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Summary. The search for interesting Boolean association rules is an important
topic in knowledge discovery in databases. The set of admissible rules for the se-
lected support and confidence thresholds can easily be extracted by algorithms based
on support and confidence, such as Apriori. However, they may produce a large num-
ber of rules, many of them are uninteresting. One has to resolve a two-tier problem:
choosing the measures best suited to the problem at hand, then validating the inter-
esting rules against the selected measures. First, the usual measures suggested in the
literature will be reviewed and criteria to appreciate the qualities of these measures
will be proposed. Statistical validation of the most interesting rules requests per-
forming a large number of tests. Thus, controlling for false discoveries (type I errors)
is of prime importance. An original bootstrap-based validation method is proposed
which controls, for a given level, the number of false discoveries. The interest of this
method for the selection of interesting association rules will be illustrated by several
examples.

Key words: Association rules, interestingness measures, measure properties, mul-
tiple testing, false discoveries.

1 Introduction

The association between Boolean variables has been studied for a long time,
especially in the context of 2 x 2 cross-tables. As Hajek and Rauch [21] point
out, one of the first methods used to look for association rules is the GUHA
method, proposed by Hajek et al. [22], where the notions of support and
confidence appear. Work done by Agrawal et al. [2], Agrawal and Srikant [1],
Mannila et al. [37] on the extraction of association rules from transactional
databases has renewed the interest in the association rules.

In such a database, each record is a transaction (or more generally, a case)
whereas the fields are the possible items of a transaction. Let n be the number
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of transactions and p the number of items. A Boolean variable is associated to
each item. It takes the value "1" for a given transaction if the considered item
is present in this transaction, "0" else. The set of transactions form a n x p
Boolean matrix. To each itemset is associated a Boolean variable which is the
conjunction of the Boolean variables associated to each item of the considered
itemset.

From the Boolean matrix showing which items are the objects of which
transaction, one extracts rules like "if a client buys bread and cheese, he is
quite likely to also buy wine". A rule of association is an expression A — B,
where A and B are disjoint itemsets. More generally, this form can be ap-
plied to any data matrix, as long as continuous variables are discretized and
categorical variables are dichotomized.

As the number of possible association rules grows exponentially with the
number of items, selecting the "interesting" rules is paramount. Now, one
needs to measure how interesting a rule is, and to validate the truly interesting
rules with respect to said measure. Previous work done by the authors on
the measure [28, 29] and on the validation of the association rules [45, 30]
is synthesized in this chapter. Measuring the interest of a rule requires that
the user chooses those best adapted to his data and his goal, targeting of
group or prediction. Various criteria are presented. Once a measure has been
selected and that rules are assessed using that measure, they still must be
validated. One could retain the 50 or 100 rules with the highest scores, but
these need not be interesting. Whenever possible, one should set a practical
or probabilistic threshold. When the measure exceeds the threshold, either
the rule is really interesting (true discovery), or it is merely an artefact of the
random choice and the rule is not really interesting (false discovery). Each rule
must be tested, which mechanically leads to a multitude of false discoveries
(or false positives). The authors propose a bootstrap-based method to select
interesting rules while controlling the number of false discoveries.

Criteria that can be used to assess measures appropriate to one’s goal are
presented in Sect. 2. In Sect. 3, it is shown that the validation of rules identified
by the selected measures relies on a multitude of tests and the authors propose
a multiple test method that controls the number of false discoveries.

2 Measuring Association Rule Interestingness

In this section, we will first look at the support-confidence approach (Sect.
2.1). Then, the notion of rules, implication and equivalences are examined
(Sect. 2.2). A list of measures and several assessment criteria are given in
the following subsections (Sects. 2.3 and 2.4). In the last subsection, some
common features of these measures are highlighted (Sect. 2.5).
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2.1 Appeal and Limitations of the Support-Confidence Approach
Support and Confidence

Let n, and n, the respective number of A and B transactions, and let ng,, be
the number of transactions where A and B items appear simultaneously. The
support of the rule A — B is the proportion of joint A and B transactions:
SUP (A — B) = pap = "2+ .
whereas the confidence is the proportion of B transactions among the A
transactions, that is the conditional frequency of B given A:

CONF (A — B) = Beb = Tax =1 — "t

Pa Na Na

“Support-Confidence” Extraction Algorithms

Following Apriori, the founding algorithm [1], support-confidence extraction
algorithms exhaustively seek the association rules, the support and the con-
fidence of which exceed some user-defined thresholds noted mingyp and
minconp- They look for frequent itemsets among the lattice of itemsets,
that is, those itemsets whose support exceeds mingy p, using the principle of
antimonotonicity of support on the lattice of itemsets:

- any subset of a frequent itemset is frequent

- any superset of a non-frequent itemset is non-frequent.

Then, for each frequent itemset X, the support-confidence algorithms only

keep rules of the type X\Y — Y, with Y C X, the confidence of which exceeds
MINCONF-

Pros and Cons of Support-Confidence Approach

The antimonotonicity property of the support makes the support-confidence
approach to rule extraction quite appealing. However, its usefulness is ques-
tionable, even though the very meaning of support and confidence are trans-
lated in easy-to-grasp measures.

First, algorithms of this type generate a very large number of rules, many
of them of little interest. Moreover, the support condition, at the core of the
extraction process, neglects rules with a small support though some may have
a high confidence thus being of genuinely interesting, a common situation in
marketing (the so-called nuggets of data mining). If the support threshold is
lowered to remedy this inconvenient, even more rules are produced, choking
the extraction algorithms.

Finally, the support and confidence conditions alone do not ensure rules
with a real interest. Indeed, if the confidence of the rule A — B is equal to
the marginal frequency of B, namely py/,, = py, which means that A and B
are independent, then the rule A — B adds no information (e.g. p, = 0.8,
o = 0.9, pap = 0.72, Pvja = 09)'

Hence, measures other than support and confidence must be examined,
thus promoting some amount of inductive bias.
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Table 1. Notations for the joint distribution of itemsets A and B

A\ B0 |1 [total
0 Pz |Pab|Pa
1 Pgp|Pab|Pa
total |py |pp |1

2.2 Rule, Implication and Equivalence

Association rules, implication and equivalence must be distinguished; let A
and B be two itemsets whose joint distribution is given in Table 1, where 0
means "false" and 1, "true".

First, note that such a table has 3 degrees of freedom when the margins
n, and n;, are not fixed, that is, one can reconstruct the table from knowing
only 3 values. The knowledge of 3 not linked values, for example SUP, CONF
and LIFT completely determines the joint frequency distribution of A and B
(Table 1).

Following proponents of association rules, using a support-confidence ap-
proach, attention is focused on examples A, on p,p (support) and on p,/, =
Pab/Pa (confidence). Distribution of examples A between B and B is not taken
into consideration.

The various examples and counter-examples of association rules, of impli-
cation and of equivalence that can be derived from A and B are displayed
in Fig. 1. Rules are on level 1, implications on level 2 and equivalences on
level 3. For each of the possible 8 rules, 4 implications and 2 equivalences, a
A X B cross table is derived, where the values of A (0,1) are the lines and
those of B (0, 1) the columns. Each combination is marked as an example (+),
a counter-example (—), or not accounted for (0). The rules, implications and
equivalences on the left-hand side are positive while those on the right-hand
side are negative.

The rule A — B has a single counter-example, AB, and a single example,
AB. One can see that a rule and its contrapositive share the same counter-
examples but have different examples. The implication A — B and its con-
trapositive B = A are equivalent to A V B, with AB as the only counter-
example. Finally, the equivalence A < B and its contrapositive B < A cor-
respond to (AB) V (E), their examples (resp. counter-examples) are the
examples (resp. counter-examples) of the 4 covariant rules.

2.3 A List of Measures

Table 2 lists the usual measures of interest for association rules which respect
the nature of the association rules, measures that are decreasing with n g,
margins n, and n;, being fixed, and distinguish A — B from A — B. In
the reminder of this chapter, only those measures will be considered. Other
measures are given in [23, 44, 20].
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Relation A< B A< B
ANBl o |1 Be A Be A
0 + +
1 - | + + | -
A=B| B= A A=B| B=A
B=A| A= B B=A| A= B
+ 1 + + + | + +
- + + | + + | - + | +
A—-B|B—-A| B—A| A—>B A—-B|B—-A| B—-A| A—-B
o | o -+ o o — + — o o o -+ — o — +
- | + - o o + o|o + | - o - + o o o

Fig. 1. Examples

Table 2. Usual Measures of interest

Level 3

Level 2

Level 1

and counter-examples of rules, implications and equivalencies

Measure Formula Acronym Ref.
Support Pab SUP [2]
Confidence Db/a CONF [2]
Centered confidence |py/, — Pb CENCONF
Ganascia 2pp/a — 1 GAN [13]
Piatetsky-Shapiro nPa (pb/a — pb) PS [39]
Loevinger % LOE [36]
Zhang A'IQE{IJ;L;_PIE)C:?I)PGE} ZHANG [48]
Correlation Coefficient piﬁ R

Implication Index \/ﬁ% IMPIND |[35]
Lift - LIFT [11]
Least contradiction pab;bp“” LC [3]
Conviction p:;? CONV [10]
Implication Intensity |P [Poisson (npapg) > npag] IMPINT |[16]
Sebag-Schoenauer ﬁ SEB [42]
Bayes Factor ;agig BF [25]
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2.4 Assessment Criteria

A number of criteria that can be used to assess a measure will be studied,
yielding a critical review of the usual measures of interest. Tan et al. [44]
undertook a similar exercise for symmetric or symmetrized measures.

The very Meaning of a Measure

Does the measure under study have a clear, concrete meaning for the user? It
is so for SUP and CONF, and also for LIFT, CONV, SEB or BF. A measure
with a lift of 2 means that the number of examples of the rule A — B is twice
what is expected under independence. Hence, a customer who buys A is twice
as likely to buy B than the general consumer, but similarly, he who buys B
is twice as likely to buy A, since lift is symmetric and that the examples of
A — B are also those of B — A. CONV = 2 means that n_; is half the
expected number under the independence of A and B. When SEB = 2, the
odds of “buying B” given “A was bought” is 2, or, he who buys A is twice as
likely to buy B than to not buy B, or chances of buying B are 2/3. If BF = 2,
odds of buying B are doubled if A is bought. Interpreting other measures is
not as easy, especially ZHANG and EII, the entropic form of IMPINT.

Measure and Corresponding Rule

A measure must distinguish the various rules associating A and B (Fig. 1).

1. A measure must permit a clear choice between A — B and A — B, since
the examples of one are the counter-examples of the other. Thus, Pearl’s,
J-measure and x? (see [20] for those measures) were eliminated, since they
do not account for the positivity or negativity of the rule.

2. Asymmetric measures which respect the nature of transactional rules are
preferred: "if those items (A) are in the basket, then quite often those
(B) are also”. Symmetric measures like SUP, PS, LIFT, or R and its
derivatives, give the same assessment of rules A — B and B — A; while
these rules have the same examples, they do not have the same counter-
examples.

3. Should a measure give the same assessment to A — B and B — A [27]?
If logical implication requires a strict equality, it is not so in the context
of association rules. Indeed, both rules have the same counter-examples
but not the same examples. The entropic intensity of implication, or EIT
[18] accounts for the contrapositive and brings the rule and the logical
implication closer.

Examples and Counter-Examples

At first glance, one could say that a rule is unexpected whether one pays
attention to the exceptionally high number of examples of the rule, ngy, or
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Table 3. Behaviour of certain measures in extreme situations

Situation Incompatibility  Independence|Logical rule
Characterization Pab =0 Pab = PaPb Pab = Pa
Support 0 PaPb PDa
Confidence 0 Db 1
Centered confidence |—pp 0 Py
Ganascia —1 2pp — 1 1
Piatetsky-Shapiro —NPaPb 0 NPpaPy
: =P
Loevinger P 0 1
Zhang -1 0 1
Correlation Coefficient|—, /BaPb 0 \/ PaPy
aPy PaPb

Implication Index (-) |—p» % 0 /TPy
Lift 0 1 o
Least contradiction —Ba 2pa — Bo Pa

Pp Pp Py
Conviction Py 1 (9
Implication Intensity |0 0.5 1
Sebag-Schoenauer 0 = b o0
Bayes Factor 0 1 00

to the exceptionally low number of counter-examples, n ;. However, the ex-
amples of A — B are also those of B — A (Fig. 1), whereas the counter-
examples of A — B are also those of B — A. This justifies a preference for
the counter-examples. To obtain a true difference between those options, one
should, following Lerman et al. [35], explore the counter-examples and some
probabilistic model; it is important that the margin n, be not fixed, other-
wise the number of examples and of counter-examples would be dependant,
Nab + N5 = Ng- IMPIND, IMPINT and EII derived from Lerman’s model 3
(see Sect. 2.4) are such measures.

Direction of the Variation in the Measure and Reference Points

We limited our study to the measures that are decreasing with the number of
counter-examples, margins n, and n; being fixed. Such a measure is maximum
when n_; = 0, that is when p;,/, = 1, which corresponds to a logical rule. It
is minimum when n_; = ng, that is nq, = 0, and p/, = 0, which means that
NN

A and B are incompatible. In fact, a rule is interesting whenever n_; < —-%,

that is when p,/, > Py (Pb/a = Pb, when A and B are independent). According
to Piatetsky-Shapiro [39], a good measure should be:

a. =0, A and B are independent, pqy = papp
b . > 0, under attraction, p,, > paPs
¢ . < 0, under repulsion, p,, < PaPp
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He proposes PS, a symmetric measure whose bounds depend on A and
B, PS(A — B) = np, [pb/a fpb} = N [pas — PaPb] - The conditions b and c
above can be replaced by normalizing conditions b’ and ¢’ [48], which gives
the so-called ZHANG:

b’. =1, in case of a logical rule (p,/, = 1, i.e. A C B)

¢’. = —1, in case of incompatibility (p,/, = 0, i.e. AB = ()

The only measures that take fixed reference values in the case of inde-
pendence and extreme values (Table 3) are ZHANG and BF. However, the
value in case of incompatibility is not very important since the only interesting
situations are those where p, < p;/, < 1.

The lower reference point is thus often the case of independence. In that
case, for the measures listed in Table 3, the value is often fixed, most often
0, sometimes 1 (LIFT) or 0.5 (IMPINT). The only exceptions are CONF,
LC, SEB and GAN, or again some derived measure like the example and
counter-example rate, ECR = 1 — SE%. As pointed out in Blanchard et al.
[8], these are measures for which the lower reference point is not independence
but rather indetermination (n_; = %, that is p,/, = pj o = 0.5). Lallich [28]
suggested modifying SEB so that it be fixed under independence:

ZSEB(A— B) = 2% = LIFT(A — B) x CONV (A — B) .

This measure is simiigr to Sufficiency proposed by Kamber and Shingal
[26]. It is actually similar to a Bayes factor [25], hence its name and notation
BF.

On the other hand, the higher reference point is always when no counter-
example exists, that is the logical rule. Normalizing to 1 is not always advisable
in this case, as all logical rules are given the same interest. LIFT would tend
to favour that of two rules which has the lower py.

Non-Linear Variation

Some authors [18] think it is preferable that the variation of a measure M
be slow as the first counter-examples are encountered to account for random
noise, then quicker, and then slow again (concave then convex). This is not the
case of confidence and of all measures derived through an affine transformation
which depends only of the margins n, and n, (Table 5). In fact, confidence
is an affine function of the number of examples (or counter-examples) which
depends only of n,:

CONF(A— B) =" =] — Zab

Conversely, to penalize false discoveries, BF' will be preferred, as it de-
creases rapidly with the number of counter-examples (convex for values of n_;
in the neighbourhood of 0).

Impact of the Rarity of the Consequent

Following Piatetsky-Shapiro [39], a measure M must be an increasing function
of 1 — py the rarity of the consequent, for fixed p, and p,p. Indeed, the rarer
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the consequent B is, the more "B D A" becomes interesting. This is especially
true when the support condition is not taken into consideration anymore. This
is partly what happens when a measure derived from centering confidence on
pp is used. This is also obtained by merely multiplying by p;, or by dividing
by 1 — pp; thus, the measure BF' = %SEB improves SEB in this respect.

Descriptive vs. Statistical Approaches

Measures can be regarded as descriptive or as statistical [28, 19]. A measure
is descriptive if it remains unchanged when all the counts are multiplied by a
constant 6, 0 > 1. Otherwise, the measure is said to be statistical. It seems
logical to prefer statistical measures, as the reliability of its assessment in-
creases with n, the number of transactions. A statistical measure supposes a
random model and some hypothesis Hjy concerning the lower reference point,
quite often, the independence of A and B [35]. One can consider that the base
at hand is a mere sample of a much larger population, or that the distribution
of 0’s and 1’s is random for each item.

We denote by N, the random variable generating n,. Under the hypothesis
of independence, Lerman et al. [35] suggest that a statistical measure can
be obtained by standardizing an observed value, say the number of counter-
examples Nz, giving :

CR _ Ny~ E(N 3/Ho)
ab . Var(N,;/Ho)

This statistical measure is asymptotically standard normal under Hy. A
probabilistic measure is given by 1 — X, where X is the right tail p-value of
NEE for the test of Ho, which is uniformly distributed on [0, 1] under Ho.

Lerman et al. [35] propose that Hy be modelled with up to 3 random
distributions (Hyp, Bin, and Poi denoting respectively the hypergeometric,
the binomial and the Poisson distributions):

- Mod. 1: n, ng fixed, N ; = Hyp(n,na., py)

- Mod. 2: N, = Bin(n,pa); /No = na, N; = Bin(na, p;)

- Mod. 3: N = Poi(n); /N =n, N, = Bin(n,p.); /N =n, N, = ng,
N_; = Bin(ng, py)

Depending on the model, N ; is distributed as a Hyp(n,nq,py), as a
Bin(n, papy) or a Poi(np.p;). When standardizing, the expectation is the
same, but the variance is model-dependent. Model 1 yields the correlation
coefficient R, whereas Model 3 yields IMPIND the implication index. The
latter has the advantage of being even more asymmetrical. Each statistical
measure gives in turn a probabilistic measure; for example, under Model 3,
IMPINT = P(N(0,1) > IMPIND) [16, 17].

Discriminating Power

Statistical measures tend to lose their discriminating power when n is large as
small deviations from Hy become significant. Consider the example of Table 4
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Table 4. Displaying dilatation based on one example

@,6),0]@,),] @ [ ®) [ © ] @ [ )] ©
Pav | Pz | CONF R RT|R™|R”| M | M | M

0.00]0.30 0 -0.65 [-2.93|-4.14|-9.26|0.002|0.000{0.000
0.05]0.25 0.17 -0.44 |-1.95|-2.76]-6.17(0.025|0.003{0.000
0.10]0.20 0.33 -0.22 [-0.98(-1.38/-3.09(0.165]0.084(0.001
0.15/0.15 0.5 0 0 0 0 (0.500(0.500]0.500
0.20/0.10 0.67 0.22 0.98 {1.38|3.09 ({0.835|0.916(0.999
0.25(0.05 0.83 0.44 1.9512.766.17 |0.975(0.997(1.000
0.30]0.00 1 0.65 2.93(4.14(9.26 (0.998(1.000{1.000

where the margins are fixed, p, = 0.30 and p, = 0.50. Examine how the
various measures react to changes in Pas the proportion of counter-examples.
The measures considered here are CONF, R, R°F (R standardized under
independence), and M the p-value of R under independence. The various
measures are compared with n = 20 (columns (a)), n = 40 (columns (b)),
and n = 200 (columns (c)). Clearly, as n grows, M is less able to distinguish
the interesting rules. On the other hand, the ordering remains unchanged.
As n is the same for all rules of a given base, one might want to first select
the rules that reject independence to the benefit of positive dependence, then
considered centered descriptive measures and reason on the ordering induced
by those measures.

The contextual approach, developed by Lerman for classification problems,
offers a first solution to the loss of discriminating power suffered by statistical
measures: consider the probabilistic discriminant index PDI [34]. This index
is defined as PDI(A — B) =1—® [IMPINT(A — B)°®/R], where & is the
standard Gaussian distribution function and R is a base of admissible rules.
This base can contain all the rules, or only those that meet some conditions,
for example conditions on support and confidence, or even the additional
condition n, < ny.

It has been suggested by Gras et al. [18] that the statistical measure (IM-
PINT) be weighted by some inclusion index based on the entropy H of B/A
and A/B. With H(X) = —pglog, pr — (1—p;)logs(1 — p,), these authors also
define H*(X) = H(X), if p; > 0.5, and H*(X) = 1, otherwise. The inclusion
index, noted i(A C B), is then defined as

1

i(AC B)=[(1- H*(B/A)*) (1 H*(A/B)>)]*.

In later work [19, 7], the authors recommend using o = 2 as it allows a
certain tolerance with respect to the first counter-examples, and define the

entropic implication index, noted EII, as EII = [IMPINT x i(A C B)]% .
Parameterization of Measures

As shown in [19], the lower reference situation is that of indetermination. This
is preferable to independence for predictive rules. More generally, Lallich et
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al. [31] have suggested a parameterized lower situation, adapted to the case
of targeting. It can be written as p,/, = 0 or py;, = Apy. After parameterizing
and rewriting the usual measures, it comes that GAN and LOE are special

cases of a single parameterized measure 2 ”/ 20 for § = 0.5 and 0 = pp. More-
over, each of the statistical, probabilistic and discriminant measures derived
frorn Lerman et al. model-based approach [35] has been parameterized. The
null hypothesis can be written as Hy : 7,/ = 6 (or possibly m,,, = Am),
with 7/, the theoretical confidence of the rule over all possible cases, and
mp, the theoretical frequency of B under a right tail alternative. In particular,
under Model 3, the parameterized version of IMPIND and IMPINT, noted
IMPINDG s and IMPINTG g4, are given by:
IMPINDG,y = Mas 2029,

\/npa(1-6) ’
IMPINTGy = P(N(0,1) > IMPINDGj,) .

The parameterized discriminant versions are obtained by transforming the
entropy used in constructing ET7 into a penalizing function H(X) , H(X) =1
for p, = 6 (instead of 0.5). It is sufficient, in the formula for H(X), to replace

Pz by ﬁza 5z = %7 if Pz < 9} and 51 = p;(—gl__g?ea if Do 2 6. Let H\E(X) =

}NIW(X), if p, > 0.5, and f[fg)(X) = 1, otherwise. The generalized inclusion
index ijg(A C B) is given by:
iig(AC B) = [(1 — Hy(B/A)* ) (1 — Hy(A/B)" )}
A generalized entrop1c implication 1ndex can then be derived as:
1
GEIljy = [IMPINTo(A — B) x ijg(A C B)]*

1

2a

Establishing a Threshold

It is important that the measures considered allow the establishment of a
threshold able to retain only the interesting rules, without resorting to clas-
sifying all of them [28]. Classically, the threshold is defined in relation to the
cumulative probability of the observed measure under H for a given model.
Note that the threshold is not a risk level for the multitude of tests, but
merely a control parameter. By definition, it is possible to set such a thresh-
old directly for PDI and IMPINT. Other measures do not allow such direct
a calculation. It is quite complex for ZHANG because of the standardization,
and for EII because of the correction factor.

Ordering Induced by a Measure

Two measures M and M’ give the same order to the rules of a transactional
base if and only if for all pairs of rules extracted from the base:

M(A — B) > M(A' = B') <= M'(A — B) > M'(A’ — B')

This defines an equivalence relation on the set of possible measures [28].
For example, SEB orders like CONF because it can be written as a monotonic
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increasing transformation of CONF, SEB = %_ Similarly, one can show

that LOE orders like CONV, and that PDI orders like IMPINT. It should be
pointed out that if the consequent is given, that is p, fixed as it is the case for
association rules in supervised learning, then LIFT, CONV, LOE and SEB
order like CONF.

2.5 Various Measures of the Interest of a Rule

We have shown that alternatives to SUP and CONF are necessary to identify
interesting rules and we have proposed several selection criteria. Now, let us
specify the link between the usual measures and confidence, highlighting those
that are affine transformations of confidence.

First, let’s stress that the support is the index of association for Boolean
variables proposed by Russel and Rao [41]; then, it will be pointed out that
the usual indices of proximity defined on logical variables (see [33]) are not
useful for the assessment of association rules because of their symmetrical
treatment of Boolean attributes.

Affine Transformations of Confidence

Several measures can be written as a standardization of confidence via some
affine transformation [28], namely M = 6; (CONF — fy), whose parameters
only depend on the relative margins of the A x B cross table and possibly
on n (Table 5). Most often, the change in location indicates a departure from
independence, p,/, —pp, and the change in scale depends on the ultimate goal.
Conversely, changes in scale inform on what distinguishes two measures cen-
tered on py. There are two notable exceptions, LIF'T for which the comparison
to pp is merely a change of scale and LC' which centers confidence at 0.5.

Measures Derived from Confidence via Some Affine
Transformation

All these measures improve on confidence but, by construction, inherit its
principal characteristics. For fixed margins, they are affine functions of the
number of counter-examples. Moreover, these measures remain invariant un-
der changes in n when #; and 6y parameters do not depend on n, which is
the case for all of them except PS and IMPIND.

The lift is interpreted as the quotient of the observed and expected number
of examples, assuming the independence of A and B. As an expression of the
number of examples, it is symmetrical, since the rules A — B and B — A
have the same examples (Fig. 1). LC is another transformation of confidence,
but centered on 0.5 rather than on py, a better predictive that targeting tool.

Pearson’s correlation R between two itemsets can be positive (see Fig. 1,
examples and counter-examples of A < B) or negative (see Fig. 1, A < B). R
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Table 5. Measures derived from confidence via some affine transformation

Measure center (fo)|scale (01)
Centered confidence |pp 1
Ganascia 0.5 2
Piatetsky-Shapiro Db NPa
: T
Loevinger Db =
Zhang Db T
Correlation Coefficient |py V/Pa
PaPuPy
Implication Index Db Vn 1;—%
- T
Least contradiction 0.5 2Ba

is linked to the x? of independence between A and B used by Brin et al. [10],
since x? = nR?, with nR? ~ N(0,1)?, assuming independence. Contrary to
x?, R distinguishes the cases A — B and A — B. The correlation coefficient
R can be written as:

_ Pab=PaPb _ _ \/Pa _
R = \/pl;pgpbé’g— TP [CONF pb].

This can be simplified as R = 2222 = L [CONT — p] = LOE, when A
b

LDy
and B have the same marginal distribubtion (pa = pv),and as R = 2CONF —1
(i.e. GAN), when this distribution is balanced (p, = py = 0.5). Thus, R and
CONF can be seen as equivalent for cross tables with balanced margins. The
cross table is then symmetrical, meaning that the 4 covariant rules connecting
A and B or their complement have the same confidence, as well as the 4
contravariant rules.

Other Measures

The measures that cannot be reduced to an affine transformation of confidence
are CONV, SEB and BF, as well as measures derived from the implication
index. CONV can be expressed as a monotonic increasing function of LOEF,
CONV = (1-LOE)~*. CONYV is analogous to LIFT applied to the counter-
examples:

CONV(A—B)= 2 =% _ [JTFT(A— B)~'.

pg/a pag
SEB is a monotonic increasing transformation of confidence, as well as —
just like BF — an affine transformation of conviction with fixed margins:

SEB = CONF

Wzé(CONV—l);BF:p%(CONV_l) .

Statistical measures are based on IMPIND which is an affine transfor-
mation of CONF with fixed margins, namely IMPINT = P(N(0,1) >
IMPIND,), and its discriminating versions EII and PDI
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Strategy

The user must choose the measures the most appropriate to his objective
and to the characteristics of his data; criteria proposed in this section may
be found of help. The user can also opt for some automated decision-making
procedure to decide on the most appropriate measure [32].

Because support and confidence are more easily understood, and because
support condition is antimonotonic, support-confidence algorithms are often
applied first to transactional databases. A set of admissible rules for the se-
lected support and confidence thresholds is then obtained. Such sets comprise
a large number (m) of rules, not always interesting. The most interesting rules
can be identified with the help of the selected measures. If the support con-
dition is released and if the interesting rules are sought for directly with the
selected measures, the number of rules becomes excessively large. Then, one
may be restricted to simple rules [3].

3 Validating Interesting Rules

Rules that are truly interesting for the user are those for which the real world
value, for the selected measure, exceeds some preset threshold. Most often,
as the transactional database is seen as a mere sample of the universe of
all possible transactions, one only knows some empirical evaluation of those
rules. The problem becomes the selection of the rules whose empirical values
significantly exceed the threshold. This means testing each one of the m rules,
that is, m tests.

For example, one can seek rules significantly far from the independence of
A and B, which leads to selecting rules for which confidence py,/, is significantly
larger than the threshold p,. The hypothesis of independence, noted Hy, is
given by m,,, = m, where 7/, is the theoretical confidence (or confidence
over all possible transactions), whereas 7, is the prior theoretical frequency
of B. For each rule, Hj is tested against the right-tail alternative of positive
dependence noted H; given by m,/, > mp. If one is seeking predictive rules,
one would select rules for which the confidence py/, is significantly larger
than 0.5, that is, testing Hy : m,), < 0.5 against Hy : m,), > 0.5. If the
objective is targeting of group, one can also seek rules for which the confidence
Db/ 18 significantly larger than the threshold Aps, that is, a lift larger than
some set value A > 1; this is equivalent to testing Hp : 7/, < Amp against
Hy: Tp/a > ATp.

These various situations could be analyzed with a measure other than
confidence. If ¢ measures are available, one needs a total of gm tests. Moreover,
certain measures have a complicated algebraic expression (e.g. EII) which
impedes the elaboration of a parametric test. In summary, the validation of
interesting rules requires the ability to develop a multitude of tests using some
possibly non-parametric device.



Interestingness measure and statistical validation 15

This multiplicity of tests inflates the number of false discoveries (rules
wrongly selected). Indeed, if m tests are developed, each with a probability
of Type I error set at ag, even if no rule is truly interesting, the procedure
creates on average maog false positives. Controlling multiple risk is rarely a
topic in data mining literature. A noteworthy exception is the work of Meg-
gido and Srikant [38] on the significance of association rules with respect to
independence, who simulate the number of false discoveries for a given level of
Type I risk. On the other hand, this topic is well covered in biostatistics (see
Sect. 3.1). The authors have proposed in earlier work methods to control mul-
tiple risk using statistical learning theory and VC-dimension [45], or bootstrap
[29]. In practice, because they make no allowance for false discoveries among
the m rules, these methods have little power, yet ignoring significant rules.
The authors have proposed BS_FD [30] to test the significance of rules; this
method controls the number of false discoveries and uses an original bootstrap
criterion. The general case with any threshold is exposed below.

First, the problem of controlling risk with multiple tests will be reviewed
(Sect. 3.1), as well as procedures that control risk using p-values (Sect 3.2).
Then, BS FD will be introduced (Sect. 3.3) and will be applied to selecting
the most interesting association rules (Sect. 3.4).

3.1 Constructing Multiple Tests
Significance Test for a Rule

Consider a rule A — B and some measure of interest M, decreasing with n_;
and fixed margins. Note M, the observed value of M (A — B) on the sample
of transactions and y its theoretical value on a very large set of transactions.
The rule is said to be significant under M with respect to pg if Myps =
M (A — B) is significantly larger to some preset value pg. A test for the null
hypothesis Hy : 4 = po against the unilateral alternative Hy : u > pg is
needed. Hj is rejected whenever M, is too far from Hy in the direction of
H,, with a Type I error risk set at a = a. The p-value for M, is computed
as the probability of obtaining a value as large as M, assuming Hj is true,
and the rule is selected if the p-value for M, is less than ag. Obviously, this
requires the knowledge of the distribution of M (A — B) under Hj.

Risk and Type I Error

The identification of the significant rules under M among the m rules ex-
tracted from a transactional database requires m tests. This raises the prob-
lem of false discoveries, a recurrent problem in data mining. If m uninteresting
rules are tested at the level g, then, on average, mag rules will mechanically
be erroneously selected. For example, with a = 0.05, and a base of extracted
rules comprising m = 10,000 rules, even if all were non-significant, about 500
rules would mechanically be selected.
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Table 6. Synthesis of the results of m tests

Reality \ Decision|Acceptation|Reject | Total
Hy true U 14 mo
H, true T S mi
Total w R m

To take into account the multiplicity of tests, the fundamental idea of
Benjamini and Hochberg [4] is to consider the number of errors over m itera-
tions of the test, rather than the risk of being wrong on one test (see Table 6,
where a upper case represents observable random variates and lower case are
fixed yet unknown quantities mg and m4). From this table, these authors de-
rive several indicators. Two most common ones are described next, FWER
(Family wise error rate) and FDR (False Discovery Rate).

FWER is the chance of erroneously rejecting Hy at least once, FWER =
P(V > 0). It is a much too strict criterion for a large number of tests, because
it does not allow any false discovery.

The authors [30] proposed the User Adjusted Family Wise Error Rate,
UAFWER = P(V > Vp), an original and more flexible variant which al-
lows V; false discoveries. UAFW ER can be controlled at the level § using a
bootstrap-based algorithm (Sect. 3.3).

Several quantities using the expectation of V', the number of false discov-
eries, possibly standardized, have been proposed to remedy the difficulties
inherent to FWER. The best known is FDR [4], the expected proportion of
erroneous selections among the selected rules. When R = 0, define % =0,
that is, FDR = E(Q), where Q = % if R > 0, 0 otherwise. Then:

FDR=E(% | R>0)P(R>0).

Storey [43] proposed the pFDR, a variation of FDR, using the knowledge
that Hy has been rejected at least once:

pFDR=E(% |R>0).

At the cost of a fixed proportion of erroneous selections, these quantities
are less severe, thus augmenting the probability of selecting an interesting
rule (increased power). One has FDR < FWER and FDR < pFDR, hence
FDR < pFDR < FWER when m is large, because P(R > 0) goes to 1
as m increases. The problem of controlling the Type I risk is resolved in the
literature by the use of p-values. FWER and FDR will be examined in turn.

3.2 Controlling Multiple Risk with p-values

Several solutions have been proposed to control FWER or FDR, most recently
in the context of gene selection. A remarkable summary of this work can be
found in [14].
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Control of FWER
Bonferroni Correction

Let us denote by P, the random variable generating the p-value p, associ-
ated to the test statistics 7,.,7 = 1,...,m. One can show that FWER =
1—P(N", (P-> 22) | Hy). Assuming that the rules are independent, then
FWER =1—(1— %)™ ~ ag. The Bonferroni correction consists in con-
structing each test at the level 22, in order to set the FWER on «q. This
correction is usually applied by adjusting the m p-values. The adjusted p-
value D, is defined by p,, = min {mp,, 1}. All rules having an adjusted p-value
smaller than the risk o are selected. If independence cannot be assumed,
one only has <2 < FWER < ag. The Bonferroni correction is not a good
solution for two reasons:

- FWER is actually not controlled, but somewhere between ¢ and «y; it
is equal to g only when the rules are mutually independent. Now, rules are
not independent, as they share items and because items are dependent.

- FWER is conservative, thus increasing the risk of a Type II error, that
is not finding an interesting rule.

Holm’s Step-down Procedure

Stepwise procedures examine p-values in increasing order of magnitude, ad-
justing the critical value as the procedure progresses. Holm [24] considers that
a selected variable corresponds to H false, and the critical value is adjusted
to only account for the variables remaining to be examined. Since the p-values
are sorted in increasing order, with p(;) the it p-value, Hy is rejected while
Py < mfifﬂ Hy is accepted for all p-values following the first acceptance.
This procedure, easy to implement, gives good results when the number of
tests is rather small, as the adjustment to the critical value has some impor-
tance. The procedure is ill-adapted to large numbers of tests.

Control of FDR
Bengjamini and Liu’s Procedure

Benjamini and Liu [5] proposed a sequential method for the control of FDR
under the assumption of independence. The p-values are examined in increas-
ing order and the null hypothesis is rejected if the p-value at hand p; is less
than w‘ﬁ This procedure ensures that FDR = 7%« under independence. It
is compatible with positively dependent data.

pFDR

In order to estimate pF DR = E (% | R > 0), the proportion of false detections,
Storey [43] proposes the approximation:

pFDAR((S) = ?%{ngzal—rzﬁﬂn}7 where
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- m is the number of rules to be tested; J defines the rejection area: hy-
potheses corresponding to p-values less than or equal to § are rejected;

- p; is the i*! largest p-value;

- mo = ¢ is the proportion of null hypotheses; here, mg is estimated by
f(1), where f is a cubic spline of 7o(\) over A: () = W,

0 < A < 0.95 represents the acceptation area.

The pFDR is defined in terms of a preset rejection area. Once the global
pFDR is computed, variables are controlled by a step-down procedure using
the g-values defined for each p-value as ¢(p,,) = 7.pm and:

T0.Mm.Di

(j(pl):mln( % a(j(p1+1)>azzm_1aal

The g-value is to the pF'DR what the p-value is to Type I error, or what the
adjusted p-value is to the FWER. Any rule whose p-value has a corresponding
g-value less than pFDR is selected.

3.3 Controling UAFWER Using the BS FD Algorithm

We have proposed a bootstrap-based non-parametric method to control
UAFWER. This method does not require p-values, which is advantageous
when the distribution of M (A — B) under Hy is unknown (e.g. the discrim-
inant versions of the statistical measures, like EIT [18] or its generalization
GEII [31]).

Notations

e T: set of transactions, n = Card(T ), p: number of items;

e R: base of admissible association rules with respect to some predefined
measures, for example, support and confidence, m = Card(R);

e M: measure of interest; u(r): theoretical value of M for rule r; M(r):
empirical value of M for r on 7;

e V: number of false discoveries, d: risk level of the control procedure, with
Vo the number of false discoveries not to be exceeded given §, R* a subset
of R comprising the significant rules as determined by M and py.

Objective

The objective is to select the rules r of R that are statistically significant as
measured by M, meaning that M(r) is significantly larger than pug(r), the
expected value under Hy. We have suggested various algorithms that use the
tools of statistical learning so that 100% of the identified rules be significant for
a given a, among others the bootstrap-based algorithm BS [29]. Experience
has shown that this approach might be too prudent, therefore not powerful
enough. Allowing a small number of false discoveries, after Benjamini’s work
(Sect. 3.1), the authors propose BS FD, an adaptation of BS that controls
the number of false discoveries.
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BS FD selects rules so that UAFWER = P(V > Vj), which ensures
that the number of false discoveries does not exceed V4 at the level §. The
algorithm guarantees that P(V > V};) converges to § when the size of the
samples of transactions increases.

Algorithm BS FD

Given 7, R, and M, u(r) > po(r) is guaranteed by setting u(r) > 0, without
loss of generality simply by shifting p(r) to pu(r) — po(r). Vo false discoveries
are allowed at risk §. Finally, #F = Card(E).

1. Empirical assessment. All rules of R are measured using M on the set of

transactions 7, creating the M(r),r € R.

2. Bootstrap. The following operations are repeated [ times:

e Sample with replacement and equal probability m transactions from
T, thus creating 7/, Card(7’) = Card(T). Some transactions of 7°
will not be in 7’ while some others will be there many times. All rules
are measured using M, creating the M(r), r € R.

e Compute the differences M’(r) — M(r), then compute £(Vp,i), the
smallest value such that #{M'(r) > M(r) + e(Vp,i)} < Vp. Hence,
e(Vp, i) is the (Vo +1)*" largest element of the M’ (r) — M(r), during
the i*? iteration, i = 1, 2...1.

3. Summary of bootstrap samples. There are [ values ¢(V}, 7). Compute £(d),
(1—6)*™ quantile of the £(Vp,4): that is, £(Vp, i) was larger than £(§) only
6 times in [.

4. Decision. Keep in R* all rules r such that M(r) > (9).

Rationale

Bootstrap methods [12] approximate the distance between the empirical and
true distributions by the distance between the bootstrap and empirical dis-
tributions. At the it bootstrap iteration, there are Vj rules whose evaluation
augments by more than ¢(Vj,4). Given the definition of (), the number of
rules whose evaluation augments by more than £(d) is larger than V; in a
proportion § of the [ iterations. Consequently, selecting rules for which M (r)
exceeds £(0), one is guaranteed to have at most Vj false discoveries at the risk
level 4.

Moreover, bootstrap-based methods have solid mathematical foundations
[15] which require a clearly posed question. Formally, the objective is that
the distribution function of the number of rules such that pu(r) < 0 while
M(r) > €, be at least 1 — 6 for V. One gets #{u(r) < 0 et M(r) > €} <
#{M (r) > p(r) + €}. Theorems on bootstrap applied to a family of functions
verifying the minimal conditions [47] yield the approximation of this quantity
by #{M’(r) > M(r)+e€}, which serves as a basis for ¢(Vp, i) and £(4) described
in this section.
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Extension to Multiple Measures

In practice, more than one measure will be of interest, for example, SUP,
CONF and a measure of the departure from independence. The extension of
BS FD, noted BS FD mm, is achieved by using as a summary measure the
minimum of the various measures. Hence, for 3 measures M;, My and M3,
one considers M (r) = min {M;(r), Ma(r), M3(r)}. Using BS FD_mm on M
at the level § will select rules which comply with M7, M> and Ms, at level §.

Risk of Type II errors can be optimized by working with Hadamard differ-
entiable transformations of the M; that will make the measures homogenous
[47], for example, p-values or reductions, through standardization.

Complexity of BS FD

The complexity of BS FD is proportional to [ x m X n, assuming that the
random number generator operates in constant time. In fact, the complexity
of the search for the &*" largest element of a table is proportional to the size
of the table. The value of [ must be large enough so that the finiteness of [
impede not the global reliability, and be independent of both m and n. The
algorithm is globally linear in m x n, to a constant [ linked to the bootstrap.

3.4 Application to the Rules Selection and Experimentation
Selecting Significant Rules According to Independence
Description of Data

The filtering methods presented here were applied to five sets of rules avail-
able on HERBS [46]. They were extracted using Borgelt and Kruse’s im-
plementation [9] of Apriori applied on data sets available from the UCI site
[6]: Contraceptive Method Choice (CMC), Flags (Flags), Wisconsin Breast
Cancer (WBC), Solar Flare I (SFI) and Solar Flare IT (SFII). The authors
computed for each method, the reduction rate of each set of rules after removal
of non-significant rules.

Parameterization

For the "5% control", Holm and Bonferroni procedures (cf. Sect. 3.2) were
applied with a level of 5%. pF DR is calculated with a rejection rate of 0.1%.
The number of false discoveries is shown between parentheses. The rejection
zone is chosen so that it will be as acceptable as possible. F'DR, described in
Sect. 3.2 is used with a threshold set by the last g-value selected by pF DR,
shown in brackets. Indeed, to compare pF'DR and F DR, control levels should
be close. Control level for BS FD(R) is set at 5%, with V4 equal to the result
of pFFDR, on the correlation coefficient R tested against 0.
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Table 7. Filtering of some sets of rules
Characteristics| CMC Flags WBC SF 1 SF II
# cases| 1,473 194 699 323 1066
# rules| 2,878 3,329 3,095 5,402 3,596
Covering rate| 100% 100% 96.2% 100% 100%
Re-covering rate 259 1,848 646 1,828.6 2,277
Support threshold 5% 50% 10% 20% 20%
Confidence threshold|  60% 90% 70% 85% 85%
Results| CMC Flags WBC SF I SF II
level 5%| 1,401 2,181 3,094 2,544 2,558
pFDR| 916 (3) 1,200 (3) 3,095 (0)| 900 (5) 1,625 (4)
FDR (Benj.)|913 (0.003)|1,198 (0.0027) 899 (0.006) (1,626 (0.0022)
BS FD(R) 794 1,074 3,093 604 738
Holm 742 564 3,094 432 1,020
Bonferroni 731 539 3,042 427 1,006

Results

Table 7 requires some explanations. No filter is efficient on WBC. This is
because only one rule of the starting set has a p-value above 0.05 (viz. 0.184),
an other one is at 0.023, the remaining p-values are less than 0.01, and 3, 036
of them are less than 0.00005 !

For the 4 other set of rules, merely repeating independence tests shrinks
the sets by 51%, 34%, 53%, and 39%. However, not all false discoveries are
eliminated. Using control on multiple risk reduces the number of rules selected.

Among those, Bonferroni correction is the most stringent. It produces
reductions of 75%, 81%, 65% and 60%. Though stringent, it lacks power,
avoiding false positives but creating false negatives. Holm’s procedure gives
similar results; it is inefficient because of the large number of rules which
renders the step-wise correction inoperative.

On the other hand, pFDR, FDR and BS FD give moderately better re-
sults, what was expected. BS FD appears to be the most stringent of the
3, especially on Solar Flare II. The reason is that the parameterization of
pFDR and FDR ensures an average number of false discoveries equal to Vj,
whereas BS FD ensures that V be exceeded only 0.05 of the time, which is
quiet demanding. These three methods are efficient rule filters. BS FD is the
most complex, but is advantageously non-parametric (see next section for an
example).

Thus, a filtering procedure based on controlling multiple risk eliminates
that would otherwise be selected by a variety of measures. Logical rules whose
consequent is very frequent (e.g. Solar Flare II) is an example of such mea-
sures. These attain a maximum under any measure that give a fixed maximum
value to logical rules, though they present little interest and their p-values are
non-significant. Conversely, computing p-values is independent of any sub-
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Table 8. Predictive rules selected on CMC by applying BS FD on LIFT and
GEII(2ps)

LIFT
Selected | Not Selected
Selected 8 19 27
GEI[‘gpb Not Selected 6 11,042 11,048
14 11,061 11,075

sequent ranking of the rules by descriptive measures that favour the more
interesting rules, for example, asymmetric measures that favour rules with
low frequency consequent.

Selecting Targeting Rules

Contrary to methods like FDR or pFDR, BS FD does not require prior
knowledge of the distribution of the measure under the null hypothesis.
BS FD can thus be applied to algebraically complex measures.

To illustrate this, let’s turn our attention to targeting rules. These are
rules for which knowing the antecedent multiplies by some constant A the
probability of observing the consequent. Here, we use A = 2, which amounts
to testing Ho : m/, = 2mp. To assess this type of rule, 2 measures are used,
LIFT and GEII(2p,) (generalized entropic intensity index with parameter
2py); the null distribution of GEII is not known. Under H,, these measures
are respectively 2 and 0.

The CMC base [6] was used for this experiment. First, using Tanagra [40]
implementation of Apriori, 13,864 rules with a support exceeding 0.05 were
extracted. Among those, the 2, 789 rules for which p;, > 0.5 were removed. Of
the 11,075 remaining rules, BS FD was applied on LIFT and on GEI1I(2py)
by comparing the results to 2 and 0 respectively. Results are displayed in
Table 8.

LIFT and GEII(2py) select respectively 14 and 27 rules of the 11,075
extracted by Apriori. These rules ensure that B has twice as many chances of
occurring if A is realized. The small number of rules allows expert examina-
tion. These are especially interesting in marketing and health sciences. In this
latter case, the consequent is the occurrence of a disease, and the antecedents
are possible factors of this disease. The proposed procedure detects factors
that multiply notably the risk of disease.

Moreover, results show that LIF'T and GEII(2p,) do not select the same
rules (only 8 are common). BS FD applied to LIFT naturally selects the
rules with the highest measures. Thus, of the 224 rules with a LIFT over 2,
it retains those with a value above 2.479. Among those, BS FD applied to
GEII(2py) does not select those rules with p, > 0.2 and p, < 0.1. Contrarily,
it selects those with a low frequency antecedent. Using many measures allows
different assessment of the interest of a given rule.
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4 Conclusion and Perspectives

Means to search for association rules in databases is one of the principal
contributions of data mining compared to traditional statistics. However, the
usual extraction algorithms yields a very large number of not-all-interesting
rules. On the other hand, these rules overfit the data [38], which makes them
hard to generalize. This double problem calls for a double solution: a careful
choice of the measure of interest and retaining those rules that are significant
for the objective at hand. The authors have suggested a number of criteria to
help the user to choose the most appropriate measure. To avoid overfitting,
the significance of each rule must be tested raising the problem of controlling
multiple risk and avoiding false discoveries. To this end, the authors suggest
a bootstrap-based method, BS FD; the proposed method controls the risk of
exceeding a fixed number of false discoveries, accounting for the dependency
among the rules, and allowing the test of several measures at once. BS FD
can be used for filtering rules where the antecedent increases the probability
of the consequent (positive dependence), for filtering targeting rules, or filter-
ing predictive rules. Experiments show the effectiveness and efficiency of the
proposed strategy. An extension of this work to filtering discriminant rules in
the context of genomics is being planned.
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