
�>���G �A�/�, �?���H�@�y�y�R�d�R�8�3�d

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�y�R�d�R�8�3�d

�a�m�#�K�B�i�i�2�/ �Q�M �j�y �L�Q�p �k�y�y�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�q�?�B�i�i�2�/ �_���v�@�h�`���+�B�M�; �7�Q�` �.�v�M���K�B�+ �a�+�2�M�2�b �m�b�B�M�; ��
�_���v�@�a�T���+�2 �>�B�2�`���`�+�?�v �Q�M �i�?�2 �:�S�l
�.���p�B�/ �_�Q�;�2�`�- �l�H�7 ���b�b���`�b�b�Q�M�- �L�B�+�Q�H���b �>�Q�H�x�b�+�?�m�+�?

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�.���p�B�/ �_�Q�;�2�`�- �l�H�7 ���b�b���`�b�b�Q�M�- �L�B�+�Q�H���b �>�Q�H�x�b�+�?�m�+�?�X �q�?�B�i�i�2�/ �_���v�@�h�`���+�B�M�; �7�Q�` �.�v�M���K�B�+ �a�+�2�M�2�b �m�b�B�M�; ��
�_���v�@�a�T���+�2 �>�B�2�`���`�+�?�v �Q�M �i�?�2 �:�S�l�X �C���M �E���m�i�x ���M�/ �a�m�K���M�i�� �S���i�i���M���B�F�X �a�v�K�T�Q�b�B�m�K �Q�M �_�2�M�/�2�`�B�M�;�-
�_�2�M�/�2�`�B�M�; �h�2�+�?�M�B�[�m�2�b �k�y�y�d�- �C�m�M �k�y�y�d�- �:�`�2�M�Q�#�H�2�- �6�`���M�+�2�X �1�m�`�Q�;�`���T�?�B�+�b ���b�b�Q�+�B���i�B�Q�M�- �T�T�X�N�N�@�R�R�y�- �k�y�y�d�-
�I�R�y�X�k�j�R�k�f�1�:�q�_�f�1�:�a�_�y�d�f�y�N�N�@�R�R�y�=�X �I�?���H�@�y�y�R�d�R�8�3�d�=

https://hal.inria.fr/hal-00171587
https://hal.archives-ouvertes.fr


Eurographics Symposium on Rendering (2007)
Jan Kautz and Sumanta Pattanaik (Editors)

Whitted Ray-Tracing for Dynamic Scenes
using a Ray-Space Hierarchy on the GPU

D. Roger1 U. Assarsson2 N. Holzschuch1

1ARTIS/INRIA Grenoble University 2Chalmers University of Technology

Abstract
In this paper, we present a new algorithm for interactive rendering of animated scenes with Whitted Ray-Tracing,
running on the GPU. We focus our attention on thesecondary rays(the rays generated by one or more bounces on
specular objects), and use the GPU rasterizer for primary rays. Our algorithm is based on a ray-space hierarchy,
allowing us to handle truly dynamic scenes without the need to rebuild or update the scene hierarchy. The ray-
space hierarchy is entirely built on the GPU for every frame, using a very fast process. Traversing the ray-space
hierarchy is also done on the GPU; one of the bene�ts of using a ray-space hierarchy is that we have a single
shader, and a �xed number of passes. After traversing each level ofthe hierarchy, we prune empty branches using
a stream reduction method. We present two di� erent stream reduction methods, a fast one using a hierarchical
algorithm, and an easy one using the Geometry shaders. Our algorithm results in interactive rendering with
specular re�ections and shadows for moderately complex scenes (� 700K triangles), handles any kind of dynamic
or unstructured scenes without any pre-processing, and scales wellwith both the scene complexity and the image
resolution.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors I.3.7
[Computer Graphics]: Raytracing

1. Introduction

Global illumination methods for image synthesis start with
the description of a virtual scene (its geometrical and mate-
rial properties) and compute a picture of the scene as seen
from a virtual observer. Among global illumination meth-
ods, Whitted ray-tracing [Whi80] uses ray-tracing [App68]
to simulate re�ections on specular objects. Ray-tracing and
Whitted ray-tracing have been the object of many research,
and are now widely used for production of photorealistic
images. Several papers describe real-time or interactive ray-
tracing.

Specular re�ections is one area where ray-traced images
typically di� er from images generated with rasterization.
These e� ects depend onsecondary rays, as opposed to the
primary rays (rays originating from the viewpoint of the
camera). Secondary rays include re�ected rays (after one or
several re�ections), refracted rays and shadow rays. While
primary rays are highly coherent, making it easier to opti-
mize the computations,e.g.using caching schemes together
with the scene hierarchies, secondary rays exhibit much less

coherence: two secondary rays generated from neighbour-
ing points can intersect with objects that are far away in the
scene. As a consequence, e� cient computation of secondary
rays is a harder problem than for primary rays.

Most ray-tracing algorithms use a scene hierarchy to
speed up the computation of the intersection between each
ray and the objects in the scene. But with animated scenes,
the scene hierarchy must be rebuilt or updated at each frame,
a process that is slowing down the computations.

In this paper, we present a new algorithm for interactive
Whitted ray-tracing of dynamic scenes, using a ray-space hi-
erarchy that is generated and processed on the GPU at each
frame. Although our algorithm can handle all kinds of rays,
including primary rays, we have elected to focus on the sec-
ondary rays, as they are both moreinterestingin terms of
pictures generated and moredi� cult to compute. We let the
GPU handle the primary rays, using rasterization, Z-bu� er
and per-pixel lighting. We also use the GPU to generate the
�rst set of secondary rays (the rays caused by the �rst bounce
on the scene), and to build a ray-space hierarchy. We then

c The Eurographics Association 2007.



D. Roger& U. Assarsson& N. Holzschuch/ Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

traverse this hierarchy on the GPU, starting at the root node
and descending towards the leaves, corresponding to indi-
vidual rays. For each node of the hierarchy (corresponding
to a bundle of rays), we maintain the set of triangles inter-
sected by this node. After traversing each level of the hier-
archy, the stream of triangles is pruned of its empty nodes,
using a stream reduction technique. We present two di� erent
stream reduction methods: one that is faster and relies on a
hierarchical algorithm, and one that is easier to implement,
using the Geometry shaders.

Our algorithm runs entirely on the GPU, without any com-
munication to or from the CPU. Our experiments show that
it runs interactively, with specular re�ections, for moderately
complex scenes. We can handle any kind of dynamic or un-
structured scenes without any pre-processing. Finally, our al-
gorithm scales well with both the scene complexity and the
image resolution.

Our paper is organized as follows: in the next section,
we review previous work on interactive rendering of spec-
ular re�ections, interactive ray-tracing, GPU ray-tracing and
ray-space hierarchies. We then present our algorithm for ray-
tracing (section3). A key step in our algorithm is the stream-
reduction pass, for which we have designed two possible im-
plementations; both will be discussed in section4. Finally,
we present our results in section5, then conclude and present
directions for future work.

2. Previous work

Ray-casting was formally introduced by Appel [App68]
as a technique for visible surface determination. Whit-
ted [Whi80] used ray-casting for the generation of photoreal-
istic images (including recursive specular re�ections). Ray-
tracing has been the subject of intensive research, dealing
with e� cient acceleration methods: scene hierarchies, e� -
cient parallel implementations or caching schemes.

We focus here on the previous work related to real-time or
interactive ray-tracing, ray-space hierarchies and GPU ray-
tracing. We also review methods for approximate specular
re�ections on the GPU.

Real-time and Interactive ray-tracing For a state of the
art in interactive ray tracing, we refer the reader to Wald and
Slusallek [WS01]. In recent years, several papers used a k-
D tree for the scene hierarchy [RSH05, HSHH07]. For dy-
namic scenes, however, Waldet al. [WIK � 06] showed that
construction and updates of k-D trees can signi�cantly slow
down the rendering process. To overcome this limitation,
they used a grid-based hierarchy; Izeet al. [IRWP06] stud-
ied di� erent parallel algorithms for the e� cient construction
of this grid hierarchy.

Lauterbachet al. [LYTM06] and Waldet al. [WBS07]
used aBounding Volume Hierarchy(BVH) for interactive
ray-tracing of dynamic scenes. BVHs are easier to compute

and update than k-D trees for dynamic scenes. Eisemannet
al. [EGMM07] presented two methods for fast updates of
BVHs. Wächter and Keller [WK06] presented a new data
structure, theBounding Interval Hierarchy(BIH), that is
both fast to rebuild or update on dynamic scenes and e� -
cient for traversal.

Ray-space hierarchiesAmanatides [Ama84] suggested
grouping rays together for faster rendering and more real-
istic e� ects; he traced cones instead of rays, and used them
for soft shadows and glossy re�ections. He also used a hier-
archy of cones for faster tracing of primary rays. Hanrahan
and Heckbert [HH84] used beam tracing for more accurate
ray-tracing and anti-aliasing, but without a hierarchical rep-
resentation. Arvo and Kirk [AK87] created a complete hier-
archy in 5-dimensional ray-space; rays were grouped in 5D
hypercubes, resulting in faster ray-tracing. Ghazanfarpour
and Hasenfratz [GH98] used hierarchical polyhedral beams
of rays for faster tracing of primary and shadow rays. Naka-
maru and Ohno [NO97, NO02] introducedbreadth-�rst ray-
tracing, where they keep the rays in memory and process the
objects sequentially.

Chung and Field [CF99] have combined a ray-space hier-
archy with a scene hierarchy for faster rendering. Similarly,
Reshetovet al. combined a ray-space hierarchy on the pri-
mary rays with a k-D tree scene hierarchy.

GPU-based Ray Tracing Carret al.[CHH02] made the ob-
servation that ray-casting is a crossbar on rays and primi-
tives, while pixel shading is a crossbar on pixels and prim-
itives. They devised a method to use the pixel shading
crossbar to compute ray-triangle intersections. Purcellet
al. [PBMH02] ported the entire ray-tracing algorithm, us-
ing a grid for the scene hierarchy, tracing one ray per pixel.
Because of the complexity of the ray-tracing algorithm, they
had to use four di� erent pixel shaders: for ray spawning, ray
traversal, ray-triangle intersection and shading. Combined
with the fact that the rays are in di� erent phases, this lim-
its their peak GPU performance to 10 % [CHCH06]. Further
research have extended this work [Chr04, KL04, TS05], but
all su� er from the same drawback and do not exploit the full
GPU performance.

Ernstet al. [EVG04] used a scene hierarchy based on a
k-D tree, but they required a �xed maximum stack depth.
Foley and Sugerman [FS05] extended this algorithm to a
stack-less traversal; they report 20 % GPU e� ciency. Horn
et al.[HSHH07] ported [FS05] to run in a single shader pass,
using GPU branching and looping.

Thrane and Simonsen [TS05] and Carret al. [CHCH06]
used a Bounding Volume Hierarchy instead of a k-D tree.
Carret al. [CHCH06] stored their BVH as a hierarchical ge-
ometry image.

Szécsi [Szé06] used a two-level ray-space hierarchy to
trace refraction rays on the GPU. The �rst level of the hi-

c The Eurographics Association 2007.



D. Roger& U. Assarsson& N. Holzschuch/ Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

erarchy is processed by the vertex shader, and the second
level by the fragment shader.

Our work shares common points with several of these
previous work. Like Hornet al. [HSHH07], we use the
programmable pixel shader to handle the primary rays,
and we only trace the secondary rays, but we use a ray-
space hierarchy instead of a k-D tree scene hierarchy. Like
Szécsi [Szé06], we use a ray-space hierarchy, but we build
the complete hierarchy, as opposed to only the bottom two
levels.

Specular re�ections on the GPU Roger and
Holzschuch [RH06], Estallela et al. [EMDT06] and
Szirmay-Kalos et al. [SKALP05] compute approximate
specular re�ections on the GPU, searching for optical paths
of extremal length. Our work di� ers from these, as we are
computing a full Whitted ray-tracing solution, without any
approximation.

3. Algorithm

3.1. Overview

Our algorithm works the following way:

1. Render the scene, with non-specular direct lighting ef-
fects;

2. Generate the �rst set of secondary rays;
3. Build the ray-space hierarchy from these rays;
4. Intersect the ray-space hierarchy with the scene:

a. maintain a stream of (hierarchy nodes, triangles).
b. recursively subdivide the nodes,
c. discard irrelevant triangles,

5. Final ray-triangle intersection and shading.

The �rst step is done using a standard rasterizer, with
pixel-based lighting (using fragment shaders). The same
shader also outputs the �rst set of secondary rays in a sep-
arate render target, with their starting point and direction.
The rays are indexed by the corresponding fragment posi-
tion. Building the ray-space hierarchy is then a fast step, en-
tirely done on the GPU (see Section3.2), for each frame, at
a cost of� 2 ms for a resolution of 1024� 1024.

Intersecting this ray-space hierarchy with the scene is the
core of the algorithm (see Section3.3). Each node in the
hierarchy represents a bundle of rays. We compute the set
of triangles whose bounding sphere intersects this bundle.
We start with the triangles intersecting the root node, and
descend along the hierarchy.

At the end of the hierarchy traversal, for each ray in the
original set, we have the set of triangles whose bounding
sphere it intersects. In a �nal pass, we compute the actual
ray-triangles intersection, keep the closest intersection, com-
pute its shading and output the corresponding fragment.

C

d

a

Figure 1: We use a cone-sphere structure for our ray-space
hierarchy. Each node is de�ned by a sphere and a cone.

Figure 2: The parent node is constructed as the enclosing
cone-sphere for the four children.

GPUs are not well adapted to hierarchical data struc-
tures. They are, in essence, SIMD machines and for opti-
mal results, neighbouring fragments should run in the same
branching conditions, in contradiction with the nature of hi-
erarchical computations. We resolved this issue by separat-
ing the hierarchy traversal in two passes: the �rst pass runs
the same shader on all data entries, with a �xed number of
operations and a �xed number of outputs. In a second pass,
we delete irrelevant outputs, reducing the size of the working
bu� er. This deletion pass is called astream reductionpass,
and it is essential to our algorithm. We have designed two
di� erent stream reduction methods (see Section4): a fast,
hierarchical method using fragment shaders, and an easy-to-
implement method using geometry shaders.

3.2. Building and storing the ray hierarchy

The �rst step in our algorithm is building the ray hierarchy.
Our algorithm can work with any kind of ray hierarchy, such
as polyhedral beams or cones of rays. For practical reasons,

É

Figure 3: We start with the set of secondary rays, and recur-
sively build the enclosing cone-sphere for each hierarchical
level.

c The Eurographics Association 2007.



D. Roger& U. Assarsson& N. Holzschuch/ Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

Stream
reduction

triID, coneID

(a) (b)

É
É

triID, coneID for next level

The output is used as input
to the next ray hierarchy level

Each level is used one by 
one as input for executing 
one traversal step for all
triangles down the ray 
hierarchy

Ray-triangle intersection
+ shading

after traversal
of all levels

Figure 4: Traversing the ray hierarchy: after the construction of the ray hierarchy, we store each scene-triangle in a texture,
so that each texel contains a triangle ID and the cone ID of the root node.In step (a), we send this information to the fragment
shader, which computes the intersections of the bounding sphere of the triangle with the four children cones, each one being
bound to a separate render target. If the intersection is not empty, the shader outputs the cone index of the child together with
the triangle ID, and otherwise a null node. In step (b), we remove all the null nodes using stream reduction and merge the results
into a single texture, used as input for the next level. Steps (a) and (b) arerepeated once for each level down the hierarchy. The
�nal output contains, for each ray, the ID of all triangles whose bounding sphere it intersects.

we have elected to use a combination of a cone and a sphere
(see Figure1). We de�ne the sphere so that in encloses the
starting points of all the rays in the ray bundle, and the cone
so that it contains the sphere and includes all the rays in the
ray bundle. The e� cient part of the ray bundle contains the
sphere and the part of the cone that is in front of the sphere.
The remaining part of the cone is not used for the intersec-
tions.

This structure can be stored in a very compact way, each
node requiring just 8 �oats: 4 for the sphere (center and ra-
dius) and 4 for the cone (direction and spread angle,� ). Note
that the 3D point we store is the center of the sphere and not
the apex of the cone. At the upper levels of the hierarchy,
the ray bundles group rays with very di� erent directions, so
the spread angle of the cone can be larger than�

2 , allowing a
cone to enclose the entire space.

The ray hierarchy is constructed bottom-up. We start with
the �rst set of secondary rays (rays re�ected by visible spec-
ular objects). These rays are generated while rendering the
scene, using a fragment shader to output the origin and di-
rection of the ray in a separate render target. This forms the
bottom layer of the hierarchy, with the sphere radii and the
cones' spread angle,� , equal to zero to represent the ex-
act rays. Each parent node is then created by computing the
union of the child nodes (see Figure2). This hierarchy con-
struction is done on the GPU, in a �xed number of passes:
for each node, we access its four children and compute the
enclosing node (see Figure3). This process is very similar
to generating mip-maps.

Our ray-space hierarchy is indexed by the screen position
of the rays. The lowest level has the same size as the screen:
each ray corresponds to a single pixel (since the specular
re�ectors usually do not cover the entire screen, some pixels
in the screen do not correspond to an actual ray). We keep

this structure for the upper levels: each node in the hierarchy
corresponds to an area of the screen, and groups together the
secondary rays underlying this area. This spatial localisation
of the nodes gives us the parent-children relationship without
having to store it explicitly.

By construction, each node in our ray-space hierarchy en-
closes its four children. If a triangle does not intersect the
current node, it will not intersect any of the children either,
and can safely be discarded.

3.3. Traversing the ray hierarchy

Once we have built the ray-hierarchy, we traverse it for com-
puting the intersections of the rays with the scene triangles.
We do this in a top-down manner, for each node in the hier-
archy creating the set of triangles potentially intersected by
this node. We start with the triangles intersected by the root
node, then descend the hierarchy. Each pass updates this in-
formation for the current level of the hierarchy, then sends
the result to the next pass, working on the next level of the
hierarchy (see Figure4).

The required information is stored in a texture, so that
each element contains the node ID and the triangle ID. Ini-
tially, the texture contains one element for each triangle in
the scene, with the ID of the triangle and the root node ID.

Each level of the hierarchy is processed in a single pass,
running the same shader on all these texture elements: for
each element, we retrieve the four cone-sphere children cor-
responding to the cone ID, the bounding sphere of the tri-
angle corresponding to the triangle ID and check their in-
tersection. For each children, we output in a separate render
target either the children ID and the triangle ID if there is an
intersection, or an empty element otherwise.

After this traversal pass, we have four textures, each of

c The Eurographics Association 2007.



D. Roger& U. Assarsson& N. Holzschuch/ Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

C

d

P C

d

P Pr
d

a
C

d

H

d+r

a

(a) (b) (c)

Figure 5: Testing the intersection between a node and the
bounding sphere of a triangle (a) reduces to a 2D problem
(b). It is equivalent to testing the intersection between a re-
duced cone and an enlarged sphere (c).

them with the same number of elements as the input texture,
but with many empty elements. A stream-reduction pass (de-
scribed in Section4) removes the empty elements and packs
the textures in a single texture, used as input for the next
step.

The number of traversal passes is equal to the depth of
the hierarchy, log2 X, whereX is the width of the picture in
pixels (i.e. 9 passes for a 512� 512 picture).

At the end of the hierarchy traversal, we have the ID of
each initial ray, with the ID of the triangles potentially in-
tersected by this ray. We compute the actual ray-triangles
intersections, select the closest intersection point, compute
the shading and illumination and display the result.

3.3.1. Intersection between a node and a bounding
sphere

The most frequent operation in our algorithm is computing
whether the bundle of rays corresponding to a node is in-
tersecting with the bounding sphere of a triangle. Given the
symmetry of revolution, this is actually a 2D operation (see
Figure5).

We assume that we have a ray hierarchy node de�ned by
a sphere (C;r) and a cone (ddd; � ), and we want to check the
intersection with the bounding sphere of a triangle, de�ned
by its centerP and its radiusd.

The problem is equivalent to testing the intersection be-
tween the cone of apexC, directionddd and spread angle�
with the sphere of centerP and radiusd+ r:

return
 
CHtan� +

d+ r
cos�

� HP
!

(1)

3.4. Memory considerations

As we traverse the ray hierarchy, our algorithm stores all the
pairs (hierarchy node, triangle) for which there is a potential
intersection. We store these pairs in a large texture (2048�
2048), where each texel contains twoint16 for the indices
of the hierarchy nodes and twoint16 for the indices of the
triangle.

During re�nement, the total number of pairs (hierarchy
node, triangle) can get larger than the number of texels. This
happens when the ray-space hierarchy contains nodes with
a large spatial or angular extent at the lower levels. Each of
these node intersects with a large number of triangles. Large
nodes at the upper levels of the hierarchy do not cause this
problem, simply because there is a smaller number of nodes.
A single discontinuity between two di� erent re�ectors will
not cause this issue, but an irregular, bumpy or fractal re�ec-
tor will.

When this happens, we implemented a simple
workaround: the scene is subdivided into batches, each
batch is processed independently and then the results are
combined. Our experiments show that the rendering time
for each batch is proportional to the number of triangles it
contains, so subdividing the scene into batches will actually
result in almost the same rendering time, except for the extra
cost for processing each batch: in our experiments,� 30 ms.
With this technique, memory over�ow is not predictable,
but the system can react to it at the next frame: one possible
strategy is to divide in two the batches that led to over�ow.
This way, any problem disapears within a few frames on
still images.

Another straight forward workaround would be to read
back the over�owing part of the stream to the CPU and pro-
cess it in a separate batch after the current batch is fully pro-
cessed. This can create a maximum ofd batches, whered
is the depth of the tree, temporarily stored on the CPU-side.
The GPU-CPU bandwidth should not be a major problem
here, since over a hundred 1024� 1024 frames can be sent
per second over the PCI Express bus.

This subdivision into batches can also be used to run our
algorithm on very large scenes: as long as a single batch can
be processed by our ray-tracing engine, there is no limit on
the size of the scene.

3.5. Other secondary rays

3.5.1. Shadow rays

Our ray-tracing engine is generic, and can handle any kind
of rays, not just the �rst bounce of secondary rays. We have
also used it for shadow rays (see Figure6(c)). We know that
all shadow rays share a common termination (the point light
source). For a better e� ciency, we revert the directions of
the shadow rays before computation, so that the light source
is now their common starting point. Thus, we build a very
tight ray-space hierarchy, with a null dimension in space.

3.5.2. Further light bounces

We also use our engine for further bounces (see Figure6(b)).
When a ray hits a specular surface, we generate the re�ected
ray for this pixel. We then send the set of re�ected rays to our
ray-intersection engine, with the same steps as for the rays

c The Eurographics Association 2007.
















