R. Blute, Linear logic, coherence and dinaturality, Theoretical Computer Science, vol.115, issue.1, pp.3-41, 1993.
DOI : 10.1016/0304-3975(93)90053-V

URL : http://doi.org/10.1016/0304-3975(93)90053-v

K. Brünnler and A. F. Tiu, A Local System for Classical Logic, LNAI, vol.2250, pp.347-361, 2001.
DOI : 10.1007/3-540-45653-8_24

J. Cockett and R. Seely, Weakly distributive categories, Journal of Pure and Applied Algebra, vol.114, issue.2, pp.133-173, 1997.
DOI : 10.1016/0022-4049(95)00160-3

K. Do?en and Z. Petri´cpetri´c, Proof-Theoretical Coherence, 2004.

C. Führmann and D. Pym, On the geometry of interaction for classical logic (extended abstract), 19th IEEE Symposium on Logic in Computer Science, pp.211-220, 2004.

C. Führmann and D. Pym, Order-enriched categorical models of the classical sequent calculus, Journal of Pure and Applied Algebra, vol.204, issue.1, 2004.
DOI : 10.1016/j.jpaa.2005.03.016

A. Guglielmi, A system of interaction and structure To appear in ACM Transactions on Computational Logic. On the web at, 2002.

R. Houston, D. Hughes, and A. Schalk, Modelling linear logic without units (preliminary results) Available at http://arxiv, 2005.

D. Hughes and R. Van-glabbeek, Proof nets for unit-free multiplicative-additive linear logic, 18th IEEE Symposium on Logic in Computer Science, 2003.
DOI : 10.1145/1094622.1094629

J. M. Hyland, Abstract Interpretation of Proofs: Classical Propositional Calculus, LNCS, vol.3210, pp.6-21, 2004.
DOI : 10.1007/978-3-540-30124-0_2

F. Lamarche and L. Straßburger, From Proof Nets to the Free *-Autonomous Category, Logical Methods in Computer Science, vol.2, issue.4, 2004.
DOI : 10.2168/LMCS-2(4:3)2006

F. Lamarche and L. Straßburger, Naming Proofs in Classical Propositional Logic, TLCA 2005, pp.246-261, 2005.
DOI : 10.1007/11417170_19

URL : https://hal.archives-ouvertes.fr/hal-00012294

J. Lambek and P. J. Scott, Introduction to higher order categorical logic, volume 7 of Cambridge studies in advanced mathematics, 1986.

S. and M. Lane, Natural Associativity and Commutativity, Rice University Studies, vol.49, pp.28-46, 1963.
DOI : 10.1007/978-1-4615-7831-4_19

S. and M. Lane, Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics, 1971.

M. Parigot, ?µ-calculus: An algorithmic interpretation of classical natural deduction, LPAR 1992, pp.190-201, 1992.

P. Selinger, Control categories and duality: on the categorical semantics of the lambda-mu calculus, Mathematical Structures in Computer Science, vol.11, issue.2, pp.207-260, 2001.
DOI : 10.1017/S096012950000311X

L. Straßburger and F. Lamarche, On Proof Nets for Multiplicative Linear Logic with Units, LNCS, vol.3210, pp.145-159, 2004.
DOI : 10.1007/978-3-540-30124-0_14

T. Streicher and B. Reus, Classical logic, continuation semantics and abstract machines, Journal of Functional Programming, vol.8, issue.6, pp.543-572, 1998.
DOI : 10.1017/S0956796898003141