.645.393595.086549.366.769.570.2|  FC7, we append the adaptation layers FCa and FCb, and

Table 3:Pascal VOC 2012 action classi cation results (AP %).  We retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all

sessment of localization results, we compute an output magAction categories (rowrt-1512U in Tables), yielding, to

for each category by averaging the scores of all the testingthe best of our knowledge, the best average result published

patches covering a given pixel of the test image. Exampleson the Pascal VOC 2012 action recognition task.

of such output maps are given in Figureand5 as well To demonstrate that we can also localize the action in the

as on the project webpagé][ This visualization clearly ~ image, we train the network in a sliding window manner, as

demonstrates that the system knows the size and locationglescribed in sectiod. In particular, we use the ground truth

of target objects within the image. Addressing the detection person bounding boxes during training, but do not use the

task seems within reach. ground truth person bounding boxes at test time. Example

. . . output maps shown in guré clearly demonstrate that the
Action recognition. - The Pascal VOC 2012 action recog- network provides an estimate of the action location in the

nition task consists of 4588 training images and 4569 test.

images featuring people performing actions among ten cate—mage'

gories such agmping , phoning , playing instrument Failure modes. Top-ranked false positives in Figuie

or reading . This ne-grained task differs from the correspond to samples closely resembling target object
object classi cation task because it entails recognizing classes. Resolving some of these errors may require high-
ne differences in human poses (e.g.running V.S. level scene interpretation. Our method may also fail to

walking ) and subtle interactions with objectshning recognize spatially co-occurring objects (e.g., person on a
or takingphoto ). Training samples with multiple simul- ~ chair) since patches with multiple objects are currently ex-

taneous actions are excluded from our training set. cluded from training. This issue could be addressed by

To evaluate how our transfer method performs on this changing the trainjng objective to allow multiple Iabels_ per
very different target task, we use a network pre-trained Sample. Recognition of very small or very large objects
on 1512 ImageNet object classes and apply our transfercould also fail due to the sparse sampling of patches in our
methodology to the Pascal VOC action classi cation task. CUrTent implementation. As mentioned in Sectit this
Since the bounding box of the person performing the ac- ISSU€ could be resolved using a more ef cient CNN-based
tion is known at testing time, both training and testing are IMplementation of sliding windows.
performed using a single square patch per sample, centere .
on the person bounding box. Extracting the patch pos-%' Conclusion
sibly involves enlarging the original image by mirroring Building on the performance leap achieved hy][on
pixels. The results are summarized in roREP1512 Ta-  ILSVRC-2012, we have shown how a simple transfer learn-
ble 3. The transfer method signi cantly improves over the ing procedure yields state-of-the-art results on challenging
No PRETRAINbaseline where the CNN is trained solely on benchmark datasets of much smaller size. We have also
the action images from Pascal VOC, without pretraining on demonstrated the high potential of the mid-level features
ImageNet. In particular, we obtain best results on challeng- extracted from an ImageNet-trained CNNs. Although the
ing categorieglaying instrument andtakingphoto . performance of this setup increases when we augment the

In order to better adapt the CNN to the subtleties of the source task data, using only 12% of the ImageNet corpus al-



(a) Representative true positives (b) Top ranking false positives

aeroplane aeroplane aeroplane
bicycle bicycle bicycle
bird bird bird
boat boat boat

bottle bottle bottle

T

tvmonitor

-

Figure 5: Representative high-scoring images and the corresponding response maps for the VQiDj@ctLelassi cationtest set.
Score maps provide estimates of object locations and scales in the image. The rightmost column contains the high-scoring false positive
(according to our judgement) for each of the shown object categories. Please see additional results on the webpage of ffje project [




(a) Representative true positives (b) Top ranking false positives
jumping jumping jumping
phoning phoning phoning
playing instrument playing instrument playing instrument
reading reading reading
riding bike riding bike riding bike
riding horse riding horse riding horse
running running running
taking photo taking photo taking photo
using computer using computer using computer

Figure 6: Representative high-scoring images and the corresponding response maps for the VGEt201elassi cationtest set.
Score maps provide estimates of action locations and scales in the image. The rightmost column contains the high-scoring false positive
(according to our judgement) for each of the shown action categories. Please see additional results on the webpage of fje project [



ready leads to the best published results on the Pascal VOQ18] D.H. Hubel and T.N. Wiesel.

2012 classi cation and action recognition tasks.

We plan to make the mid-level representation publicly
available in the hope of facilitating the combination of
CNN with sophisticated techniques invented in the com-
puter vision community such as ef cient indexing9 or
deformable modelsl}].
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