
HAL Id: hal-00920786
https://hal.inria.fr/hal-00920786

Submitted on 19 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient high-level abstractions for web programming
Julien Richard-Foy, Olivier Barais, Jean-Marc Jézéquel

To cite this version:
Julien Richard-Foy, Olivier Barais, Jean-Marc Jézéquel. Efficient high-level abstractions for web pro-
gramming. Jaakko Jarvi and Christian Kastner. Generative Programming: Concepts and Experiences,
GPCE’13, Oct 2013, Indianapolis, United States. ACM, pp.53-60, 2013, <10.1145/2517208.2517227>.
<hal-00920786>

https://hal.inria.fr/hal-00920786
https://hal.archives-ouvertes.fr

Efficient High-Level Abstractions for Web Programming

Julien Richard-Foy Olivier Barais Jean-Marc Jézéquel
IRISA, Université de Rennes 1

④✜rst⑥✳④❧❛st⑥❅✐r✐s❛✳❢r

Abstract

Writing large Web applications is known to be difficult. One chal-
lenge comes from the fact that the application’s logic is scattered
into heterogeneous clients and servers, making it difficult to share
code between both sides or to move code from one side to the other.
Another challenge is performance: while Web applications rely on
ever more code on the client-side, they may run on smart phones
with limited hardware capabilities. These two challenges raise the
following problem: how to benefit from high-level languages and
libraries making code complexity easier to manage and abstract-
ing over the clients and servers differences without trading this
ease of engineering for performance? This article presents high-
level abstractions defined as deep embedded DSLs in Scala that can
generate efficient code leveraging the characteristics of both client
and server environments. We compare performance on client-side
against other candidate technologies and against hand written low-
level JavaScript code. Though code written with our DSL has a
high level of abstraction, our benchmark on a real world applica-
tion reports that it runs as fast as hand tuned low-level JavaScript
code.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Heterogeneous code generation, Domain-specific lan-
guages, Scala, Web

1. Introduction

Web applications are attractive because they require no installation
or deployment steps on clients and enable large scale collaborative
experiences. However, writing large Web applications is known
to be difficult [16, 18]. One challenge comes from the fact that
the business logic is scattered into heterogeneous client-side and
server-side environments [14, 19]. This gives less flexibility in the
engineering process and requires a higher maintenance effort: there
is no way to move a piece of code targeting the server-side to
target the client-side – the code has to be rewritten. Even worse,
logic parts that run on both client-side and server-side need to be
duplicated. For instance, HTML fragments may be built from the
server-side when a page is requested by a client, but they may
also be built from the client-side to perform an incremental update

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GPCE ’13, October 27–28, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2373-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/2517208.2517227

subsequent to a user action. How could developers write HTML
fragment definitions once and render them on both client-side and
server-side?

The more interactive the application is, the more logic needs to
be duplicated between the server-side and the client-side, and the
higher is the complexity of the client-side code. Developers can use
libraries and frameworks to get high-level abstractions on client-
side, making their code easier to reason about and to maintain,
but also making their code run less efficiently due to abstraction
penalty.

Performance is a primary concern in many Web applications,
because they are expected to run on a broad range of devices, from
the powerful desktop personal computer to the less powerful smart
phone [10, 22].

Using the same programming language on both server-side and
client-side could improve the software engineering process by en-
abling code reuse between both sides. Incidentally, the JavaScript
language – which is currently the most supported action language
on Web clients – can be used on server-side. Conversely, an increas-
ing number of programming languages or compiler back-ends can
generate JavaScript code (e.g. Java/GWT [5], SharpKit1, Dart [8],
Kotlin2, ClojureScript [15], Fay3, Haxe [4] or Opa4).

However, using the same programming language is not enough
because the client and server programming environments are not
the same. For instance, DOM fragments can be defined on client-
side using the standard DOM API, but this API does not exist on
server-side. How to define a common vocabulary for such con-
cepts? And how to make the executable code leverage the native
APIs, when possible, for performance reasons?

Generating efficient code for heterogeneous platforms is hard
to achieve in an extensible way: the translation of common abstrac-
tions like collections into their native counterpart (JavaScript arrays
on client-side and standard library’s collections on server-side) may
be hard-coded in the compiler, but that approach would not scale
to handle all the abstractions a complete application may use (e.g.
HTML fragment definitions, form validation rules, or even some
business data type that may be represented differently).

On one hand, for engineering reasons, developers want to write
Web applications using a single high-level language, abstracting
over the target platforms differences and reducing code complex-
ity. But on the other hand, for performance reasons, they want to
keep control on the way their code is compiled to each target plat-
form. We propose to solve this dilemma by providing high-level
abstractions in compiled domain-specific embedded languages
(DSELs) [7, 11]. Compiled DSELs allow the definition of domain-
specific languages (DSLs) as libraries on top of a host language,

1 http://sharpkit.net
2 http://kotlin.jetbrains.org/
3 http://fay-lang.org/
4 http://opalang.org/

53

http://sharpkit.net
http://kotlin.jetbrains.org/
http://fay-lang.org/
http://opalang.org/

and to compile them to a target platform. Their deep embedding
gives the opportunity to control the code generation scheme for a
given abstraction and target platform.

Kossakowski et al. introduced js-scala, a compiled embedded
DSL defined in Scala that generates JavaScript code, making it
possible to write the client-side code of Web applications using
Scala [13]. However, the authors did not discuss any specific opti-
mization and did not consider performance issues of their approach.
Our paper shows how js-scala has been extended to support a set of
specific optimizations allowing our high-level abstractions for Web
programming to be efficiently compiled on both client and server
sides5.

We validate our approach with a case study implemented with
various candidate technologies and discuss the relative pro and cons
of them. We also measured the individual impact of each of our
optimizations using micro-benchmarks. Though the code written
in our DSL is high-level and can be shared between clients and
servers, it has the same runtime performance on client-side as hand-
tuned low-level JavaScript code.

The remainder of this paper is organized as follows. The next
section overviews the existing approaches defining high-level lan-
guages for Web programming. Section 3 presents the framework
we used to define our DSLs. Section 4 presents our contribution.
Section 5 compares our solution to common approaches. Section 6
discusses our results and section 7 concludes.

2. Related Work

We classified existing approaches providing high-level abstractions
for Web programming in four categories, as shown in Figure 1.

Figure 1. Language engineering processes
Fat Languages The first approach for defining a cross-platform
language consists in hard-coding, in the compiler, the code genera-
tion scheme of each language feature to each target platform. Fig-
ure 1 (a) depicts this process. In order to support a feature related to

5 The code is available at http://github.com/js-scala

a specific domain, the whole compiler pipeline (parser, code gen-
erator, etc.) may have to be adapted. This approach gives fat lan-
guages because a lot of concepts are defined at the language level:
general programming concepts such as naming, functions, classes,
as well as more domain-specific concepts such as HTML fragment
definition. Thus, implementing a fat language may require a high
effort and adding support for these languages in development envi-
ronments may require a even higher effort. Examples of such lan-
guages for Web programming are Links [6], Opa, Dart [8].

Domain-Specific Languages Another approach consists in defin-
ing several independent domain-specific languages [23], each one
focusing on concerns specific to a given problem domain, and then
to combine all the source artifacts written with these language into
one executable program, as shown in Figure 1 (b). Defining such
languages requires a minimal effort compared to the previous ap-
proach because each language has a limited set of features. On the
other hand, it is difficult to have interoperability between DSLs.
[24] gave an example of such a domain-specific language for defin-
ing Web applications.

Thin Languages Alternatively, one can define concepts relative
to a specific domain as a library on top of a thin general purpose
language (it is also referred to as a domain-specific embedded lan-
guage [11]). Figure 1 (c) depicts this approach. Defining such a
library requires minimal effort (though the syntax of the DSL is
limited by the syntax flexibility of the host language) and several
DSLs can interoperate freely within the host language. However,
this approach gives no opportunity to efficiently translate a con-
cept according to the target platform characteristics because the
compiler has no domain-specific knowledge (though some com-
pilers hard-code the translation of some common abstractions such
as arrays to leverage the target platform characteristics). Examples
of languages following this approach are Java/GWT, Kotlin, HaXe
and SharpKit. Libraries written in JavaScript (e.g. jQuery [2]) also
match this category though most of them do not support both client
and server sides.

Deeply Embedded Languages The last approach, shown in Fig-
ure 1 (d), can be seen as a middle-ground between the two previous
approaches: DSLs are embedded in a host language but use a code
generation process. This approach shares the same benefits and
limitations as embedded DSLs for defining language units. How-
ever, the code generation process is specific to each DSL and gives
the opportunity to perform domain-specific optimizations. In other
words deeply embedded DSLs bring domain-specific knowledge
to the compiler. Js-scala [13] is an example of deeply embedded
DSL in Scala for Web programming. It makes it possible to pro-
duce JavaScript programs from Scala code that uses basic language
concepts like arrays and control structures (i f and w h i l e) as well
as mechanisms specific to the Scala compiler like delimited contin-
uations to handle asynchronous computations. Paper [13] presented
the implementation of js-scala using staging, but did not discuss
any specific optimization and did not consider performance issues
of this approach. In this paper, we show how js-scala has been ex-
tended to support a set of specific optimizations allowing our high-
level abstractions for Web programming to be efficiently compiled
on heterogeneous platforms.

3. Lightweight Modular Staging

This section gives background material on the framework used to
define js-scala.

Lightweight Modular Staging [20, 21] (LMS) is a framework
for defining deeply embedded DSLs in Scala. It has been used to
define high-performance DSLs for parallel computing [3] and to
define JavaScript as an embedded DSL in Scala [13].

54

http://github.com/js-scala

LMS is based on staging [12]: a program using LMS is a regu-
lar Scala program that evaluates to an intermediate representation
(IR) of a final program. This IR is a graph of expressions that can
be traversed by code generators to produce the final program code.
Expressions evaluated in the initial program and those evaluated in
the final program (namely, staged expressions) are distinguished by
their type: a Rep [I n t] value in the initial program is a staged ex-
pression that generates code evaluating to an I n t value in the final
program. An I n t computation in the initial program is evaluated
during the initial program evaluation and becomes a constant in the
final program.

Defining a DSL with LMS consists in the following steps:

• writing a Scala module providing the DSL vocabulary as an
abstract API,

• implementing the API in terms of IR nodes,

• defining a code generator visiting IR nodes and generating the
corresponding code.

4. Efficient High-Level Abstractions for Web

Programming

This section presents some tasks typically performed in Web appli-
cations, either on client-side or server-side or on both, generalizes
them in terms of high-level abstractions, and shows how they are
implemented in js-scala to generate efficient code.

4.1 Selectors API

In a Web application, the user interface is defined by a HTML
document that can be updated by the JavaScript code. A typical
operation consists in searching some “interesting” element in the
document, in order to extract its content, replace it or listen to user
events triggered on it (such as mouse clicks). The standard API
provides several functions to search elements in a HTML document
according to their name or attribute values. Figure 2 summarizes the
available functions and their differences.

Function Description
q u e r y S e l e c t o r (s) First element matching

the CSS selector s
ge tE lemen tById (i) Element which attribute

i d equals to i
q u e r y S e l e c t o r A l l (s) All elements matching

the CSS selector s
getElementsByTagName (n) All elements of type n
getElementsByClassName (c) All elements which

c l a s s attribute con-
tains c

Figure 2. Standard selectors API. The q u e r y S e l e c t o r and
q u e r y S e l e c t o r A l l are the most general functions while the oth-
ers handle special cases.

Listing 1 gives an example of use of various functions from the
native selectors API to retrieve a list of input fields within a form.
The getWords function first finds in the document the HTML
element with id add−u s e r , then collects all its f i e l d s e t children
elements, and for each one returns the list of its children elements
having class word. The existence of several specialized functions
in the API makes it possible to write efficient code, but forces users
to think at a low abstraction level.

A high-level abstraction for searching elements in a document
could be just one function finding all elements matching a given

f u n c t i o n getWords () {
var form = document . ge tE lemen tById (’ add−u s e r ’) ;
var s e c t i o n s =

form . getElementsByTagName (’ f i e l d s e t ’) ;
var r e s u l t s = [] ;
f o r (var i = 0 ; i < s e c t i o n s . l e n g t h ; i ++) {

var words = s e c t i o n s [i]
. ge tElementsByClassName (’ word ’) ;

r e s u l t s [i] = words ;
}
re turn r e s u l t s

}

Listing 1. Searching elements using the native selectors API

f u n c t i o n getWords () {
var form = $ (’ #add−u s e r ’) ;
var s e c t i o n s = $ (’ f i e l d s e t ’ , form) ;
re turn s e c t i o n s . map (f u n c t i o n () {

re turn $ (’ . word ’ , t h i s)
})

}

Listing 2. Searching elements using jQuery

CSS selector. In fact, most JavaScript developers6 use the jQuery
library that actually provides only one function to search for ele-
ments. Listing 2 shows an equivalent JavaScript program as Listing
1, but using jQuery. The code is both shorter and simpler, thanks to
its higher level of abstraction. jQuery provides an API that is sim-
pler to master because it has fewer functions, but this benefit comes
at the price of a decrease in runtime performance.

Instead, we propose a solution that has a high-level API but
generates JavaScript code using the specialized native API, when
possible, in order to get both ease of engineering and performance.
We achieve this by analyzing, during the first evaluation step, the
selector that is passed as parameter and, when appropriate, by
producing JavaScript code using the specialized API, and otherwise
producing code using q u e r y S e l e c t o r and q u e r y S e l e c t o r A l l .

def f i n d (s e l e c t o r : Rep [S t r i n g]) =
g e t C o n s t I d C s s (s e l e c t o r) match {

case Some (i d) i f r e c e i v e r == document =>
DocumentGetElementById (Cons t (i d))

case _ =>
S e l e c t o r F i n d (r e c e i v e r , s e l e c t o r)

}

Listing 3. Selectors optimization

Our API has two functions: f i n d to find the first element match-
ing a selector and f i n d A l l to find all the matching elements. List-
ing 3 gives the implementation of the f i n d function. It is a Scala
function that returns an IR node representing the JavaScript com-
putation that will search the element in the final program. The
g e t C o n s t I d C s s function analyzes the selector: if it is a constant
S t r i n g value containing a CSS ID selector, it returns the value of
the identifier. So, if the f i n d function is applied to the document
and to an ID selector, it returns a DocumentGetElementById IR
node (that is translated to a document . ge tE lemen tById call by
the code generator), otherwise it returns a S e l e c t o r F i n d IR node
(that is translated to a q u e r y S e l e c t o r call).

The same applies to the implementation of f i n d A l l : the se-
lector passed as parameter is analyzed and the function returns

6 According to http://trends.builtwith.com/javascript, jQuery is used by
more than 40% of the top million sites.

55

http://trends.builtwith.com/javascript

a Se lec to rGe tE lemen t sByClas sName in case of a CSS class
name selector, a Selec torGetElementsByTagName in case of a
CSS tag name selector, and a S e l e c t o r F i n d A l l otherwise.

def getWords () = {
v a l form = document . f i n d (" #add−u s e r ")
v a l s e c t i o n s = form . f i n d A l l (" f i e l d s e t ")
s e c t i o n s map (_ . f i n d A l l (" . word "))

}

Listing 4. Searching elements in js-scala

Figure 3. Intermediate representations returned by the evalu-
ation of (a) document . f i n d (" #add−u s e r b u t t o n ") and (b)
document . f i n d (" #add−u s e r ")

Figure 3 shows the IRs returned by the evaluation of document
.find(”#add−userbutton”) and document.find(”#add−user”).

In the former case, the selector is parsed and does not match
an ID selector (it is a composite selector matching button elements
within the element having the add−u s e r id), so a S e l e c t o r F i n d
node is returned, then translated into a call to the general
q u e r y S e l e c t o r function. In the latter case, the selector matches
an ID selector so a DocumentGetElementById node is returned,
then translated into a call to the specialized ge tE lemen tById
function.

Finally, Listing 4 shows how to implement Listing 2 in Scala us-
ing js-scala. The code has the same abstraction level as with jQuery,
however it generates a JavaScript program identical to Listing 1:
the high-level abstractions (the f i n d and f i n d A l l functions) exist
only in the initial program, not in the final JavaScript program.

4.2 Monads Sequencing

This section presents an abstraction to handle n u l l references and
shows how this abstraction can be shared between client and server
code.

n u l l references are a known source of problems in program-
ming languages [9, 17]. For example, consider Listing 5 finding a
particular widget in the page and then a particular button within
the widget. The native q u e r y S e l e c t o r method returns n u l l if no
node matched the given selector in the document. If we run this
code in a page where the widget is not present, it will throw an
error and stop further JavaScript execution. Defensive code can be

written to handle n u l l references, but leads to very cumbersome
code, as shown in Listing 6.7

var l o g i n W i d g e t =
document . q u e r y S e l e c t o r (" d i v . l o g i n ") ;

var l o g i n B u t t o n =
l o g i n W i d g e t . q u e r y S e l e c t o r (" b u t t o n . su bmi t ") ;

l o g i n B u t t o n . a d d E v e n t L i s t e n e r (" c l i c k " , h a n d l e r) ;

Listing 5. Unsafe code

var l o g i n W i d g e t =
document . q u e r y S e l e c t o r (" d i v . l o g i n ") ;

i f (l o g i n W i d g e t !== n u l l) {
var l o g i n B u t t o n =

l o g i n W i d g e t . q u e r y S e l e c t o r (" b u t t o n . su bmi t ") ;
i f (l o g i n B u t t o n !== n u l l) {

l o g i n B u t t o n .
a d d E v e n t L i s t e n e r (" c l i c k " , h a n d l e r) ;

}
}

Listing 6. Defensive programming to handle null references

Some programming languages encode optional values with a
monad (e.g. Maybe in Haskell and Opt ion in Scala). In that case,
sequencing over the monad encodes optional value dereferencing.
If the language supports a convenient syntax for monad sequencing,
it brings a convenient syntax for optional value dereferencing,
alleviating developers from the burden of defensive programming.

In our DSL, we encode an optional value of type Rep [A] using
a Rep [Opt ion [A]] value, which can either be a Rep [Some [A]]
(if there is a value) or a Rep [None . type] (if there is no
value). An optional value can be dereferenced using the f o r

notation, as shown in Listing 7, that implements in js-scala a
program equivalent to Listing 6. The f i n d function returns a
Rep [Opt ion [Element]] . The f o r expression contains a se-
quence of statements that are executed in order, as long as the pre-
vious statement returned a Rep [Some [Element]] value.

f o r {
l o g i n W i d g e t <− document . f i n d (" d i v . l o g i n ")
l o g i n B u t t o n <− l o g i n W i d g e t . f i n d (" su bmi t . b u t t o n ")

} l o g i n B u t t o n . on (C l i c k) (h a n d l e r)

Listing 7. Handling null references in js-scala

Such a monadic API brings both safety and expressiveness to
developers manipulating optional values but usually involves the
creation of an extra container object holding the optional value.
In our case, the monadic API is used in the initial program but
generates code that does not wrap values in container objects but
instead checks if they are n u l l or not when dereferenced. So
the extra container object exists only in the initial program and
is removed during code generation: Listing 7 produces a code
equivalent to Listing 6.

Listing 8 shows the JavaScript code generator for methods
i sEmpty (that checks if the optional value contains a value)
and f o r e a c h (that is called when the f o r notation is used, as
in Listing 7). The emitNode method handles Opt ionIsEmpty
and O p t i o n F o r e a c h nodes returned by the implementations
of i sEmpty and f o r e a c h , respectively. In the case of the
Opt ionIsEmpty node, it simply generates an expression testing

7 However, one could alleviate the syntax burden by using a language such
as CoffeeScript [1], that suppports a special notation for optional values
dereferencing and desugars directly to JavaScript.

56

o v e r r i d e def emitNode (sym : Sym[Any] , r h s : Def [Any]) =
r h s match {

case Opt ionIsEmpty (o) =>
emi tVa lDef (sym , q " $o === n u l l ")

case O p t i o n F o r e a c h (o , b) =>
s t r e a m . p r i n t l n (q " i f ($o !== n u l l) { ")
emi tB lock (b)
s t r e a m . p r i n t l n (" } ")

case _ =>
super . emitNode (sym , r h s)

}

Listing 8. JavaScript code generator for null references handling
DSL

if the value is n u l l . In the case of the O p t i o n F o r e a c h node, it
wraps the code block dereferencing the value within a i f checking
that the value is not n u l l .

The IR nodes are not tied to the JavaScript code generator, so
we are able to make this abstraction available on server-side by
writing a code generator similar to the JavaScript code generator,
but targeting Scala. So the same abstraction is efficiently translated
on both server and client sides.

4.3 DOM Fragments Definition

This section shows how we define an abstraction shared between
clients and servers, as in the previous section, but that has different
native counterparts on client and server sides. The challenge is to
define an API providing a common vocabulary that generates code
using the target platform native APIs.

var a r t i c l e U i = f u n c t i o n (a r t i c l e) {
var d i v = document . c r e a t e E l e m e n t (’ d i v ’) ;
d i v . s e t A t t r i b u t e (’ c l a s s ’ , ’ a r t i c l e ’) ;
var span = document . c r e a t e E l e m e n t (’ span ’) ;
var name =

document . c r e a t e T e x t N o d e (a r t i c l e . name + ’ : ’) ;
span . appendCh i ld (name) ;
d i v . appendCh i ld (span) ;
var s t r o n g = document . c r e a t e E l e m e n t (’ s t r o n g ’) ;
var p r i c e = document . c r e a t e T e x t N o d e (a r t i c l e . p r i c e) ;
s t r o n g . appendCh i ld (p r i c e) ;
d i v . appendCh i ld (s t r o n g) ;
re turn d i v

} ;

Listing 9. JavaScript DOM creation native API

def a r t i c l e U i (a r t i c l e : A r t i c l e) =
< d i v c l a s s =" a r t i c l e ">

{ a r t i c l e . name + " : " } </ span >
< s t r o n g >{ a r t i c l e . p r i c e } </ s t r o n g >

</ div >

Listing 10. Scala XML API

A common task in Web applications consists in computing
HTML fragments representing a part of the page content. This task
can be performed either from the server-side (to initially respond
to a request) or from the client-side (to update the current page).
As an example, Listing 9 defines a JavaScript function a r t i c l e U i
that builds a DOM tree containing an article description. Listing 10
shows how one could implement a similar function on server-side
using the standard Scala XML library. The reader may notice that
the client-side and server-side APIs are very different and that the
client-side native API is very low-level and inconvenient to use.
We could use a library on client-side to get a higher level API

for DOM fragment creation, but that would decrease the runtime
performance. Instead, we want to define a high-level API that
compiles to code as efficient as if it was written using the native
APIs on both platforms.

Our first step consists in capturing, in a high-level API, the
concepts common to the JavaScript and Scala APIs. Though they
are different, both APIs define HTML elements with attributes and
content. We propose to have a function e l to define an HTML
element, eventually containing attributes and children elements.
Any children of an element that is not an element itself is converted
into a text node. Listing 11 shows how to implement our example
with our DSL. The children elements of an element can also be
obtained dynamically from a collection, as shown in Listing 12.

def a r t i c l e U i (a r t i c l e : Rep [A r t i c l e]) =
e l (’ d iv , ’ c l a s s −> ’ a r t i c l e) (

e l (’ span) (a r t i c l e . name + " : ") ,
e l (’ s t r o n g) (a r t i c l e . p r i c e)

)

Listing 11. DOM definition DSL

def a r t i c l e s U i (a r t i c l e s : Rep [Seq [A r t i c l e]]) =
e l (’ u l) (

f o r (a r t i c l e <− a r t i c l e s)
y i e l d e l (’ l i) (a r t i c l e U i (a r t i c l e))

)

Listing 12. Using loops

The e l function returns an Element IR node that is a tree com-
posed of other Element and Text nodes. The JavaScript and Scala
code generators traverse this tree and produce code building an
equivalent DOM tree and XML fragment, respectively. When the
children of an element are constant values (as in Listing 11) rather
than dynamically computed (as in Listing 12), the code generators
unroll the loop that adds children to their parent, for better perfor-
mance. As a result, Listing 11 generates a code equivalent to Listing
9 on client-side and equivalent to Listing 10 on server-side.

Listings 13 and 14 show the relevant parts of the code generators
for this DSL. They basically follow the same pattern: they visit Tag
and Text IR nodes and produce the corresponding elements in the
target language.

5. Evaluation

Our goal is to evaluate the level of abstraction provided by our
solution and its performance, by comparing it with common ap-
proaches. We take the number of lines of code as an inverse ap-
proximation of the level of abstraction. We also evaluate the ability
to share code between client and server sides.

We realized two micro-benchmarks involving programs using
the selectors DSL and the optional value DSL, and we bench-
marked a real world program. In each case we have written
several implementations of the program, using plain JavaScript,
Java/GWT, HaXe and js-scala (in each case we tried to write the ap-
plication in an idiomatic way). The performance benchmarks mea-
sured the execution time of the generated JavaScript code. The tests
were executed on a DELL Latitude E6430 laptop with 8 GB of
RAM, on the Google Chrome v27 Web browser.

All our charts show three kinds of measures: the first group is
the speed execution in operations per second (higher is better), the
second group is the number of lines of code (lower is better) and the
last group is the execution speed to number of lines of code ratio
(higher is better). We normalized the values so the three groups can
be shown within a same chart without scale issue.

57

c a s e Tag (name , c h i l d r e n , a t t r s) =>
emi tVa lDef (sym , q " document . c r e a t e E l e m e n t (’ $name ’) ")
f o r ((n , v) <− a t t r s) {

s t r e a m . p r i n t l n (q " $sym . s e t A t t r i b u t e (’ $n ’ , $v) ; ")
}
c h i l d r e n match {

c a s e L e f t (c h i l d r e n) =>
f o r (c h i l d <− c h i l d r e n) {

s t r e a m . p r i n t l n (q " $sym . appendCh i ld ($ c h i l d) ; ")
}

c a s e R i g h t (c h i l d r e n) =>
v a l x = f r e s h [I n t]
s t r e a m . p r i n t l n (q " f o r (v a r $x = 0 ; $x < $ c h i l d r e n . l e n g t h ; $x ++) { ")
s t r e a m . p r i n t l n (q " $sym . appendCh i ld ($ c h i l d r e n [$x]) ; ")
s t r e a m . p r i n t l n (" } ")

}
c a s e Text (c o n t e n t) =>

emi tVa lDef (sym , q " document . c r e a t e T e x t N o d e ($ c o n t e n t) ")

Listing 13. JavaScript code generator for the DOM fragment definition DSL

case Tag (name , c h i l d r e n , a t t r s) =>
v a l a t t r s F o r m a t t e d =

(f o r ((name , v a l u e) <− a t t r s)
y i e l d q " $name={ $ v a l u e } ") . mkSt r ing

c h i l d r e n match {
case L e f t (c h i l d r e n) =>

i f (c h i l d r e n . i sEmpty) {
emi tVa lDef (sym , q "< $ n a m e $ a t t r s F o r m a t t e d / > ")

} e l s e {
emi tVa lDef (sym ,

q "< n a m e $ a t t r s F o r m a t t e d >{ ${ c h i l d r e n . map (q u o t e) } } </ $name>"
)

}
case R i g h t (c h i l d r e n) =>

emi tVa lDef (sym , q "< $ n a m e $ a t t r s F o r m a t t e d >{ $ c h i l d r e n } </ $name>")
}

case Text (c o n t e n t) =>
emi tVa lDef (sym , q " {xml . Tex t (c o n t e n t) } ")

Listing 14. Scala code generator for the DOM fragment definition DSL

5.1 Micro-Benchmarks

The micro-benchmarks measure the performance of our implemen-
tation of the selectors and optional value abstractions8.

5.1.1 Selectors

We could not implement this abstraction in GWT or HaXe as effi-
ciently as we did in js-scala because it relies on the staging mech-
anism: the best we could do in GWT or Haxe is to expose the na-
tive high-level API (q u e r y S e l e c t o r and q u e r y S e l e c t o r A l l).
So we directly compared the execution time of the JavaScript code
generated by Listing 4 with a JavaScript program equivalent to List-
ing 1 but using the high-level native API (q u e r y S e l e c t o r and
q u e r y S e l e c t o r A l l) instead. The code was executed in a Web
page containing a few elements: 4 f i e l d s e t elements, each con-
taining 0 to 2 elements with class word.

Figure 4 shows the benchmark results. The JavaScript-opt ver-
sion is Listing 1, which uses low-level native APIs, the JavaScript
version is the equivalent listing using the high-level native API,
and the jQuery version is Listing 2. The js-scala version is slightly
slower than the JavaScript-opt (by 14%), but is 2.88 times faster
than the JavaScript version, and 28.6 times faster than the jQuery

8 The source code of the benchmarks is available at https://github.com/js-
scala/js-scala/tree/master/papers/gpce2013/benchmarks

Figure 4. Micro-benchmark on the selectors abstraction

version. Finally, the js-scala version has a performance to lines of
code ratio more than 1.72 times higher than others.

5.1.2 Optional Value

We reimplemented the optional value abstraction in plain
JavaScript, Java and HaXe and wrote a small program manipulating
optional values. Listing 15 shows the js-scala version of this pro-
gram. The maybe function is a function partially defined on I n t
values.

Figure 5 shows the benchmark results. The js-scala version
of the program runs between 3 to 10 times faster than other ap-

58

https://github.com/js-scala/js-scala/tree/master/papers/gpce2013/benchmarks
https://github.com/js-scala/js-scala/tree/master/papers/gpce2013/benchmarks

v a l maybe = fun { (x : Rep [I n t]) =>
some (x + 1)

}

def benchmark = f o r {
a <− maybe (0)
b <− maybe (a)
c <− maybe (b)
d <− maybe (c)

} y i e l d d

Listing 15. Micro-benchmark code for the optional values abstrac-
tion

Figure 5. Micro-benchmark on the optional values abstraction

proaches. This version also takes less lines of code than others (this
result is almost due to the special f o r notation, that has no equiva-
lent in other benchmarked languages). Finally, the js-scala program
has a performance to lines of code ratio more than 4 times higher
than others.

5.2 Real World Application

Chooze 9 is an existing complete application for making polls. It
allows users to create a poll, define the choice alternatives, share
the poll, vote and look at the results. It contains JavaScript code
to handle the dynamic behavior of the application: double-posting
prevention, dynamic form update and rich interaction with the
document. The size of the whole application (server and client
sides) is about one thousand lines of code.

The application was initially written using jQuery. We rewrote
it in vanilla JavaScript (low-level hand-tuned code without third-
party library), js-scala, GWT and HaXe.

5.2.1 Performance

The benchmark code simulates user actions on a Web page (2000
clicks on buttons, triggering a dynamic update of the page and
involving the use of the optional value monad, the selectors API and
the HTML fragment definition API). Figure 6 shows the benchmark
results.

The runtime performance of the vanilla JavaScript, HaXe and
js-scala versions are similar (though the js-scala version is slightly
slower by 6%). It is worth noting that the vanilla JavaScript and the
HaXe versions use low-level code compared to js-scala, as shown
in the middle of the figure (lines of code): the js-scala version needs
only 74 lines of code while the vanilla JavaScript version needs 116
lines of code (57% bigger) and the HaXe version needs 148 lines of
code (100% bigger). The jQuery JavaScript version, which code is
high-level (54 lines of code, 27% less than js-scala) runs 10 times
slower than the js-scala version.

9 Source code is available at http://github.com/julienrf/chooze, under the
branches v a n i l l a , j q u e r y , gwt, haxe and j s−s c a l a

Figure 6. Benchmarks on a real application

The last part of the figure compares the runtime performance to
lines of code ratio. Js-scala shows the best score, being 1.48 times
better than the vanilla JavaScript version, 1.88 times better than the
HaXe version, 3.45 times better than the GWT version and 7.82
times better than the jQuery JavaScript version.

5.2.2 Code Reuse

We were able to share some DOM fragment definitions between
server-side and client-side only in the js-scala version. In the GWT
version we don’t have a choice: dynamic DOM fragments are
always built only on client-side (a practice that makes it more
difficult to make the pages content crawlable by search engines
and may increase the initial display time). In the other versions the
code for building the DOM fragment is duplicated between client
and server sides, representing 20 lines of JavaScript code (17% of
the total) and 15 lines of HTML (5% of the total) in the JavaScript
version, and 19 lines of HaXe code (13% of the total) and 15 lines
of HTML (5% of the total) in the HaXe version. In the js-scala
version the DOM fragment definitions shared between clients and
servers represent 22 lines of Scala code (30% of the total) and save
15 lines of HTML (5% of the total).

5.2.3 Threats to Validity

Our goal was to put the runtime performance in perspective with
the level of abstraction. We are aware that the indicator we chose
as an inverse approximation of the abstraction level, the number of
lines of code, is not scientifically established and may be subject to
discussion. However, we think it is a reasonable approximation in
our case because all the candidate languages we use have a similar
syntax, inherited from the C programming language.

Another weakness of our validation may come from the fact that
our application does not make a heavy use of client-side code and
thus may not be representative of the way large Web applications
are written. However, we think that a richer application would
have more parts of code susceptible to be shared between client
and server sides, thus giving even better results on the code reuse
statistics.

Finally, the GWT version may not have been written in an
as idiomatic as possible way. Indeed, we mainly catch the events
directly on the HTML DOM, as we do in JavaScript, without
reusing all the GWT widgets. We do not build the application as a
blank page with a set of widgets. However, this way of developing
using GWT has no impact on the performance and a minor impact
on the number of lines of code.

6. Discussion

We implemented our solution as compiled embedded DSLs in
Scala. Generating code from our DSLs is a two step process: an
initial Scala program first evaluates to an intermediate representa-
tion of the final program that is traversed by code generators to
produce the final JavaScript code. Domain-specific optimizations

59

http://github.com/julienrf/chooze

can happen during the IR construction (as shown in section 4.1) or
during the code generation (as shown in section 4.2).

An important consequence of the implementation as compiled
embedded DSLs is that defining a DSL that can be shared between
server and client sides requires a low effort: compiled embedded
DSLs are simply defined as libraries but let developers specialize
the generated code according to each target platform (as shown in
section 4.3).

In other words, the compiled embedded DSL approach gives us
a way to exploit the Scala host language to define high-level lan-
guage units that integrate seamlessly together and bring domain-
specific knowledge to the code generation scheme to produce effi-
cient code for client and server sides.

These characteristics allowed us to capture some Web program-
ming patterns as high-level abstractions, making the code of our
application simpler to reason about and making some parts of the
code reusable between client and server sides, while keeping exe-
cution performance on client-side as high as if we used hand-tuned
low-level JavaScript code.

7. Conclusion

High-level abstractions for Web programming, which are useful
to decrease the complexity of the code and to abstract over the
differences between the client and server environments, must be
implemented in a way to efficiently run on hardware with limited
capabilities.

In this paper we showed how to leverage staging to implement
high-level abstractions for Web programming that are efficiently
compiled for heterogeneous platforms such as Web clients and
servers that differ in their technical API. We also showed how these
abstractions can be shared between client and server sides.

Our two kinds of benchmarks, (i) micro-benchmarks to evaluate
one abstraction and (ii) a benchmark on a real application using
these abstractions, show performance similar to hand-optimized
low-level code.

In a future work we may investigate more coarse-grained op-
timizations like smart DOM updates minimizing the number of
browser reflows.

References

[1] J. Ashkenas. Coffeescript, 2011.

[2] B. Bibeault and Y. Kats. jQuery in Action. Dreamtech Press, 2008.

[3] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun. A heterogeneous parallel framework for domain-
specific languages. In Parallel Architectures and Compilation Tech-

niques (PACT), 2011 International Conference on, pages 89–100.
IEEE, 2011.

[4] N. Cannasse. Using haxe. The Essential Guide to Open Source Flash

Development, pages 227–244, 2008.

[5] P. Chaganti. Google Web Toolkit: GWT Java Ajax Programming. Packt
Pub Limited, 2007.

[6] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. In Formal Methods for Components and Objects,
pages 266–296. Springer, 2007.

[7] C. Elliott, S. Finne, and O. De Moor. Compiling embedded languages.
Journal of Functional Programming, 13(3):455–481, 2003.

[8] R. Griffith. The dart programming language for non-programmers-
overview. 2011.

[9] T. Hoare. Null references: The billion dollar mistake. Presentation at

QCon London, 2009.

[10] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance differences on smartphones. In
Proceedings of the 8th international conference on Mobile systems,

applications, and services, pages 165–178. ACM, 2010.

[11] P. Hudak. Building domain-specific embedded languages. ACM

Computing Surveys, 28, 1996. URL ❤tt♣✿✴✴❞s❡❧✳♣s.

[12] U. Jørring and W. L. Scherlis. Compilers and staging transformations.
In Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages, pages 86–96. ACM, 1986.

[13] G. Kossakowski, N. Amin, T. Rompf, and M. Odersky. JavaScript
as an Embedded DSL. In J. Noble, editor, ECOOP 2012 – Object-

Oriented Programming, volume 7313 of Lecture Notes in Computer

Science, pages 409–434, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. . URL ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❥s✲s❝❛❧❛✴❥s✲s❝❛❧❛✴.

[14] J. Kuuskeri and T. Mikkonen. Partitioning web applications between
the server and the client. In Proceedings of the 2009 ACM symposium

on Applied Computing, SAC ’09, pages 647–652, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-166-8. . URL ❤tt♣✿✴✴❞♦✐✳
❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✺✷✾✷✽✷✳✶✺✷✾✹✶✻.

[15] M. McGranaghan. Clojurescript: Functional programming for
javascript platforms. Internet Computing, IEEE, 15(6):97–102, 2011.

[16] T. Mikkonen and A. Taivalsaari. Web applications - spaghetti code for
the 21st century. In Proceedings of the 2008 Sixth International Con-

ference on Software Engineering Research, Management and Applica-

tions, pages 319–328, Washington, DC, USA, 2008. IEEE Computer
Society. ISBN 978-0-7695-3302-5. . URL ❤tt♣✿✴✴❞❧✳❛❝♠✳♦r❣✴
❝✐t❛t✐♦♥✳❝❢♠❄✐❞❂✶✹✹✸✷✷✻✳✶✹✹✹✵✸✵.

[17] M. Nanda and S. Sinha. Accurate interprocedural null-dereference
analysis for java. In Software Engineering, 2009. ICSE 2009. IEEE

31st International Conference on, pages 133–143. IEEE, 2009.

[18] J. C. Preciado, M. L. Trigueros, F. Sánchez-Figueroa, and S. Comai.
Necessity of methodologies to model rich internet applications. In
WSE, pages 7–13. IEEE Computer Society, 2005. ISBN 0-7695-2470-
2.

[19] R. Rodríguez-Echeverría. Ria: more than a nice face. In Proceedings

of the Doctolral Consortium of the International Conference on Web

Engineering, volume 484. CEUR-WS.org, 2009.

[20] T. Rompf. Lightweight Modular Staging and Embedded Compilers:

Abstraction without Regret for High-Level High-Performance Pro-

gramming. PhD thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE
LAUSANNE, 2012.

[21] T. Rompf, A. Sujeeth, N. Amin, K. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing Data
Structures in High-Level Programs: New Directions for Extensible
Compilers based on Staging. Technical report, 2012.

[22] S. Souders. High-performance web sites. Communications of the

ACM, 51(12):36–41, 2008.

[23] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages:
an annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[24] E. Visser. WebDSL: A case study in domain-specific language engi-
neering. In R. Lämmel, J. Visser, and J. Saraiva, editors, Generative

and Transformational Techniques in Software Engineering II, Interna-

tional Summer School, GTTSE 2007, volume 5235 of Lecture Notes in

Computer Science, pages 291–373, Braga, Portugal, 2007. Springer.
ISBN 978-3-540-88642-6. .

60

http://dsel.ps
https://github.com/js-scala/js-scala/
http://doi.acm.org/10.1145/1529282.1529416
http://doi.acm.org/10.1145/1529282.1529416
http://dl.acm.org/citation.cfm?id=1443226.1444030
http://dl.acm.org/citation.cfm?id=1443226.1444030

	Introduction
	Related Work
	Lightweight Modular Staging
	Efficient High-Level Abstractions for Web Programming
	Selectors API
	Monads Sequencing
	DOM Fragments Definition

	Evaluation
	Micro-Benchmarks
	Selectors
	Optional Value

	Real World Application
	Performance
	Code Reuse
	Threats to Validity

	Discussion
	Conclusion

