
HAL Id: hal-00988164
https://hal.inria.fr/hal-00988164

Submitted on 7 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Automation of the Mutation Analysis
Dedicated to Model Transformation

Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit
Baudry, Jean-Luc Dekeyser

To cite this version:
Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit Baudry, et al.. Towards
an Automation of the Mutation Analysis Dedicated to Model Transformation. Software Testing,
Verification and Reliability, Wiley, 2014, pp.30. �10.1002/stvr.1532�. �hal-00988164�

https://hal.inria.fr/hal-00988164
https://hal.archives-ouvertes.fr

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 0000; 00:1–30
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Towards an Automation of the Mutation Analysis Dedicated to
Model Transformation

Vincent Aranega1, Jean-Marie Mottu2, Anne Etien1∗,
Thomas Degueule2, Benoit Baudry3, Jean-Luc Dekeyser1

1LIFL - University of Lille 1, Lille, France
2LINA - University of Nantes, Nantes, France

3INRIA - IRISA, Rennes, France

SUMMARY

A major benefit of Model Driven Engineering (MDE) relies on the automatic generation of artefacts from
high-level models through intermediary levels using model transformations. In such a process, the input
must be well-designed and the model transformations should be trustworthy.
Due to the specificities of models and transformations, classical software test techniques have to be adapted.
Among these techniques, mutation analysis has been ported and a set of mutation operators has been defined.
However, mutation analysis currently requires a considerable manual work and suffers from the test data set
improvement activity. This activity is seen by testers as a difficult and time-consuming job, and reduces
the benefits of the mutation analysis. This paper addresses the test data set improvement activity. Model
transformation traceability in conjunction with a model of mutation operators, and a dedicated algorithm
allow to automatically or semi-automatically produce test models that detect new faults. The proposed
approach is validated and illustrated in a case study written in Kermeta. Copyright c© 0000 John Wiley
& Sons, Ltd.

Received . . .

KEY WORDS: MDE; Model Transformation; Mutation Analysis; Traceability; Mutation Operator

1. INTRODUCTION

Model Driven Engineering (MDE) relies on models (i.e. high level abstractions) to represent

the system design. Model transformations are critical assets in MDE, which automate essential

steps in the construction of complex software systems (i.e. they can transform artifacts from an

abstraction layer to a lower one). For example, in the Gaspard2 project [1], model transformations

automatically generate source code for different languages such as OpenMP (in case of scientific

computing applications) or VHDL (in case of embedded applications) from UML models. Model

transformations are used many times to justify the efforts relative to their development. So if they

are faulty, they can spread faults to models several times. Moreover, since transformations are black

boxes for the end users, they have to be trustworthy. So, for all these reasons, model transformations

have to be tested during development and thoroughly validated.

Among all the existing testing techniques, this paper focuses on mutation analysis [2] as a way to

systematically qualify and improve a set of test data for detecting faults in a program under test. For

this purpose, faulty versions of this program (called mutants) are systematically created by injecting

one single fault per version. Each injected fault depends on a mutation operator that represents a

∗Correspondence to: E-mail: anne.etien@lifl.fr

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

2 V. ARANEGA ET AL.

kind of fault that could be introduced by programmers. The efficiency of a given test data set is then

measured by its ability to highlight the fault injected in each mutated version (killing these mutants).

If the proportion of killed mutants [3] is considered too low, it is necessary to improve the test data

set [4].

This activity corresponds to the modification of existing test data or the generation of new

ones, and is called test data set improvement. It is usually seen as the most time-consuming step.

Experiments measure that the test data set initially provided by the tester often already detect 50
to 70% of the mutants as faulty [5]. However, several works state that improving the test set to

highlight errors in 95% of mutants is difficult in most of the cases [6, 7]. Indeed, each non-killed

(i.e. alive) mutant must be analysed in order to understand why no test data reveals its injected fault

and consequently the test data set has to be improved.

This paper focuses on the test data set improvement of the mutation analysis process. It is

dedicated to the test of model transformation. In this context, test data are models.

Due to their intrinsic nature, model transformations rely on specific operations (e.g. data

collection in a typed graph or collection filtering) that rarely occur in traditional programming.

In addition, many different dedicated languages exist to implement model transformation. Thus, the

mutation analysis techniques used for traditional programming cannot be directly applied to model

transformations; new challenges to model transformation testing are arising [8]. A set of mutation

operators dedicated to model transformation has been previously introduced [9]. This paper tackles

the problematic of the test model set improvement by automatically considering mutation operators.

Tools and heuristics are provided to assist the creation of new test models. The approach proposed

in this paper relies on a high level representation of the mutation operators and a traceability

mechanism establishing, for each transformation, links between the input and the output of the

transformation. The first original contribution consists in precisely modeling the mutation operators

dedicated to model transformation. Thus, all the results of the mutation testing process (i.e. which

model kills which mutant created and by which mutation operator) are gathered in a unique model.

Based on this model, relevant elements of some input test models are selected among the initial test

set. The second original contribution is the generation of new test models from those elements of

input models. For this purpose, each mutation operator is studied to identify a set of cases that could

let a mutant alive. Patterns and heuristics are associated to each of these cases. The patterns specify,

in terms of the test model, cases where the input model lets the mutant alive. The heuristics provide

recommendations to generate new test models that should highlight errors in the mutants. It has

been observed that in most cases, the patterns are automatically detected, and models automatically

generated using those heuristics, reducing the efforts needed to increase the mutation score.

The approach is illustrated with the transformation from UML to a database schema showing

for some mutation operators how patterns are detected and how new test models are produced. An

experiment is run on a second case study and measure the effort necessary to get a 100% mutation

score. Whereas a tester should entirely analyse existing test models to create new models, with

a dedicated assistant only 33% of the models and 27% of the elements they contain should be

analysed.

This paper is composed as follows. Section 2 briefly introduces the MDE concepts used in the

paper. Section 3 presents existing works for mutation analysis, test model qualification and test set

improvement approaches. Section 4 presents the mutation analysis adapted to model transformations

and highlights challenges. Section 5 reminds previous works about test model improvement, which

are used as the basis of the current contribution. Section 6 introduces the modeling of the mutation

operators. Section 7 details how new test models are created based on the identification of a

problematic configuration. Section 8, illustrates the approach proposed in this paper on the example

of the class2rdbms transformation where the test model set is improved until 100%. Finally,

conclusions are drawn and perspectives are proposed in Section 9.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 3

2. MODEL TRANSFORMATION TESTING: CONCEPTS AND MOTIVATING EXAMPLE

This section introduces a motivating example of model transformation; its concepts that require

adaptation of testing techniques are then detailed. The model transformation, called class2rdbms,

has been chosen. It creates a Relational Database Management Systems (RDBMS) model from a

Simple Class Diagram (simpleCD). This transformation is the benchmark proposed in the MTIP

workshop at the MoDELS 2005 conference [10]. It was designed to experiment and validate model

transformation language features, and then it has been used in several works.

2.1. Modeling

In order to work at an abstract and higher level than the one proposed by classical programming,

the model paradigm has been proposed. A model represents a system. It is an abstraction because it

synthesizes a part of a system and avoids some details [11]. A model is restricted to a given goal,

thus it only gathers information relevant to it. It represents a system with elements interconnected by

relations (e.g. UML diagrams in Object-Oriented programming). These relations are used to access

elements from others. For example, Figure 1 presents a simple class diagram (underlined attributes

are primary keys) and the corresponding relational database (PK means primary key and FK foreign

key).

Person

name : String

͞persistent͟

Student

studentID : Int

͞persistent͟

Address

street : String

address

(a) Simple Class Diagram Model Sample

Address

street :

String

PK

Student

studentID :

Int

PK

name :

String

address_

street :

String

 FK

(b) RDBMS Model Sample

Figure 1. One Input Model and its Output Model produced by class2rdbms transformation

2.2. Metamodeling

The models are defined using dedicated languages: the metamodels. A metamodel precisely

defines the model elements, their structure as well as their semantic. It could be viewed as a

language grammar; thus, many different models may be associated to a single metamodel [12, 13].

Figure 2(a) represents a simplified version of the class diagram metamodel. It defines the

concepts of ClassModel that contains Classifiers and Associations. A Classifier is either a

PrimitiveDataType or a Class. A Class may be persistent or not, it may inherit from another

class (through the parent link), and may contain one or several Attribute. An Association links

two classes, one being the source (src), the other the destination (dest).

Class

is_persistent : Boolean

Association

name : String

Attribute

name : String

is_primary : Boolean

PrimitiveDataType

ClassModel

attrs
association

parent

type
classifier

src

dest

Classifier

name : String

1

1

*

*

1

1..*

0..1

(a) Simple Class Diagram Metamodel (b) RDBMS Metamodel

Figure 2. The Input and Output Metamodels of class2rdbms transformation

The strong link between a metamodel and the associated models is called a “conformance” link.

A model conforms to a metamodel if all its features are defined by the metamodel.

The class diagram example is represented in Figure 1(a) using a graphical syntax close to UML.

In MDE, this model could be represented with an abstract syntax where each element is defined

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 V. ARANEGA ET AL.

as an instance of a metamodel class. This level of detail is close to the way model transformation

manipulates a model and will be useful in the proposed contributions. In Figure 3, the class diagram

of Figure 1(a) is represented with this abstract syntax.

: Class

name = Student

is_persistent = true

: Class

name = Person

is_persistent = false

: Class

name = Address

is_persistent = true

:Association

name = address

: Attribute

name =studentID

is_primary = true

: Attribute

name = street

is_primary = true

: Attribute

name = name

is_primary = false

: PrimitiveDataType

name = String

: ClassModel

: PrimitiveDataType

name = Int

attrs attrs

attrs

association

parent

classifier

classifier

type

type

classifier type
classifier

classifier

src dest

Figure 3. The Input Model Example as an Instance Diagram of the Input Metamodel of class2rdbms

2.3. Model Transformation

Model transformations allow the automatic production or modification of models and present thus

a major interest for MDE [14]. A model transformation is based on its input and output metamodels

specifying respectively its input and output domains. Basically, the transformation establishes a set

of relationships between input model elements and output model elements.

class2rdbms transforms an input simple class diagram model into an output RDBMS model.

Such a simple class diagram model is illustrated in Figure 1(a). A person has a name and an address,

and she could be a student with a studentID. class2rdbms transforms this model into the RDBMS

model of the Figure 1(b). Briefly, the persistent classes are changed into tables. The attributes and

associations become columns. Primary attributes (underlined) become primary keys PK and the

associations become foreign keys FK. Figure 2(b) presents the RDBMS metamodel, defining the

output model elements.

Concretely, a model transformation is expressed in a model transformation language. In order to

describe a model transformation, many approaches and languages can be used. A classification of

these approaches is proposed by Czarnecki et al. [15]. Most of the model transformation languages

decompose transformation into smaller parts called rule such as a program is decomposed into

functions. Practically, a rule focuses on the transformation of a specific input element. In this

paper, the rule concept is used to express the way input elements are transformed. Moreover,

even if the transformation approaches are different, they usually work in the same way. Indeed,

most transformations aim to create a new model†, and can be considered as a set of three kinds

of operations: navigations between model elements in order to reach some specific elements;

filtering of model element collections in order to express some conditions and keep only some

subparts of the initial collections; and creations/modifications of new model elements. Listing 1

is an extract of the class2rdbms transformation written in QVTo [16]. Examples of navigation can

be found all over the listing and are expressed using dot notation. Line 5 and the expression between

brackets line 10 illustrate filtering. Creations are expressed with the mapping of object key words.

In other languages like Kermeta (see Listing 2, page 23), these operations are differently specified.

Listing 1: Extract of the class2rdbms transformation in QVTo

1 transformation class2rdbms (in srcModel:UML,out dest:RDBMS);

2 [...]

3 -- maps a class to a table, with a column

4 mapping Class::class2table () : Table

5 when {self.kind=’persistent’;}

6 {

†There also exist in place transformations that modify an existing model, like a refactoring.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 5

7 name := ’t_’ + self.name;

8 column := self.attrs->map attr2OrdinaryColumn();

9 key_ := object Key { -- nested population section for a ’Key’

10 name := ’k_’+self.name; column := result.column[kind=’primary’]; };

11 }

12 -- Mapping that creates an ordinary column from a leaf attribute

13 mapping Attribute::attr2OrdinaryColumn (): Column {

14 name := prefix+self.name;

15 kind := self.kind;

16 type := if self.attr.type.name=’int’ then ’NUMBER’ else ’VARCHAR’ endif;

17 }

2.4. Model Transformation Testing

Obviously, model transformation may be considered as a program and consequently tested.

However, existing approaches do not take into account the specific features of model

transformations, i.e. (i) the three fundamental operations composing them and (ii) models as

input data. Traditional testing approaches have thus to be adapted to model transformations. Such

adaptations may be performed for each specific transformation language / approach or in the

opposite may take into account their heterogeneity. The approach proposed in this paper adopts

the second alternative relying on the common features of the transformations.

As seen before, the definition of model transformations relies on their input and output

metamodels. Thus to test the transformations, the elements of the input and the output models have

to be considered as instances of the metamodel elements leading to large and complex graphs.

Figure 3 illustrates the complexity of an input model example, despite the simplicity of that

Class diagram model represented in Figure 1(a). Consequently, the generation and the evaluation

of the test data, which are test input models, are complex. Moreover, this complexity increases by

considering that the test data set (i) should cover the input domain of the model transformation,

which may be very large, and (ii) should be able to detect faults in transformation. In addition,

MDE development environments lack reliable support to analyze and transform models. Therefore,

it is more efficient to propose techniques to automate or assist in the generation of test models,

rather than to evaluate the efficiency of a test model set and leave the tester to manage to improve it

manually.

In this paper contrary as in other works [17, 18], the test oracle challenge is not concerned.

3. IMPROVING A TEST DATA SET: STATE OF THE ART

Among the various proposed approaches, test model qualification provides information useful to

generate efficient test data. Few works study test model qualification and generation, considering

efficiency in terms of input domain coverage, model transformation rules coverage, specification

coverage and potential fault coverage. First these different ways to obtain qualified test model sets

are presented, then the focus is put on the last one with mutation analysis.

3.1. Test Model Qualification and Generation Approaches

Model transformation domains are specified with metamodel and several works consider that

characteristic to qualify test model sets.

Fleurey et al. [19] qualify a set of test models regarding its coverage of the input domain. This

approach is based on the partitioning of the metamodels. Sen et al. [20] developed the Pramana tool

(formerly named Cartier) to generate test models based on the proposal of Fleurey et al. However,

both approaches produce more models than necessary because they aim to provide tests covering

the whole input domain, even if only a subpart of the input domain is used by the transformation. In

the case of UML, it often occurs that transformations only deal with a subpart (e.g. the class diagram

or the state diagram). To avoid producing test models relative to metamodel parts not involved in

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 V. ARANEGA ET AL.

the transformation, Sen et al. [21] prune the metamodel to extract only the subparts involved in the

transformation before providing the tests.

Mottu et al. [22] propose a white-box approach that uses a static analysis to automatically

generate test inputs for transformations. This static analysis uncovers knowledge about how the

input model elements are accessed by transformation rules. On the other hand, because these

approaches rely on static analysis of the transformation, if there is some dead code, tests are

generated for these parts, even if they are never executed.

Guerra [23] tackles the test model generation challenge by deriving, from the transformation

specification, a set of test models ensuring a certain level of coverage of the properties in the

specification. These input models are calculated using constraint solving techniques.

Those approaches study transformations only statically, i.e. without executing them and without

considering the potential errors. As a result, a 100% mutation score has not yet been reached

in the experiments of those papers (70% [23], 89.9% avg. [20], 97.62% avg. [22]). Moreover,

these methods help to generate qualified test models without providing information and methods

to improve test models when highest quality is mandatory (for example, in case of the generation

of highly critical applications). In the opposite, the contributions proposed in this paper help the

tester to improve the quality of test models set thanks to mutation analysis enhanced with mutation

operator metamodeling and traceability.

3.2. Mutation Testing Approaches to Measure Test Data Set Efficiency to Detect Faults

Numerous papers study mutation testing in a general context. Jia et al. propose a survey on

mutation testing development [24]. They observe an increase of mutation testing publications from

1978 (mutation testing emergence) to 2009 making the mutation testing a mature technique. The

main problem tackled in the literature is the creation of mutation operators. In this subsection,

works related to the design of mutation operators are discussed and, in the next subsection, the

improvement of the test data quality with mutation testing.

Several works advise to use mutation testing [25, 26, 27]. They analyse its ability to qualify test set

with a high fault power detection and with different properties (for instance, test sets with fewer test

cases). Those papers compare mutation testing with edge-Pair [28], All-uses [29] and Prime Path

Coverage criteria (line coverage or statement coverage) [30] techniques, concluding that mutation

testing provides better results.

Most of the works consider the mutation operators directly based on the syntax of a programming

language: C [31], ADA [32], Java [33]. These mutation operator sets take into consideration the

programming paradigm of the language (e.g. procedural [34], object oriented [33]). However, they

are defined using the syntax of a programming language.

To fit with model paradigm and model transformations, Mottu et al. proposed an adaptation

of mutation testing [9]. The originality of that work was not to use a programming syntax

to define mutation operators, but to consider abstract operations applied by the transformation

on models. Based on this work, Tisi et al. propose to formalize these mutation operators as a

set of higher-order transformations (HOT) (i.e. transformations whose input or output model is

itself a transformation [35]). For instance, Fraternali et al. propose an implementation of Mottu

et al. operators as ATL HOTs [36] (ATL is a specific model transformation language). Some

transformation languages do not use a model as an internal representation of the transformations.

The approach proposed by Tisi et al. [35] can thus only be used for transformation languages

supporting such a representation.

Few works consider mutation operators independently from the syntax of a language. Mutation

operators proposed by Ferrari et al. are designed considering aspect oriented programming

characteristics [37]. Recently, Simão et al. [38] proposes MuDeL, a language used to precisely

define mutation operators independently from the used language. They provide generic definitions of

each operator that may be reused with several languages. They also use a compilation from MuDeL

operators to the language syntax. However, the proposed generic definitions of operators do not

consider the specificity of new programming paradigms (as model transformation in model-driven

engineering) and new kinds of analysis and transformation of specific data (as models). Moreover,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 7

MuDeL deals with context-free mutations (when x = 2 becomes x+ = 3 it is context free but not

when it becomes y = 2) whereas in the approach proposed in this paper, several mutation operators

are not context free (for instance, some operators require to know the elements of the metamodel to

perform the mutation of the transformation rules).

3.3. Mutation Analysis to Improve Test Data

Several works deal with test set improvement to increase mutation score. Fleurey et al. propose

an adaptation of a bacteriologic algorithm to model transformation testing [39]. The bacteriologic

algorithm [40] is designed to automatically improve the quality of a test data set. It measures the

power of each data to highlight errors to (1) reject useless test data, (2) keep the best test data, (3)
combine the latter to create new test data. Their adaptation consists of creating new test models by

covering part of the input domain still not covered.

MuTest is a project that aims to use mutation analysis to drive test case generation [41]. In order

to produce new test data, MuTest generates multiples assertions to kill a selected mutant. Once the

new test data is found, the test set is minimized in order to keep the test set as small as possible.

EvoSuite is a tool which is able to improve automatically a test set for the Java language [42].

It relies on mutation testing to produce a reduced set of assertions that maximizes the mutation

score. In order to produce the new test data, EvoSuite tries to find test cases that violate the oracles.

However, this tool directly handles Java byte code, and it is so close to the Java language that it

makes its adaptation particularly difficult.

Some other works use evolutionary and genetic algorithms for automatic test input data generation

in the context of mutation testing. A fully automated ant colony optimization algorithm is provided

by Ayari et al. [43]. From an initial test set, the algorithm progressively promotes best test cases and

combines them to generate new test data in order to kill mutants. The authors obtain a maximum

mutation score of 89% on a small Java program.

However, all of these works only consider traditional programming, even if some propose

bacteriologic algorithm for component based programming [39]. They do not take into account

the particularities of model transformations (such as models as input data) ,and prevent their use for

model transformations, as explained in the introduction.

4. MUTATION ANALYSIS AND MODEL TRANSFORMATIONS

Mutation analysis relies on the following assumption: if a test data set can reveal the faults voluntary

and systematically injected in various versions of the program under test, then this set is able

to detect involuntary faults. The efficiency of the test data set to detect the injected faults is

evaluated by calculating the mutation score, i.e. the proportion of detected faulty versions [3].

Next subsections present the mutation analysis process adapted to model transformations and the

challenges considered in this paper.

4.1. Mutation Analysis Dedicated to Model Transformations

Model transformations have their own specificities such as the manipulated data structures (i.e.

models which conform to their metamodels) or characteristic operations that may lead to semantic

faults. The mutation analysis process for traditional programs [44] has been adapted to model

transformations [9]. It is presented in Figure 4. The four main activities are the following.

Preliminary step (activity (a)): this activity is divided into two parts: the creation of mutants

and an initial test data set creation. Mutants are defined by modifying an instruction

in a transformation rule from the original model transformation. This rule which owns

the modified instruction is called mutated rule in the remainder of the paper. The

modification of the instruction is performed using one of the mutation operators dedicated

to model transformations [9]. These operators have been defined independently from any

transformation language. They are based on the three basic operations performed by a model

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 V. ARANEGA ET AL.

Legend Activity

Data

Repeated Activity

Sequence Between Activities

Data Consumption

Data Production

Preliminary
Step

Operators

Execution
 [too weak]

Models

Mutation Score
Computation

Test Set
Improvement

Figure 4. Mutation Testing Process Dedicated to Models

transformation: the navigation through references between objects in models, filtering of

objects collections and the creation (or the modification) of model elements. An initial test

data set containing several test models is possibly automatically built, using approaches such

as the ones discussed in section 3.1.

The mutant and original program execution (activity (b)): each created mutant T1, T2, . . . , Tk,

as well as the original non-mutated transformation T is executed on each input test model.

The mutation score computation (activity (c)): the mutation score is the proportion of killed

mutants compared to the overall number of mutants. A mutant is marked as killed when one

(or several) test model highlights the injected error. A test model highlights an error if the

result of its execution by the mutant differs from the execution by the original transformation.

Thus, if for a given test model m, Ti(m) 6= T (m) then Ti is killed else Ti is alive. Output

model comparison can be performed using adequate tools adapted to models or large graphs

such as EMFCompare [45]. The mutation score computation is thus automatically performed.

The test data set improvement (activity (d)): if the mutation score is considered too low, new test

models are produced in order to kill live mutants; and equivalent mutants are rejected [24]

(these last have the same behaviour than the transformation, so they are not considered being

faulty).

Although, once again as the classical mutation testing process, the whole process starts again until

the mutation score reaches a beforehand fixed threshold, 100% is ideal [4].

4.2. A Process Remaining Mainly Manual

Although some tasks of the mutation testing process are automatic, this process remains a complex

and long work for the tester. For any program under test (including model transformation), among

the mutation testing tasks:

• creation of mutants can be automated. However, mutation operators are applied to the code of

the program under test. Thus, for each new language, mutation operators must be designed in

its syntax (or ported from non syntactic ones [36]), and implemented,

• execution of the program and the mutants is an automated task,

• comparison of the output data is also an automated task.

The test data set improvement task (requiring analysis of mutants), is considered as time-

consuming [26] and is currently performed manually. Indeed, injected faults which are not

highlighted by test data must be analysed in both ways: statically (i.e. using a static analysis of

the code) and dynamically (i.e. an execution of the program is required) in order to create new data

which could kill a live mutant. The result of activity (a) is considered in the remainder of the paper

as a prerequisite.

This paper focuses on the test data set improvement task (activity (d)) for the mutation analysis

process dedicated to model transformations.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 9

4.3. Contribution to Model Transformation Mutation Analysis

This paper proposal is based on the following hypothesis: building a new test model from scratch can

be extremely complex, while taking advantage of existing test models could help to construct new

ones. Consequently, an approach helping to create new test models from modifications of relevant

existing models has been developed. Thus, first, a relevant test model is selected to be modified. As

the work deals with a large amount of information, the induced problems could be resumed in three

questions:

• Among all the existing pairs (test model,mutant), which ones are the most relevant to be

studied? Moreover, in those models, which parts are relevant to improve the models?

• Why a mutant has not been killed by a specific test model?

• How to modify a selected test model to produce a different output model and thus kill the

studied mutant?

In this paper, answers to these three questions are provided and thus the automation of the test data

set improvement activity of the mutation analysis process is improved. The approach is composed

of two major steps: (i) the selection of a relevant pair (test model,mutant) and (ii) the creation of

a new test model by adequately modifying the one identified. The first step relies on an intensive

use of the model transformation traceability [46]. It is briefly reminded in Section 5. The second

step corresponding to the heart of this contribution is presented in Section 6 and 7. Both steps are

illustrated in Section 8, and are experimented in Section 8.9.

5. MODEL TRANSFORMATION TRACEABILITY: A WAY TO COLLECT INFORMATION

This Section reminds previous works [46] proposing a systematic procedure to answer the first

question: “Among all the existing pairs (test model, mutant), which ones are the most relevant to

be studied? And in those models, which parts are relevant to improve the model?” The principles

of model transformation traceability are summarized, the mutation matrix is introduced and the

relationships between these two concepts are detailed.

5.1. Model Transformation Traceability

Regarding MDE and more specifically model transformations, the traceability mechanism links

input and output models elements [47]. It specifies input model elements used by the transformation

to generate output model elements.

Excerpt of InputModel Sample

: Class
name=Person
is_persistent=false : Class

name=Address
is_persistent=true

parent

src

dest
attrs

: Column
name=
type=String

Link1

: Class
name=
is_persistent=true

Student

Link2

: Table
name=Student

:Association
name=address

: Attribute
name=
is_primary=true

street address_street

cols

Excerpt of
OutputModel Sample

Model transformation
transform

createColumns

Excerpt of Trace

Link3

Figure 5. Trace Example

Various traceability approaches have been developed, but they are dedicated to a specific

transformation language [48], [49], [50] or they take into account only classes and not attributes [47].

A traceability approach has been developed [51] independently from any transformation language.

Each creation/modification of an element by a rule leads to the creation of a unique link. Each

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 V. ARANEGA ET AL.

link refers to (i) a set of source elements (attribute or class instances), (ii) a set of target elements

and (iii) the transformation rule that leads to this creation/modification. Each link corresponds to

an execution of a rule, that may be executed several times on different input elements. Figure 5

illustrates an example. Link1 indicates that the output instance of Table has been created from one

input instance of Class. Moreover, Link1 specifies that the instances it binds have been read and

created by the transform rule.

Each trace is formally modeled. It captures formal relations between models and the

transformation. Moreover, it can be analyzed independently from any transformation language.

Nevertheless, the automatic generation of traces must be tied to a specific transformation language.

In this paper, the trace generation is adapted for the Kermeta‡ language in order to pursue the

works initiated by Mottu et al. [9, 20]. Usually traces can be automatically generated without

altering the transformation by adding plugins to the transformation engine [51]. However, these

solutions rely on an intermediary internal representation of the transformations used by other

transformation languages such as QVTo [16]. Kermeta does not use any intermediary representation.

Two alternatives remain: drastically modifying the engine or manually inserting instructions in the

transformation [48]. This latter solution has been adopted in the experimentations since it allows

quick prototyping and requires a small development effort§.

5.2. Model Transformation Traces and Mutation Matrix Generation

The execution step named (b) in Figure 4 is more complex than just executing the mutants for each

test model. A trace model is generated for each execution and a mutation matrix [9] is built to gather

all the results. Figure 6 sketches this step that has been detailed in [46].

Mutant
Execution

Mutation
MatrixTrace Models

[Test Model?]
Status

Definition
Transformation T

Execution

Original
TransformationT

Execution

Figure 6. Mutation Matrix and Trace Generation

The execution step requires the following parameters: the transformation under test T , its mutants

Ti and the test models. For each transformation execution (original or mutant), a trace (Trace Model)

is produced and associated to the corresponding pair (test model,mutant). Furthermore, the state

(i.e. killed or alive) for this pair is stored in a cell of the mutation matrix.

More precisely, each cell of the mutation matrix corresponds to the execution of a mutant Ti with

a test model mj . The mutation matrix is presented in Figure 7. It is organized through three main

concepts [46]:

• Mutant (T0 . . . Tn) which represents the executions of a mutant in a column,

• Model (m0 . . .mm) which represents the transformations of a test model mj in a row,

• Cell (C00 . . . Cmn) which represents the execution of one mutant with one single test model.

It specifies if the test model lets the mutant alive or not (with a boolean). Furthermore, each

cell is associated to a Trace (lt00 . . . ltmn).

Thus, from a Mutant or a Model, it is possible to access to its Cells and so to its Traces. The

mutation matrix acts as a pivot between the mutants, the test models and the traces. It is then used

‡http://www.kermeta.org
§Experimental material [52]

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 11

Mutants

M
od

el
s

T T1 ... Tn

m0

m1

mm

c00 c01 ... c0n

c10 c11 ... c1n

cm0 cm1 ... cmn

...

lt00 lt01 ... lt0n

lt10 lt11 ... lt1n

ltm0 ltm1 ... ltmn

...

Traces

Figure 7. Mutation Matrix

to define final status of the mutant. Indeed, if a mutant has no cell marked as killed, it is considered

as alive.

5.3. Identification of Relevant Pairs (Model, Mutant)

The proposed approach relies on the assumption that test models owning elements which are used

by the mutated rule (and so by the mutated instruction) are good candidates to be improved to kill

the mutant. Indeed, this rule has been executed on elements of these test models, but the resulting

models do not differ from the ones of the original transformation executions possibly because of

neutralization by the remainder of the transformation. The mutant is the exact copy of the original

transformation except the mutated instruction. The difference of the outputs can only result from

the execution of this mutated instruction and thus of the mutated rule. The traceability mechanism

allows the tester to identify these candidate models and, for each one, to highlight the elements

consumed and produced by the mutated rule. Thus, the test model improvement activity (Figure 4,

activity (d)) is decomposed into three steps as illustrated in Figure 8.

Operator Test ModelTrace Model

Test Model Set Improvement
Mutation
Matrix

Live Mutant
Selection

Relevant
Test Model

Identification
New Test

Model Creation

Test Model

Figure 8. Test Model Set Improvement Process

Live Mutant Selection. The selection of a relevant pair begins by the choice of a live mutant

(activity (1)). This is automatically performed by exploring the boolean attribute of the mutation

matrix cells.

Relevant Test Model Identification. For the selected mutant, the corresponding cells of the

mutation matrix are explored, and each trace model is navigated to identify if the mutated rule has

been executed, i.e. if, in the trace, there exists a link pointing to it. Two situations can occur: (i) If

the rule has never been executed, a new test model must be created, potentially from scratch, taking

care that conditions for the mutated rule to be executed are fulfilled. (ii) If the mutated rule has been

called at least once the algorithm selects some candidate test models. Moreover, for each identified

test model, two other sets are provided representing respectively the input and the output elements

handled by the mutated rule. Among these models, the one with the smallest sets of elements is

selected: using the two sets associated to the chosen model, the tester can focus on the smallest

set of input model elements and its small counterpart in the output model to understand why these

elements do not kill the mutant being considered and consequently to modify the identified model.

Using the input model with the smallest set of elements reduces the space search and, consequently,

the effort to analyse why its elements do not kill the mutant.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 V. ARANEGA ET AL.

3
3a

3b

3c

New Test Model Creation

Mutation
Matrix

Trace Model Operator Test Model

Test Model Handled
Parts Identification

Test Model
Modification

Initial Test
Model Copy

Figure 9. New Test Model Creation Process

New Test Model Creation. In order to increase the test model set without regression (i.e.

without making alive some mutants killed by the identified test model), this identified test model

is preliminary copied as shown in Figure 9, activity 3(b) and then modified. The activity 2 has

provided the input and output elements handled by the mutated rule. According to the mutant and

the applied operators, the input or the output elements are identified in the corresponding model

(Figure 9, activity 3(a)). Section 7 focuses on the modification of the test model (activity 3(c))
to automate and assist this activity which is manual until now. The mutation matrix and the trace

may be used to automatically identify relevant pairs (test model,mutant) and the input and output

elements involved in the execution of the mutated rule. In the next section, the mutation operators

automatically use them as input of the 3(c) activity (Figure 9).

6. MODELLING MUTATION OPERATORS

In order to automate the treatment of the live mutants, mutation made in them should be more

precise than an informal description (as it was proposed by Mottu et al. [9]). The mutation operators

are designed to automatically detect where they could be applied. The heterogeneity of model

transformation languages issue is prevented by using a language independent approach. Moreover,

only the modification and creation of new test models that are not dependent on the transformation

language are addressed.

The original contribution consists in modeling mutation operators based on their effects upon the

data manipulated by the transformation under test instead of based on their implementation in the

transformation language being used. The mutation operators proposed by Mottu et al. [9] are thus

designed based on the metamodels of the models manipulated by the transformation.

6.1. Principle

The mutation operators for model transformation are based on the three classical operations that

occur in model transformations: navigation, filtering, and creation (or modification) of input and

output model elements [9]. These three operations are sequentially applied. They form a basic cycle

which is repeated to compose a whole model transformation. Such a decomposition into elementary

operations provides an abstract view which is useful for fault injection.

Each mutation operator is designed as a metamodel expressing how the operator may be applied

on any transformation. The 10 mutation operators defined by Mottu et al. [9] lead to the creation

of 10 mutation operator metamodels. Those metamodels are independent from any transformation

and any transformation language. Their instantiations depend on the transformation under test and

express how mutants operate on its input/output metamodels. A single instance can be used to

represent a kind of mutation applied to several code areas leading to the creation of several mutants.

The application of one mutation operator on one transformation returns mutation models which

conform to the corresponding mutation operator metamodel. Whereas a mutation metamodel is

generic, its models are dedicated to one model transformation, but still language independent.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 13

Class

is_persistent : Boolean

Association

name : String

Attribute

name : String

is_primary : Boolean

PrimitiveDataType

ClassModel

attrs
association

parent

type
classifier

src

dest

Classifier

name : String

1
1

*

*

1

1..*

0..1

(a) Simple Class Diagram Metamodel

eAttributes

Eclass

EAttribute EDataType

EReference
eReferences

eReferenceType
eSuperTypes

eOpposite

eAttributeType

1

0..*

0..*

0..1

1
0..*

EMOF	MM

(b) EMOF Meta-Metamodel

Figure 10. Class diagram metamodel and its own metamodel: EMOF meta-metamodel

Those mutation models are based on the input and output metamodels of the transformation.

They define how input/output model elements could be treated by the original transformation

and how the mutants would treat them. For instance, Figure 10(a) reminds the metamodel of the

class2rdbms transformation. One mutation model would describe that the src link is navigated

instead of the dest link. Another mutation model would describe that the dest link is navigated

instead of the src link. Another one would select a subset of Class instances in a set collected

through the classifier link.

The application of one mutation operator model on one transformation implementation returns the

mutants. This step is out of the scope of this paper since it depends on the transformation language.

To understand how those mutation operator metamodels are created and then instantiated in

mutation operator models, the concept of metamodel needs to be further explained.

A metamodel is itself a model, and thus it conforms to one metamodel which defines its concepts.

This metamodel called meta-metamodel is the EMOF meta-metamodel and is illustrated in Figure

10(b). The class diagram metamodel (Figure 10(a)) conforms to the EMOF meta-metamodel. Thus,

for example, Class and PrimitiveDataType are instances of EClass whose eSuperType is

Classifier, another instance of EClass. is persistent, is primary, or name are instances of

EAttribute and their EDatatype are Boolean, Boolean, and String, respectively. dest and src
are EReference without eOpposite EReference.

6.2. Three Examples of Mutation Operator Models

The following subsections present the metamodels of three mutation operators with

definition extracted from Mottu et al. work [9], an application example extracted from the

class2rdbms transformation, and a description of the used concepts and relations. For the sake

of conciseness, the 7 other mutation operators are detailed in an annex [52]. In order to create

the mutants, the effective operators applied to the transformation under test (i.e. the mutation

operator models) have to be effectively defined. This is automatically performed with a model

transformation [52].

6.2.1. Navigation Mutation: Relation to the Same Class Change Operator (RSCC)

Definition “The RSCC operator replaces the navigation of one reference towards a class with the

navigation of another reference to the same class.”

The RSCC operator can be applied on the input or the output metamodel of the transformation

but only if it exists, in the metamodel, at least two EReferences between the two same EClasses.

One EReference is originally navigated, the other is navigated by a mutant. Thus applied on a model

transformation, RSCC operator replaces the original navigation by another to the same EClass.

The RSCC operator metamodel is presented in Figure 11. In order to ensure its independence

from any transformation and transformation language, it is expressed on generic concepts that can

appear in any transformation whatever the used language. Indeed, the RSCC operator metamodel

uses the EMOF metamodel (on the left of Figure 11) to specify the input or output elements of the

transformation the operator is applied on. Note that for each operator metamodel, several abstract

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 V. ARANEGA ET AL.

classes have been introduced (on the right) refactoring some references and increasing reusability

between operator metamodels as shown in the Annex [52].

eAttributes

Eclass

EAttribute

EDataType

EReference

eReferences

eReferenceType

eSuperTypes

eOpposite

eAttributeType

1

0..*

0..*

0..1

1

0..*

Navigation

Replacement

RSCC

newNavigation

1

initNavigation

1

EMOF MM

Figure 11. RSCC operator metamodel

Metamodel Description Table I gathers the classes and the relations dedicated to the RSCC

operator. Additional constraints are necessary to ensure the viability of the mutant created. The first

constraint prevents the mutants to be equivalent. The second constraint requires the two EReferences

being to the same EClass.

CLASS/RELATION DESCRIPTION

RSCC The mutation operator

initNavigation EReference initially navigated by the transformation

newNavigation EReference navigated after the mutation

additional constraint newNavigation != initNavigation

additional constraint newNavigation.eReferenceType = initNavigation.eReferenceType

Table I. Description of the RSCC Operator Metamodel

Example The mutation model illustrated in Figure 12 is an example of the application of

the RSCC mutation operator on the class2rdbms transformation. The grey part instantiates the

operator RSCC. This mutation model would be applied in the transformation each time a rule

navigates the dest EReference (replacing it with the src EReference), whatever its place in a

navigation chain, returning each time a different mutant. Note that the RSCC operator metamodel

would be instantiated a second time by inverting initNavigation and newNavigation.

Class

is_persistent : Boolean

Association

name : String

Attribute

name : String

is_primary : Boolean

PrimitiveDataType

ClassModel

attrs
association

parent

type
classifier

src

dest

Classifier

name : String

1
1

*

*

1

*

0..1

Op1 : RSCC

initNavigation

newNavigation

Figure 12. One example of the RSCC mutation models for the class2rdbms transformation

Such a mutation operator model could then be applied to the implementation of the

transformation. For instance, the following mutant has been produced in the Listing 3, page 23,

written in Kermeta with its mutated navigation Line 3.

6.2.2. Filtering Mutation: Collection Filtering Change with Addition (CFCA)

The filtering operations handle collections and select a subset of elements useful for the

transformation; based on specific criteria. The collection may be collected by an eAttribute or

through an EReference, or it may be an EClass collection.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 15

Definition “This operator [. . .] uses a collection and processes [an extra] filtering on it. This

operator could return an infinite number of mutants and need to be restricted. It has been chosen to

take a collection and to return a single element arbitrarily chosen.”

Figure 13 and Table II describe the metamodel of the CFCA mutation operator.

eAttributes

Eclass

EAttribute

EDataType

EReference

eReferences

eReferenceType

eSuperTypes

eOpposite

eAttributeType

1

0..*

0..*

0..1

1

0..*

Filter

CardFilter

CFCA

attributeFrom

eRefFrom

0..1

dataTypeRes

0..1

eClassRes

0..1

EMOF MM

0..1
eClassFrom

0..1

Figure 13. CFCA operator metamodel

Metamodel Description Table II gathers the classes and the relations dedicated to the CFCA

operator. The table is divided into several parts because the three last ones are mutually exclusive.

In fact, the filter may concern either an EReference, an EAttribute (both pointing collections of

element), or a collection of EClasses and that also appears in the cardinalities associated to the

eRefFrom, attributeFrom, and eClassFrom EReferences. The fault is not directly described in

this metamodel (as it was with newNavigation in RSCC), since the operator modifies the original

filter, arbitrarily, selecting only one element, for instance.

CLASS/RELATION DESCRIPTION

CFCA The mutation operator

eRefFrom Define the EReference on which the filtering is applied

eClassRes Type of the elements returned by the filtering through the

EReference

attributeFrom Define the EAttribute on which the filtering is applied

dataTypesRes Type of the EAttributes returned by the filtering

eClassFrom Define the collection of EClasses on which the filtering is

applied

eClassRes Type of the elements returned by the filtering

Table II. Description of the CFCA Operator Metamodel

Example Figure 14 illustrates one mutation model of CFCA applied to class2rdbms transforma-

tion. The grey part instantiates the operator CFCA whereas the remainder is the input metamodel

of the transformation. This mutation model would be applied to the transformation each time a rule

filters a collection of Class instances returned by the classifier reference. i.e. if a ClassModel
has several Classes (such as in Figure 1a), CFCA operator modifies the filter to select only one of

the Class in the model.

6.2.3. Creation Mutation: Classes’ Association Creation Addition (CACA) Operator

The creation mutation operators are relative to the last phase of the transformation process (i.e.

they concern the creation or modification of output metamodel elements).

Definition “This operator adds an extra relation between two class instances of the output model,

when the metamodel allows it.”

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 V. ARANEGA ET AL.

Class

is_persistent : Boolean

Association

name : String

Attribute

name : String

is_primary : Boolean

PrimitiveDataType

ClassModel

attrs
association

parent

type
classifier

src

dest

Classifier

name : String

1
1

*

*

1

*

0..1

Op2 : CFCA

eRefFrom

eClassRef

Figure 14. One example of the CFCA mutation models for class2rdbms transformation

The creation operators (e.g. CACA) are defined on the output metamodel of the transformation.

The output model resulting from the execution of the original transformation or from a mutant

must always conform the output metamodel. Thus, the mutant may add in the output model only

references that are instances of EReferences in the output metamodel. Moreover, according to [9],

if the EReference has an upper cardinality equals to 1 and if an instance already exists, then adding

an extra has no consequence, the EReference is overridden. The CACA operator metamodel is

illustrated in Figure 15.

eAttributes

Eclass

EAttribute

EDataType

EReference

eReferences

eReferenceType

eSuperTypes

eOpposite

eAttributeType

1

0..*

0..*

0..1

1

0..*

Creation

Modification

CACA

refToModify

1

EMOF MM

Figure 15. CACA Operator Metamodel

Metamodel Description Table III sums up the description of the CACA metamodel by describing

its specific classes and relation. For this mutation operator, the refToModify EReference corresponds

to the reference which is added in the output model.

CLASS/RELATION DESCRIPTION

CACA The mutation operator

refToModify EReference added by the mutant

Table III. Description of the CACA Operator Metamodel

Example Figure 16 illustrates one mutation model of CACA applied to class2rdbms transfor-

mation. An EReference references from a FKey instance to a Table instance is wrongly added in

an output model. Since the references EReference has a cardinality of 1 and may have already

been initialized, the EReference is simply overridden.

The other operators are described using the same technique in the Annex [52]. In order to use these

models, it is necessary to bind them with the other models corresponding to the tested transformation

or the mutants, the trace and the test models. The mutation matrix already plays a pivot role between

these latter; it is thus modified to also handle the mutation models.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 17

CACA refToModify

Figure 16. CACA Operator Application Example

6.3. Mutation Matrix Binding

Each mutant is returned by a single application of one mutation operator on the original

transformation. In order to enable a direct access from a given mutant Tj to its associated operator

Opk, a link is added to each mutant in the mutation matrix, as shown in Figure 17. Two mutants T0

and T1 may be linked to the same mutation operator model. Indeed, as an instruction can be used

many times at different places in a model transformation (as in traditional programming), a same

mutation operator model Opk can fit for several mutants.

Op1

Op2

Opk

Mutation
Operator
Models...

c

c

c c c

c

c c

c

Figure 17. Mutation Matrix and Mutation Operator

7. CREATION OF A NEW TEST MODEL BY MODIFYING AN EXISTING ONE BASED ON

PATTERN IDENTIFICATION

Based on the abstract representations of the operators and their definition on the input or output

metamodel of the transformation, it is possible to identify why a mutant remains alive, and give

some recommendations to modify existing test models that in their new versions should kill the

mutant. For each mutation operator, few test model patterns (i.e. specific configurations in the

model) leaving a mutant alive are identified. For each pattern, modifications that should kill the

mutant are identified. This solves the two unresolved issues: “Why a mutant has not been killed by

a specific test model?” and “How a selected test model could be modified to produce the expected

output model and thus kill the studied mutant?”. It has to be noticed that the following works are

specified at a meta level based only on the abstract representation of the operators. It is not possible

to be absolutely sure that the recommended modifications applied to a test model will kill the mutant.

In other terms, the approach proposed in this paper provides an automatic analysis of the situation

and advises some first modifications to be performed; in a lot of cases, they will be enough to kill

the mutant.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 V. ARANEGA ET AL.

7.1. Presentation of the Patterns Notion on the RSCC operator

In this subsection, some cases (also called patterns) that may let a mutant alive are illustrated.

For example, the RSCC- Relation to the Same Class Change operator is considered. This operator

replaces the navigation of one reference towards a class with the navigation of another reference to

the same class (cf. 6.2.1). Thus, for an original transformation navigating the self.a.ba.c sequence,

one mutant may navigate the self.a.bb.c sequence. The dot notation is used as in object oriented

languages to navigate from one class to another: self refers to a class, a, ba and bb to references, and

c either to another reference or an attribute (see Figure 18 for an example of possible input models

for this transformation). For this operator, three patterns letting the mutant alive are identified:

• Pattern 1: the original sequence and the mutated one finally point to the same instance,

• Pattern 2: the original sequence and the mutated one finally point to null,

• Pattern 3: the value of the element property pointed by the original sequence and the mutated

one are the same.

These three patterns are represented in Figure 18 on three simple models and described below.

Those models would have been selected because they execute the mutated rule without killing the

mutant (following the process of the Section 5). The way to modify the test model is different

according to the pattern.

b1: B

a

c2: C
label = "tmpLab"

s1: S a1: Aa

Pattern 1 example

Pattern 3 example

Pattern 2 example

label = "tmpLab"

b2: B

ba
bb

s1: S a1: A c1: C

b1: B

a
label = "tmpLab"

b2: B

ba
bb

s1: S a1: A c1: C

cc

c
c

Figure 18. Patterns Examples

Pattern 1 The first pattern occurs when either the mutated navigation points to the same element

as the original navigation (ba and bb point to the same instance of B) (not represented in the Figure)

or the original sequence and the mutated one point to the same instance (as in the Figure).

The mutant can be killed if the mutated and the original navigation sequences point to two

different instances of the same EClass. To produce the new test model, a new instance of this EClass,

with different attribute values, is added to the model and the EReferences are updated.

Recommendation for Pattern 1: the idea is to add a new instance completely different from the

one recovered by navigating the original EReference. This recommendation, albeit simple, may not

kill a live mutant. It may therefore be more appropriate to add an element in the collection handled

by the mutant:

• If at least one of the two EReferences (original or mutated) has its upper bound strictly

greater than 1 (1− n and 1− ∗ EReferences, i.e. collections), a new instance is added into

the collection. Indeed, adding a new instance into a collection handled by the mutant or the

original transformation can greatly influence the navigation results.

• If at least one of the two EReferences has its lower bound equal to 0, it is possible to delete

that instance. Thus, the original transformation or the mutant could not recover the instance

and could return a different result (according to the deleted reference).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 19

Pattern 2 The second pattern occurs when an intermediate reference cannot be navigated. In this

example, if the a reference (or c reference) points to null, neither the original sequence self.a.ba.c
nor the mutated one self.a.bb.c can be fully navigated. The element recovered by the two sequences

is null.

The selected test model can then be modified by updating empty references, i.e. by updating the

null reference to an element with the correct type.

Recommendation for Pattern 2: once again, the idea is to add a new instance. As for the previous

pattern, a new instance is created and the reference navigated by the original transformation is

updated in order to point to this new object.

Pattern 3 The third pattern occurs when the elements recovered by the original sequence

self.a.ba.c sequence and by the mutated one self.a.bb.c have the same value for a given attribute

(e.g. an attribute named “label” with value tmpLab).
To solve this problem, the tester can modify one of the attributes by changing its value.

Recommendation for Pattern 3: this time, it is the value of the properties that must be modified.

Thus, once the elements handled by the faulty rule are identified, the value of their attributes is

changed to create a new test model.

Automatic Pattern Detection: for each element retrieved by the algorithm described in

Section 5.3 (elements handled by the mutated rule), references pointed by initNavigation and

newNavigation are navigated. These instances are then compared with each other in order to detect

if they are the same (Pattern 1) or null (Pattern 2). If the instances are different, their attributes

are compared in order to detect common values (Pattern 3). According to the identified pattern, the

model can be modified.

7.2. Patterns for the CFCA Operator

The mutants created by the application of the CFCA operator select a single item in a collection.

The mutant remains alive, because the original filter did not return any element or returned a single

element. Indeed, if no item is returned by the original filter, the mutated filter will also return an

empty set. Similarly, if one element is returned by the original filter, the mutation will have no

effect. In both cases, the mutant and the original transformation will behave the same way. In

the opposite, if the filtered collection contains several elements, a different behaviour should be

highlighted between the original transformation and the mutant.

Without a complete specification of the filtering condition, it is difficult to provide a seamless

solution to produce a new model. Nevertheless, it is possible to consider two patterns which let a

mutant alive:

Pattern 1 the collection does not contain any element,

Pattern 2 the collection contains only one element.

Automatic Pattern Detection: to automatically determine the number of items in the collection,

the elements that are handled by the mutated rule and that are in the collection pointed by

the eRefFrom EReference (respectively the collection of attributeFrom in case of collection of

attributes) are selected (Figure 13). The number of items in the collection is then computed.

Recommendation for Pattern 1: if no element is present in the collection, two different instances

satisfying the filtering condition are created and added to the collection. Adding only one element

resolves the Pattern 1 but Pattern 2 would occur.

Recommendation for Pattern 2: if one element is present in the collection, an instance which

satisfies the filtering condition is created and added to the filtered collection.

Depending on the complexity of the filtering condition, modifying an existing model can be

tedious. In the cases not covered by the two proposed patterns, the recommendations will not be

adapted; the s will have to study in details the input test models to create a new one. Nevertheless, the

testers’ work is eased thanks to the traceability mechanism, by identifying the test model elements

handled by the mutated rule.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 V. ARANEGA ET AL.

7.3. Pattern for the CACA Operator

Creation operators inject faults that add, delete, or replace elements in the output models.

Consequently, the probability to observe a difference between the mutated transformation output

model and the original transformation output is higher than navigation or filtering operators.

However, since the creation operators imply changes in the output model, patterns are not based

on specific configuration in a test model.

The description of the operator [9] states that when the upper bound of the mutated EReference

is 1, whatever the number of times an element is linked to others, only the last one is taken into

account, all the previous ones are overridden. For EReferences whose upper bound is ∗, the mutated

instruction execution involves the addition of one extra element in the collection. So normally, the

number of elements in the collection should be different in the output model resulting from the

original transformation and the one generated by the mutant. If it is not the case, it may mean that

this mutated instruction has not been executed.

Since the CACA operator concerns the output model, it is difficult to provide a seamless solution

to produce a new model. Nevertheless, it is possible to consider three patterns which let a mutant

alive. They are pretty vague since they are expressed directly on the output metamodel and not the

input model. The associated recommendations are very generic; they concern the way to modify the

input model.

Pattern 1 the cardinality of the mutated EReference in the output metamodel is 0..1,

Pattern 2 the cardinality of the mutated EReference in the output metamodel is 1,

Pattern 3 the cardinality of the mutated EReference in the output metamodel is 0..∗, 1..∗ or n..m
and this part of the rule has never been executed.

Automatic Pattern Detection: the model of the CACA operator applied to the mutant is

automatically analysed in order to identify the cardinality of the output metamodel EReference

pointed by the refToModify reference of the operator. The pattern 3 is identified if the upper

bound of the cardinality differs from 1 and if there is no instance of the EReference pointed by the

refToModify reference in the output model.

Recommendation for Pattern 1: It is possible to apply an ad hoc modification; the idea here is to

avoid the overriding of the original EReference. The output model element pointed by the original

EReference must thus be removed. So, in the output model returned by the original transformation,

the reference will point to no object, whereas the reference in the mutant output model returned by

the mutated transformation should point to an element. To achieve that, the refToModify reference is

navigated and the instance it points to is collected. The input model elements creating this instance

are automatically identified using the trace. Finally, the choice of the input model elements to delete

or modify is the only task left to the tester.

Recommendation for Pattern 2: As previously explained, only the last time the element is linked

to others is taken into account. If a mutant whose CACA operator is applied to an EReference with

cardinality 1 is alive, this means that the added reference and the original one lead to the same

result. The way this element is obtained from the input elements has to be studied and consequently

modified.

Recommendation for Pattern 3: The CACA operator adds an element in a collection. Since the

mutant remains alive, this means that the part of the mutated rule has not been executed. The test

model has to be modified in order to force the execution of this part of the mutant. Of course, it is

possible that the mutation is applied to a dead code zone and in that case no test model will lead to

its execution.

7.4. Synthesis

In this section, 8 patterns, 2 or 3 for each mutation operator have been identified. For the sake of

conciseness, the patterns for the other mutation operators are explained in the Annex [52]. These

patterns undoubtedly leave mutants alive. For each of these patterns, a modification of an existing

input model has been proposed to create a new test model that should kill a mutant. However, for

some operators, it may occur that the identified patterns are not enough and that a more detailed

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 21

Relevant Model
and Elements
Identification

Model
Creation

Test Model

[is the mutated
rule executed?]

yes
no

Problematic Cases
Detection

Careful Mutation
Analysis

Modification
Suggestion

Model
Modification

Operator

Test Model

Trace Model
[is a case identified?]
[is an automatic

modification possible?] no

yes

yes
no

Trace Model

Model
Creation

Test Model

Manual Model
Modification

Test Model

Automatic Task
Semi-Automatic Task
Manual Task

Figure 19. Choices During the New Test Model Creation

analysis is required. This analysis then relies on the results of the “relevant model and element

identification” step (cf. 5.3).

To summarize the different steps of the proposed approach and their order, Figure 19 shows an

activity diagram corresponding to the choices made by the final algorithm to support the creation of

new test models. The process starts when relevant models and subparts of them are automatically

identified. If the algorithm does not identify any relevant model, this means that the mutated rule

has never been executed: this is the first information provided by the approach that helps testers.

Therefore, the mutated rule must be analysed to determine the elements which are required to

activate the rule execution, and a new test model is generated. If the mutated rule has been executed

and if the mutant remains alive, the context must be analysed. The process then continues by trying

to automatically identify whether the test model contains one of the proposed patterns. To perform

this task, the modeled mutation operator and the model trace are used. When this activity is ended,

if no pattern has been identified, the tester must semi-automatically analyse the mutant. To assist

her in this task, the trace as well as the results of the “relevant model and element identification”

step are provided. Once the mutant has been analysed, the tester can manually create the new test

model. However, if a pattern has been identified, the proposed recommendation can be automatically

implemented, a new test model is automatically created. For patterns where the change cannot be

automatically performed, a modification suggestion is reported to the tester to help her to create a

new test model.

Although the process is not fully-automated, assistance is provided thanks to the identification of

relevant models and elements, the trace that helps to understand the transformation or the mutant

execution, and the recommendations associated to the patterns.

8. CASE STUDY

In this section, the approach is deeply illustrated with the class2rdbms transformation. An initial

test set is provided. In order to increase the mutation score, the approach is used to propose new test

models owning the ability to kill a mutant with a minimal or even without any manual analysis. The

input and the output metamodels of the transformation have been presented in section 2. Finally,

in Section 8.9, the approach is experimented on a second case study to kill all the mutants of the

fsm2ffsm transformation.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 V. ARANEGA ET AL.

8.1. Case Study Implementation

A language dedicated to model transformation such as QVTo would perhaps have been the most

adapted as case study. Nevertheless, Kermeta has been chosen to implement the class2rdbms

transformation. It is an imperative, object oriented language, with a model oriented type system.

Indeed, some works extended and enhanced in this paper are based on Mottu and Sen works [9, 20].

At that time, the case study was also class2rdbms and it was already implemented using Kermeta.

Using the same case study enables the comparison and the evaluation of the approach proposed in

this paper.

The overview of the Kermeta implementation of the transformation is extracted from Muller et

al. paper [53]. The transformation is implemented in three steps:

Table Creation Tables are created from each Class marked persistent in the input model.

Column Creation For each persistent Class, all Attributes and outgoing Associations are

transformed to create corresponding Columns. The FKeys (foreign keys) are created but their cols

property cannot be filled, and the corresponding Column cannot be created because primary keys of

references table cannot be known before they have been created, at the end of this step.

Foreign-Key Update Foreign-key columns are created in the Table that contains the FKey, and

the property cols of FKey is updated.

The transformation has been implemented in a class named Class2RDBMS. As a general-purpose

language, Kermeta does not manage transformation rules but class methods called operations.

Moreover, the Class2RDBMS class provides a method transform that takes the input model as a

parameter and returns the corresponding output model. Listing 2 presents an excerpt of the Kermeta

code of the transformation.

The three steps of the transformation appear in the body of transform operation (lines 12
to 31). First, tables are created for each persistent Class (lines 19 to 24). Second Columns are

created in the tables (lines 26 to 27) and, finally, FKeys are updated (line 30). The mapping between

classes and tables is represented by the reference class2table in class Class2RDBMS

(line 8). The FKeys reference is used to store all the created foreign keys during step 2 in

order to be able to update them at step 3. The other operations (e.g. createFKeyColumns)

have been implemented but only createColumns is presented here. Kermeta implementation

of class2rdbms is composed of 113 lines of code in 11 operations. In the shown code, the trace

link creation is also present (line 8). As explained in Section 5.1, the trace links creation has been

manually inserted in the transformation, in the same way Falleri et al. did in their work [48]. With

other languages like QVTo, the creation of the trace would have been automatic.

Faults designed with the mutation operators have been injected into the original transformation

leading to 200 mutants. The approach focuses on the test set improvement for which mutation

operator models and mutants already exist. For the sake of space, the specification of the mutation

operator models and the mutants relative to the case study is not detailed in the paper, but available

online [52]. The number of mutants per operator is synthesized in Table IV. Only the CCCR -

Classes compatible creation replacement operator is not applied because there is no inheritance in

the output metamodel.

OPERATOR TYPE OPERATOR NUMBER OF MUTANTS

Navigation

ROCC - Relation to another class change 12

RSCC - Relation to the same class change 9

RSMA - Relation sequence modification with addition 72

RSMD - Relation sequence modification with deletion 12

Filtering
CFCP - Collection filtering change with perturbation 38

CFCD - Collection filtering change with deletion 18

CFCA - Collection filtering change with addition 19

Creation
CACD - Classes association creation deletion 11

CACA - Classes association creation addition 9

Table IV. Number of mutant per operators created for the class2rdbms transformation

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 23

For the experimentation, the mutation analysis process is launched on 200 mutants with a test set

initially composed of 8 models. The way they have been created is independent from the approach

that as any mutation approach requires an initial test set. In this case study, they have been manually

created. The old version (0.4.1) of Kermeta is used, but it corresponds to the one used by initial

works [9, 20]. The following of the Section details the process to create new test models using the

proposed approach in order to kill a mutant produced by the RSCC mutation operator.

Listing 2: Extract of the class2rdbms transformation

1 package Class2RDBMS;

2 require kermeta // The kermeta standard library

3 require "LocalTrace.kmt" // The trace framework

4 require "../ClassMM.ecore" // Input metamodel in Ecore

5 require "../RDBMSMM.ecore" // Output metamodel in Ecore

6 [...]

7 class Class2RDBMS {

8 reference class2table : LocalTrace // The trace of the transformation

9 reference fkeys : Collection<FKey> // Set of keys of the output model

10 operation transform(inputModel : ClassModel) : RDBMSModel is do

11 class2table := LocalTrace.new // Initialise the trace

12 class2table.create

13 fkeys := Set<FKey>.new

14 result := RDBMSModel.new

15 // Create tables

16 getAllClasses(inputModel).select{ c | c.is_persistent }

17 .each{ c | var table : Table init Table.new

18 table.name := c.name

19 class2table.storeTrace(c, table)

20 result.table.add(table)}

21 // Create columns

22 getAllClasses(inputModel).select{ c | c.is_persistent }

23 .each{ c | createColumns(class2table.getTargetElem(c), c, "")}

24 // Create foreign keys

25 fkeys.each{ k | k.createFKeyColumns }

26 end

27 [...]

28 operation createColumns(table : Table, cls : Class, prefix : String) is do

29 // add all attributes

30 getAllAttributes(cls).each{ att |

31 createColumnsForAttribute(table, att, prefix) }

32 // add all associations

33 getAllAssociation(cls).each{ asso |

34 createColumnsForAssociation(table, asso, prefix) }

35 end

36 [...]

37 }

Listing 3: RSCC class2RDBMS 33 mutant extract

1 operation createColumnsForAssociation(table : Table, asso : Association,

prefix : String) is do

2 // if isPersistentClass(asso. dest) then // original

3 if isPersistentClass(asso. src) then // mutant

15 else

17 end

18 end

8.2. Mutation Operator Modelisation: RSCC class2RDBMS 33 example

Among all the produced mutants, the focus is put on the mutant RSCC class2RDBMS 33 (this

number has no sense in itself, it is just a way to identify one mutant among the 200). Figure 20

shows the mutation operator model (RSCC 4) which leads to its production. This model expresses,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 V. ARANEGA ET AL.

thanks to its initNavigation reference, that initially, a dest reference was navigated and that its

mutation leads to the navigation of an src reference (thanks to its newNavigation reference). These

two references belong to the Association class and point to the Class class.

Figure 20. RSCC 4 Mutation Operator Modelisation

The mutation operator model RSCC 4, used for this mutant, is applied each time the navigation

dest occurs producing each time a new mutant. For instance, Listing 3 is an excerpt of

RSCC class2RDBMS 33 mutant. Line 2 represents the initial instruction whereas line 3 represents

the instruction mutated by the RSCC operator application.

8.3. First Iteration of the Mutation Analysis Process

To start the mutation analysis process, the test models built by the tester are successively executed

on the transformation under test and on all its mutants. During the executions, the traces are

automatically generated. For each mutant and each test model, the resulting output model is

compared to the one generated by the original transformation in order to determine if the test

model has killed the mutant or not. Results of the model comparisons are stored in a mutation

matrix. Figure 21 shows an extract of the produced mutation matrix corresponding to the mutant

RSCC class2RDBMS 33. It contains information about the mutant:

• the name of the modified rule: createColumnsForAssociation,

• the mutant name: RSCC class2RDBMS 33.kmt,

• the file path,

• a link to the modeled mutation operator (via MutationOp).

Furthermore, the results of the comparison are specified through the Cell reference. For

example, for this mutant, each of the associated Cell has the value true. This means that each

test model has left the mutant alive. Since no test model kills the mutant, it is considered alive.

The analysis of the mutation matrix indicates that 144 mutants were killed and 56 remained alive,

giving a mutation score of 72% for the 200 mutants and the 8 test models.

To increase the mutation score, a live mutant is chosen. Here the mutant RSCC class2RDBMS 33

has been chosen and the approach is applied in order to add a new test model that will kill it.

8.4. Identification of Relevant Model and Elements

The application of the approach identifies relevant models, i.e. those for which the mutated rule of

the RSCC class2RDBMS 33 mutant is executed. The results are given in Table V, that summarizes

the input models identified as relevant, their model elements and the resulting (destination) elements

created by the mutated rule.

Among the 8 test models in the initial test set, four were identified as relevant: ClassModel02,

ClassModel04, ClassModel05 and ClassModel06. It means that these models own elements

(identified in the Source Elements column) that are handled by the mutated rule. However, they all let

the mutant alive, the results of their execution are the same as the one of the original transformation.

They do not kill the mutants, but they are candidate to be improved.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 25

RSCC_4

Figure 21. Mutation Matrix Extract

TEST MODEL SOURCE ELEMENTS DESTINATION ELEMENTS

ClassModel02 next: Association next: FKey

ClassModel04 a: Association a: FKey

ClassModel05 b: Association b: FKey

ClassModel06
a: Association a: FKey
b: Association b: FKey

Table V. Identified Relevant Model and Elements for RSCC class2RDBMS 33

8.5. Test Models Analysis

To understand why the mutant is not killed, further analysis of these identified test models is needed.

Based on the identified element, the automatic patterns detection is launched for the mutation

operator RSCC class2RDBMS 33. The results of the pattern detection, including the pattern number,

is summarized in Table VI.

TEST MODEL PATTERN NUMBER

ClassModel02 RSCC P1

Table VI. Identified Patterns for RSCC class2RDBMS 33

From the 8 initial test models, the “relevant model and element identification” step results in the

identification of 4 relevant models. From these 4 models, the pattern detection identifies only 1 of

them. The detected pattern is the number 1 for RSCC mutation operators. This pattern indicates that

the element recovered by the original navigation and the mutated one is the same. It means that

for test model ClassModel02, the src and dest reference of the next Association point to the same

instance.

8.6. Test Model Creation

The proposed modification for this pattern is: add a new instance of Class in the model, radically

different from the Class recovered by the mutant and the original transformation. Then either the

src or the dest reference need to be updated to refer the newly created instance.

The Class recovered by the original Association and the mutated one is the class named customer

whose is persistent attribute is set to true. Therefore, a new Class instance, called newInstance1

is created. Given the structural constraints expressed in the metamodel, an Attribute must be added

to this new Class. In order to maximize the chance to kill the mutant, the characteristics of this

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 V. ARANEGA ET AL.

attribute are defined differently from the one owned by the customer Class. The new instance has

its NewInstance1 is persistent attribute set to false and contains an Attribute newAttribute of type

customer. Figure 22 represents the created model.

Figure 22. New Test Model Produced

Once the new test data is added to the set of test models, the mutation analysis process is launched

again. This time, the mutation score is 78.5%. In the mutation matrix (partially shown in Figure 23),

the RSCC class2RDBMS 33 mutant contains a false Cell, indicating that it is henceforth killed.

The added test model has effectively killed the mutant.

RSCC_4

Figure 23. Produced Mutation Matrix Extract

8.7. New Test Models Productions

This time the analysis focuses on the mutant CFCA class2RDBMS 10 obtained by applying the

filtering operator CFCA on the attrs reference of the input meta-model. Among the 9 test models,

5 are identified as relevant (i.e. they allow the execution of the mutated rule). These 5 models are

concerned by the pattern 2 of the operator CFCA (cf. Section 7.1). For the record, this pattern

indicates that the filtered collection (attrs) contains only one element. According to the solution

sketched in Section 7.1, an element has to be added to the attrs collection. So one of these models is

copied and then modified to produce a new test model. The mutation analysis process is started again

with 10 test models; the mutation score is 89%. Once again, the considered mutant CFCA mutant 10

is actually killed by the new test model.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 27

The new iteration deals with the RSMA mutant 09 mutant obtained by applying the mutation

operator RSMA that adds an extra navigation (named parent) to the initial navigation (named dest).

Among the 10 test models, 4 are identified as relevant and among these 4 models, only 3 satisfy one

of the patterns associated to the applied mutation operator. The three cases respect the pattern 3.

This pattern states that instances recovered by the parent and dest reference own attributes with the

same value. The trace identifies the is persistent attribute. The solution proposed for this pattern

is a modification of the value of one of the attributes achieved by the navigation. Following these

indications, one of the three models is copied and modified to provide an 11th test model. The

mutation analysis process is launched again, and the mutation score is 91.5%. To exceed 90% the

test set contains 11 models. The process can be executed again to increase the mutation score.

8.8. Improvement Comparing To Manual Approach

Without the approach proposed in this paper, when a mutant remains alive, the user must (i) look

for the mutated rule, (ii) study each execution of this mutant and (iii) understand why it has not

been killed. She has to think about what the output model should look like in case the mutant

would be killed in order to create an input model leading to such an output. For this purpose, she

manually executes the mutant on potentially each model to understand how each element of the

output models has been created. She may go through all the elements of each model. Possibly all

models and all their elements are studied by the user who has no indication. Then she has to perform

some modifications, verify that the new models kill the mutant and continue until succeeding. This

has to be performed for each live mutant; the process is long and fastidious.

Using the proposed assistant may lead to the construction of a test model set finally containing

as many test models as mutants and potentially more than the set manually obtained. Indeed,

sometimes killing a mutant can lead to kill other ones as a side effect. However, it is possible to

automatically prune the test model set by “reducing” the mutation matrix. This reduction relies on

the premise that a test model killing mutants already killed by other test models is useless.

This case study aims to illustrate the different steps of the proposed approach and their iteration.

In the course of this description, the gain in terms of studied models and model elements and the

benefit of the patterns are shown. For example, in the case of the mutant 33, only 4 models among

8 are considered relevant. For each of them, the relevant elements are highlighted (here only 1 or

2 per model). Moreover, using the patterns associated to the operator leads to the identification of

a single model, and indications are given on the way to improve it. Next section introduces a new

experiment, on a quantitative point of view.

8.9. An Experiment Evaluating the Number of Elements To Be Analysed

In this subsection, the proposed approach is experimented on another example: a model

transformation which flattens finite state machines. This transformation takes as input a hierarchical

state machine and produces as output an equivalent flattened state machine. Figure 24(a) shows a

hierarchical state machine, and Figure 24(b) shows its equivalent flattened state machine. After a

brief description of the preliminary step, the approach is used to create new test models with less

effort in order to kill live mutants. Finally, the gain is analyzed on the tester’s effort in terms of

studied models and model elements.

1 3 4

2

on

off

x

(a) Hierarchical FSM Model Example (b) Flattened FSM Model Example

Figure 24. One hierarchical Finite State Machine Model (FSM) sample and one flattened FSM

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

28 V. ARANEGA ET AL.

Creation of mutants and initial test models. Using the mutation operator metamodels, the

possible mutations are designed based on the finite state machine metamodel [52] and generate

76 mutation operator models. The operators are applied to the transformation implemented in

Kermeta and obtain 126 mutants (details are given in the Annex [52]).

Based on the partitioning approach proposed in [19], a set of 9 test models, respectively labelled

M1 to M9, is created. Table VII shows their respective sizes, calculated upon the number of

elements (i.e. objects, attributes, associations) they are made of.

MODEL NAME M1 M2 M3 M4 M5 M6 M7 M8 M9 Total
OF ELEMENTS 14 31 31 14 16 12 10 10 25 163

Table VII. Respective sizes of the initial test data set models

Results and Analysis. Applying the proposed approach on this case study, the mutation score

of the test model set is increased from 45% to 100% in 8 iterations, producing 8 new test models.

Each iteration is dedicated to kill one live mutant. Table VIII shows final results of our test model

improvement process. Several observations can be drawn from this case study:

• Our traceability approach allows the tester to drastically reduce the search space to find

which models and which elements of these models are the most relevant for creating new

test models. Whereas a tester should entirely analyse the existing test models (e.g. 163 model

elements at the first iteration) to create new models, with the proposed approach, only two

models (corresponding to 39 elements) are relevant. The analysis can even be focused on less

elements (only 11 of a single model). The gain column compares the total number of model

elements with the number of studied elements (e.g. 93.25%). The global average gain in terms

of elements to be covered by the full approach is around 87%.

• The common patterns identified on mutation operators provide to the tester some simple

modifications that can be performed on the test models. In this case study, five mutants have

been killed by simply applying the recommended modification on the test models. Among the

three remaining mutants, the trace indicated for two of them that their mutated part was not

executed. Finally, only one of the eight studied mutants required an in-depth analysis.

ITERATION MODELS

SET SIZE

TOTAL

MODELS

SIZE

STUDIED

MUTANT

STUDIED

MODELS

SIZE

STUDIED

ELEMENTS

SIZE

GAIN

(%)
PATTERN

DETECTED

1 9 163 CFCD 4 39 11 93, 25 CFCD P2

2 10 180 CACA 4 90 36 80 −
3 11 205 CFCA 10 25 5 97, 56 CFCA P2

4 12 235 CFCA 8 55 10 95, 74 −
5 13 260 CFCD 8 80 15 94, 23 CFCD P2

6 14 288 CACA 6 198 56 80, 56 −
7 15 313 CACD 5 223 60 80, 83 CACD P2

8 16 338 CFCA 7 248 68 79, 88 CFCA P1

Result 17 368 100%killed − − − −

Table VIII. Final results of the process on the fsm2ffsm transformation

9. CONCLUSION

The mutation analysis process suffers from the manual and tedious character of the test data set

improvement activity. In this paper, a solution to this issue is provided in order to go towards a full

automation of the mutation analysis process adapted to model transformation. More particularly, it

has been proposed a process based on transformation traceability, an abstract representation of the

mutation operators and problematic specific configurations to enhance the automation of the test

data set improvement activity.

In a previous work, an algorithm based on the model transformation traceability has been

proposed to identify, for each live mutant, relevant test models and their involved elements [46]. The

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

TOWARDS AN AUTOMATION OF THE MUTATION ANALYSIS. 29

major drawback of this algorithm was that it could not help in the study of what the output model

should be if the mutant were killed and thus not providing possible modifications. To solve this issue

and enhance the previous method, an approach independent from the tested transformation and the

used transformation language has been proposed. This independency results from the modelling of

the mutation operators. Some specific problematic configurations (patterns) are identified for each

mutation operator and recommendations are proposed.

The proposed approach has been illustrated with the class2rdbms transformation written in

Kermeta with an initial set of 8 test models. Three live mutants have been studied in order to produce

new test model killing them. The initial test model set reached a 72% mutation score, and the 3 new

test models increase the score to 90%. Each time, the new test model has been easily and quickly

created thanks to the proposed algorithms. The approach has been experimented on a second case

study. It highlights how the approach drastically reduces the number of model elements to study

compared to the manual approach where no indication to reduce the investigation in the models was

given.

The approach has been applied to the Kermeta language but is not dedicated to Kermeta. Indeed,

the mutation matrix representation, the traceability and the mutation operator representation are free

from any transformation language. Moreover, the identified patterns come from observations about

Kermeta and QVTo [16] transformations. They thus do not depend on a specific transformation

language and can be used with another one.

Currently, an automatic modification of the existing test models to create a new test model

cannot be provided each time. Indeed, in order to automatically create a new test model by simple

modification, structural constraints of the input metamodels must be taken into account. The arisen

challenges to obtain an automatic test models generation can be also found in general automatic

test model set generation challenges. Thus, it is planned to look towards test model generation

techniques in order to provide a full automatic test model creation.

REFERENCES

1. Gamatié A, Le Beux S, Piel E, Ben Atitallah R, Etien A, Marquet P, Dekeyser JL. A model-driven design framework
for massively parallel embedded systems. ACM Trans. Embed. Comput. Syst. Nov 2011; .

2. DeMillo R, Lipton R, Sayward F. Hints on test data selection: Help for the practicing programmer. Computer 1978;
11(4).

3. Voas JM, Miller KW. The revealing power of a test case. Softw. Test., Verif. Reliab. 1992; 2(1):25–42.
4. Murmane T, Reed K, Assoc T, Carlton V. On the effectiveness of mutation analysis as a black box testing technique.

Software Engineering Conference, 2001; 12–20.
5. Baudry B, Le Traon Y, Sunyé G, Jézéquel JM. Measuring and improving design patterns testability. Proceedings of

Metrics Symposium 2003, 2003.
6. Frankl PG, Weiss SN, Hu C. All-uses vs mutation testing: An experimental comparison of effectiveness. Journal of

Systems and Software 1997; .
7. DeMillo RA, Offutt AJ. Experimental results from an automatic test case generator. ACM Trans. Softw. Eng.

Methodol. 1993; .
8. Baudry B, Ghosh S, Fleurey F, France R, Le Traon Y, Mottu J. Barriers to systematic model transformation testing.

Communications of the ACM 2009; .
9. Mottu JM, Baudry B, Le Traon Y. Mutation analysis testing for model transformations. ECMDA 06, Spain, 2006.

10. Bézivin J, Rumpe B, Schürr A, Tratt L. Model transformations in practice workshop. Satellite Events at the
MoDELS 2005 Conference, 2005.

11. van Gigch JPv. System design, modeling and metamodeling. Plenum press, New York, 1991.
12. Gonzalez-Perez C, Henderson-Sellers B. Metamodelling for Software Engineering. Wiley Publishing, 2008.
13. Jeusfeld MA, Jarke M, Mylopoulos J ((eds.)). Metamodeling for Method Engineering. MIT Press: Cambridge,

MA, USA, 2009.
14. Sendall S, Kozaczynski W. Model transformation: the heart and soul of model-driven software development.

Software, IEEE 2003; .
15. Czarnecki K, Helsen S. Classification of model transformation approaches. OOPSLA’03 Workshop on Generative

Techniques in the Context of Model-Driven Architecture, 2003.
16. Object Management Group, Inc. MOF Query / Views / Transformations. http://www.omg.org/docs/ptc/07-07-

07.pdf Jul 2007. OMG paper.
17. Mottu JM, Baudry B, Le Traon Y. Model transformation testing : oracle issue. MoDeVVa workshop colocated with

ICST’08., Lillehammer, Norway, 2008.
18. Finot O, Mottu JM, Sunye G, Attiogbe C. Partial test oracle in model transformation testing. International

Conference on Model Transformation, Budapest, Hungary, 2013.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 V. ARANEGA ET AL.

19. Fleurey F, Baudry B, Muller PA, Traon YL. Qualifying input test data for model transformations. Software and
System Modeling 2009; 8(2).

20. Sen S, Baudry B, Mottu JM. Automatic model generation strategies for model transformation testing. International
Conference on Model Transformation, ICMT09., Zurich, Switzerland, 2009.

21. Sen S, Moha N, Baudry B, Jézéquel JM. Meta-model pruning. Model Driven Engineering Languages and Systems,
MODELS, Lecture Notes in Computer Science, vol. 5795, Schürr A, Selic B (eds.), Springer, 2009.

22. Mottu JM, Sen S, Tisi M, Cabot J. Static analysis of model transformations for effective test generation. IEEE
International Symposium on Software Reliability Engineering, ISSRE 2012, IEEE: Dalls, USA, 2012.

23. Guerra E. Specification-driven test generation for model transformations. ICMT, Lecture Notes in Computer
Science, vol. 7307, Hu Z, de Lara J (eds.), Springer, 2012; 40–55.

24. Jia Y, Harman M. An analysis and survey of the development of mutation testing. Software Engineering, IEEE
Transactions on 2010; .

25. Li N, Praphamontripong U, Offutt J. An experimental comparison of four unit test criteria: Mutation, edge-pair, all-
uses and prime path coverage. ICSTW ’09: Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation Workshops, 2009.

26. Smith B, Williams L. Should software testers use mutation analysis to augment a test set? Journal of Systems and
Software 2009; 82(11):1819 – 1832.

27. Smith B, Williams L. On guiding the augmentation of an automated test suite via mutation analysis. Empirical
Softw. Engg. 2009; 14(3).

28. Pimont S, Rault JC. A software reliability assessment based on a structural and behavioral analysis of programs.
Proceedings of the 2nd international conference on Software engineering, ICSE ’76, 1976.

29. Clarke LA, Podgurski A, Richardson DJ, Zeil SJ. A formal evaluation of data flow path selection criteria. IEEE
Trans. Softw. Eng. Nov 1989; .

30. Ammann P, Offutt J. Introduction to software testing. Cambridge University Press, 2008.
31. Barbosa EF, Maldonado JC, Vincenzi AMR. Toward the determination of sufficient mutant operators for c. Softw.

Test., Verif. Reliab. 2001; 11(2):113–136.
32. Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C. An experimental determination of sufficient mutant operators.

ACM Trans. Softw. Eng. Methodol. 1996; 5(2).
33. Ma YS, Kwon YR, Offutt J. Inter-class mutation operators for java. ISSRE ’02: Proceedings of the 13th

International Symposium on Software Reliability Engineering, 2002.
34. Argrawal, DeMillo, Hathaway, Hsu, Krauser, Martin, Mathur, Spafford. Design of mutant operators for the c

programming language. Technical Report.
35. Tisi M, Jouault F, Fraternali P, Ceri S, Bézivin J. On the use of higher-order model transformations. Model Driven

Architecture - Foundations and Applications, 5th European Conference, 2009.
36. Fraternali P, Tisi M. Mutation analysis for model transformations in atl. International Workshop on Model

Transformation with ATL, Nantes, France, 2009.
37. Ferrari FC, Maldonado JC, Rashid A. Mutation testing for aspect-oriented programs. ICST ’08: Proceedings of the

2008 International Conference on Software Testing, Verification, and Validation, 2008.
38. Simão A, Maldonado JC, da Silva Bigonha R. A transformational language for mutant description. Comput. Lang.

Syst. Struct. 2009; 35(3).
39. Fleurey F, Steel J, Baudry B. Validation in model-driven engineering: testing model transformations. Proceedings

of MoDeVa, 2004; 29–40.
40. Baudry B, Fleurey F, Jézéquel JM, Le Traon Y. From genetic to bacteriological algorithms for mutation-based

testing. STVR Journal Jun 2005; 15(2):73–96.
41. Fraser G, Zeller A. Mutation-driven generation of unit tests and oracles. Proceedings of the 19th international

symposium on Software testing and analysis, ISSTA ’10, ACM: New York, NY, USA, 2010; 147–158.
42. Fraser G, Arcuri A. Evosuite: automatic test suite generation for object-oriented software. ACM SIGSOFT

Symposium on the Foundations of Software Engineering, SIGSOFT FSE, 2011.
43. Ayari K, Bouktif S, Antoniol G. Automatic mutation test input data generation via ant colony. Proceedings of the

9th annual conference on Genetic and evolutionary computation, ACM, 2007; 1074–1081.
44. IEEE. IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology. IEEE

Computer Society Press: New York, NY, USA, 1990.
45. EMFcompare. www.eclipse.org/emft/projects/compare.
46. Aranega V, Mottu JM, Etien A, Dekeyser JL. Traceability for mutation analysis in model transformation.

Proceedings of MODELS’10 Workshops and Symposia, Springer-Verlag: Berlin, Heidelberg, 2010; 259–273. URL
http://dl.acm.org/citation.cfm?id=2008503.2008537.

47. Jouault F. Loosely coupled traceability for atl. ECMDA Workshop on Traceability, Germany, 2005.
48. Falleri JR, Huchard M, Nebut C. Towards a traceability framework for model transformations in kermeta. ECMDA-

TW Workshop, 2006.
49. Yie A, Wagelaar D. Advanced traceability for ATL. 1st International Workshop on Model Transformation with ATL

(MtATL 2009), Nantes, France, 2009.
50. Vanhooff B, Ayed D, Baelen SV, Joosen W, Berbers Y. Uniti: A unified transformation infrastructure. MoDELS,

USA, 2007.
51. Aranega V, Etien A, Dekeyser JL. Using an Alternative Trace for QVT. Workshop on Multi-Paradigm Modeling,

Olso, Norway, 2010.
52. Aranega V, Mottu JM, Etien A, Degueule T, Baudry B, Dekeyser JL. Annexe and experimentation material.

https://sites.google.com/site/mutationtesttransfo/.
53. Muller PA, Fleurey F, Vojtisek D, Drey Z, Pollet D, Fondement F, Studer P, Jézéquel JM. On executable meta-

languages applied to model transformations. Model Transformations In Practice Workshop, Jamaica, 2005.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://dl.acm.org/citation.cfm?id=2008503.2008537
https://sites.google.com/site/mutationtesttransfo/

	Introduction
	Model Transformation Testing: Concepts and Motivating Example
	Modeling
	Metamodeling
	Model Transformation
	Model Transformation Testing

	Improving a Test Data Set: State of The Art
	Test Model Qualification and Generation Approaches
	Mutation Testing Approaches to Measure Test Data Set Efficiency to Detect Faults
	Mutation Analysis to Improve Test Data

	Mutation Analysis and Model Transformations
	Mutation Analysis Dedicated to Model Transformations
	A Process Remaining Mainly Manual
	Contribution to Model Transformation Mutation Analysis

	Model Transformation Traceability: a Way to Collect Information
	Model Transformation Traceability
	Model Transformation Traces and Mutation Matrix Generation
	Identification of Relevant Pairs (Model, Mutant)

	Modelling Mutation Operators
	Principle
	Three Examples of Mutation Operator Models
	Navigation Mutation: Relation to the Same Class Change Operator (RSCC)
	Filtering Mutation: Collection Filtering Change with Addition (CFCA)
	Creation Mutation: Classes' Association Creation Addition (CACA) Operator

	Mutation Matrix Binding

	Creation of a New Test Model by Modifying an Existing One based on Pattern Identification
	Presentation of the Patterns Notion on the RSCC operator
	Patterns for the CFCA Operator
	Pattern for the CACA Operator
	Synthesis

	Case Study
	Case Study Implementation
	Mutation Operator Modelisation: RSCC_class2RDBMS_33 example
	First Iteration of the Mutation Analysis Process
	Identification of Relevant Model and Elements
	Test Models Analysis
	Test Model Creation
	New Test Models Productions
	Improvement Comparing To Manual Approach
	An Experiment Evaluating the Number of Elements To Be Analysed

	Conclusion

